bioRxiv preprint doi: https://doi.org/10.1101/2020.07.24.217133; this version posted July 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The Paracaedibacter-like endosymbiont of 2 Bodo saltans (Kinetoplastida) uses multiple 3 putative toxin-antitoxin systems to maintain its 4 host association 5 6 Samriti Midha1*, Daniel J. Rigden2, Stefanos Siozios1, Gregory D. D. Hurst1, Andrew P. 7 Jackson1 8 9 1 Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Ic2 10 Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 5RF. United Kingdom. 11 2 Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., 12 Liverpool, L69 7ZB. United Kingdom. 13 14 Address for correspondence:
[email protected] 15 16 17 Running Title: Host association of Bodo endosymbiont 18 19 Keywords: kinetoplastida, Holosporales, endosymbiosis, toxin, antitoxin, genome 20 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.24.217133; this version posted July 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 22 Abstract 23 24 Bacterial endosymbiosis has been instrumental in eukaryotic evolution, and includes both 25 mutualistic, dependent and parasitic associations. Here we characterize an intracellular 26 bacterium inhabiting the flagellated protist Bodo saltans (Kinetoplastida).