Dynamical Boson Stars
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Macroscopic Quantum Phenomena in Interacting Bosonic Systems: Josephson flow in Liquid 4He and Multimode Schr¨Odingercat States
Macroscopic quantum phenomena in interacting bosonic systems: Josephson flow in liquid 4He and multimode Schr¨odingercat states by Tyler James Volkoff A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate Division of the University of California, Berkeley Committee in charge: Professor K. Birgitta Whaley, Chair Professor Philip L. Geissler Professor Richard E. Packard Fall 2014 Macroscopic quantum phenomena in interacting bosonic systems: Josephson flow in liquid 4He and multimode Schr¨odingercat states Copyright 2014 by Tyler James Volkoff 1 Abstract Macroscopic quantum phenomena in interacting bosonic systems: Josephson flow in liquid 4He and multimode Schr¨odingercat states by Tyler James Volkoff Doctor of Philosophy in Chemistry University of California, Berkeley Professor K. Birgitta Whaley, Chair In this dissertation, I analyze certain problems in the following areas: 1) quantum dynam- ical phenomena in macroscopic systems of interacting, degenerate bosons (Parts II, III, and V), and 2) measures of macroscopicity for a large class of two-branch superposition states in separable Hilbert space (Part IV). Part I serves as an introduction to important concepts recurring in the later Parts. In Part II, a microscopic derivation of the effective action for the relative phase of driven, aperture-coupled reservoirs of weakly-interacting condensed bosons from a (3 + 1)D microscopic model with local U(1) gauge symmetry is presented. The effec- tive theory is applied to the transition from linear to sinusoidal current vs. phase behavior observed in recent experiments on liquid 4He driven through nanoaperture arrays. Part III discusses path-integral Monte Carlo (PIMC) numerical simulations of quantum hydrody- namic properties of reservoirs of He II communicating through simple nanoaperture arrays. -
The Mechanics of the Fermionic and Bosonic Fields: an Introduction to the Standard Model and Particle Physics
The Mechanics of the Fermionic and Bosonic Fields: An Introduction to the Standard Model and Particle Physics Evan McCarthy Phys. 460: Seminar in Physics, Spring 2014 Aug. 27,! 2014 1.Introduction 2.The Standard Model of Particle Physics 2.1.The Standard Model Lagrangian 2.2.Gauge Invariance 3.Mechanics of the Fermionic Field 3.1.Fermi-Dirac Statistics 3.2.Fermion Spinor Field 4.Mechanics of the Bosonic Field 4.1.Spin-Statistics Theorem 4.2.Bose Einstein Statistics !5.Conclusion ! 1. Introduction While Quantum Field Theory (QFT) is a remarkably successful tool of quantum particle physics, it is not used as a strictly predictive model. Rather, it is used as a framework within which predictive models - such as the Standard Model of particle physics (SM) - may operate. The overarching success of QFT lends it the ability to mathematically unify three of the four forces of nature, namely, the strong and weak nuclear forces, and electromagnetism. Recently substantiated further by the prediction and discovery of the Higgs boson, the SM has proven to be an extraordinarily proficient predictive model for all the subatomic particles and forces. The question remains, what is to be done with gravity - the fourth force of nature? Within the framework of QFT theoreticians have predicted the existence of yet another boson called the graviton. For this reason QFT has a very attractive allure, despite its limitations. According to !1 QFT the gravitational force is attributed to the interaction between two gravitons, however when applying the equations of General Relativity (GR) the force between two gravitons becomes infinite! Results like this are nonsensical and must be resolved for the theory to stand. -
Physics of Three-Dimensional Bosonic Topological Insulators: Surface-Deconfined Criticality and Quantized Magnetoelectric Effect
PHYSICAL REVIEW X 3, 011016 (2013) Physics of Three-Dimensional Bosonic Topological Insulators: Surface-Deconfined Criticality and Quantized Magnetoelectric Effect Ashvin Vishwanath Department of Physics, University of California, Berkeley, California 94720, USA Materials Science Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, USA T. Senthil Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA (Received 4 October 2012; revised manuscript received 31 December 2012; published 28 February 2013) We discuss physical properties of ‘‘integer’’ topological phases of bosons in D ¼ 3 þ 1 dimensions, protected by internal symmetries like time reversal and/or charge conservation. These phases invoke interactions in a fundamental way but do not possess topological order; they are bosonic analogs of free- fermion topological insulators and superconductors. While a formal cohomology-based classification of such states was recently discovered, their physical properties remain mysterious. Here, we develop a field-theoretic description of several of these states and show that they possess unusual surface states, which, if gapped, must either break the underlying symmetry or develop topological order. In the latter case, symmetries are implemented in a way that is forbidden in a strictly two-dimensional theory. While these phases are the usual fate of the surface states, exotic gapless states can also be realized. For example, tuning parameters can naturally lead to a deconfined quantum critical point or, in other situations, to a fully symmetric vortex metal phase. We discuss cases where the topological phases are characterized by a quantized magnetoelectric response , which, somewhat surprisingly, is an odd multiple of 2.Two different surface theories are shown to capture these phenomena: The first is a nonlinear sigma model with a topological term. -
Basic Ideas of the Standard Model
BASIC IDEAS OF THE STANDARD MODEL V.I. ZAKHAROV Randall Laboratory of Physics University of Michigan, Ann Arbor, Michigan 48109, USA Abstract This is a series of four lectures on the Standard Model. The role of conserved currents is emphasized. Both degeneracy of states and the Goldstone mode are discussed as realization of current conservation. Remarks on strongly interact- ing Higgs fields are included. No originality is intended and no references are given for this reason. These lectures can serve only as a material supplemental to standard textbooks. PRELIMINARIES Standard Model (SM) of electroweak interactions describes, as is well known, a huge amount of exper- imental data. Comparison with experiment is not, however, the aspect of the SM which is emphasized in present lectures. Rather we treat SM as a field theory and concentrate on basic ideas underlying this field theory. Th Standard Model describes interactions of fields of various spins and includes spin-1, spin-1/2 and spin-0 particles. Spin-1 particles are observed as gauge bosons of electroweak interactions. Spin- 1/2 particles are represented by quarks and leptons. And spin-0, or Higgs particles have not yet been observed although, as we shall discuss later, we can say that scalar particles are in fact longitudinal components of the vector bosons. Interaction of the vector bosons can be consistently described only if it is highly symmetrical, or universal. Moreover, from experiment we know that the corresponding couplings are weak and can be treated perturbatively. Interaction of spin-1/2 and spin-0 particles are fixed by theory to a much lesser degree and bring in many parameters of the SM. -
Clifford Algebras, Multipartite Systems and Gauge Theory Gravity
Mathematical Phyiscs Clifford Algebras, Multipartite Systems and Gauge Theory Gravity Marco A. S. Trindadea Eric Pintob Sergio Floquetc aColegiado de Física Departamento de Ciências Exatas e da Terra Universidade do Estado da Bahia, Salvador, BA, Brazil bInstituto de Física Universidade Federal da Bahia Salvador, BA, Brazil cColegiado de Engenharia Civil Universidade Federal do Vale do São Francisco Juazeiro, BA, Brazil. E-mail: [email protected], [email protected], [email protected] Abstract: In this paper we present a multipartite formulation of gauge theory gravity based on the formalism of space-time algebra for gravitation developed by Lasenby and Do- ran (Lasenby, A. N., Doran, C. J. L, and Gull, S.F.: Gravity, gauge theories and geometric algebra. Phil. Trans. R. Soc. Lond. A, 582, 356:487 (1998)). We associate the gauge fields with description of fermionic and bosonic states using the generalized graded tensor product. Einstein’s equations are deduced from the graded projections and an algebraic Hopf-like structure naturally emerges from formalism. A connection with the theory of the quantum information is performed through the minimal left ideals and entangled qubits are derived. In addition applications to black holes physics and standard model are outlined. arXiv:1807.09587v2 [physics.gen-ph] 16 Nov 2018 1Corresponding author. Contents 1 Introduction1 2 General formulation and Einstein field equations3 3 Qubits 9 4 Black holes background 10 5 Standard model 11 6 Conclusions 15 7 Acknowledgements 16 1 Introduction This work is dedicated to the memory of professor Waldyr Alves Rodrigues Jr., whose contributions in the field of mathematical physics were of great prominence, especially in the study of clifford algebras and their applications to physics [1]. -
Introduction to Supersymmetry
Introduction to Supersymmetry Pre-SUSY Summer School Corpus Christi, Texas May 15-18, 2019 Stephen P. Martin Northern Illinois University [email protected] 1 Topics: Why: Motivation for supersymmetry (SUSY) • What: SUSY Lagrangians, SUSY breaking and the Minimal • Supersymmetric Standard Model, superpartner decays Who: Sorry, not covered. • For some more details and a slightly better attempt at proper referencing: A supersymmetry primer, hep-ph/9709356, version 7, January 2016 • TASI 2011 lectures notes: two-component fermion notation and • supersymmetry, arXiv:1205.4076. If you find corrections, please do let me know! 2 Lecture 1: Motivation and Introduction to Supersymmetry Motivation: The Hierarchy Problem • Supermultiplets • Particle content of the Minimal Supersymmetric Standard Model • (MSSM) Need for “soft” breaking of supersymmetry • The Wess-Zumino Model • 3 People have cited many reasons why extensions of the Standard Model might involve supersymmetry (SUSY). Some of them are: A possible cold dark matter particle • A light Higgs boson, M = 125 GeV • h Unification of gauge couplings • Mathematical elegance, beauty • ⋆ “What does that even mean? No such thing!” – Some modern pundits ⋆ “We beg to differ.” – Einstein, Dirac, . However, for me, the single compelling reason is: The Hierarchy Problem • 4 An analogy: Coulomb self-energy correction to the electron’s mass A point-like electron would have an infinite classical electrostatic energy. Instead, suppose the electron is a solid sphere of uniform charge density and radius R. An undergraduate problem gives: 3e2 ∆ECoulomb = 20πǫ0R 2 Interpreting this as a correction ∆me = ∆ECoulomb/c to the electron mass: 15 0.86 10− meters m = m + (1 MeV/c2) × . -
Keference International Centre for Theoretical
KEFERENCE INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS IC/86/342 INTERNATIONAL THE REGULAR EFFECTIVE ACTION OF GAUGE FIELD THEORY AND QUANTUM GRAVITY ATOMIC ENERGY AGENCY Nazir S. Baaklini UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION IC/86/342 International Atomic Energy Agency 0. INTRODUCTION and The effective action of quantum field theory, defined by the functional United Nations Educational Scientific and Cultural Organization integral , is an elegant and potentially, very powerful framework for compu- INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS ting quantum effects, in a manner that preserves underlying fundamental symmetries. However, this framework had been utilized mainly in computing effective potentials, and in certain discussions of the divergent counter-terms needed in gauge field THE REGULAR EFFECTIVE ACTION OF GAUGE FIELD THEORY theory and quantum gravity. Whereas it should ~ae very fruitful fo develop expre- AND QUANTUM GRAVITY ssions for the effective action which could have general applicability, computa- tions are still performed using conventional Feynman rules. What is needed is a perturbative formalism for the effective action vhicii applies to a general field Nazir S. Baaklini theory containing Bosonic as well as Fermionic fields, and vhich could be used to International Centre for Theoretical Physics, Trieste, Italy address fundamental issues of quantum field theory and quantum gravity. and Dahr el Chir Science Centre, Dhour el Choueir, Lebanon. On the other hand, our study of the effective action makes impact on two fundamental issues. One of these concerns the treatment of gauge field theory and other singular systems. The other concerns the ultraviolet divergences of quantum field theory and quantum gravity. -
Search for Non Standard Model Higgs Boson
Thirteenth Conference on the Intersections of Particle and Nuclear Physics May 29 – June 3, 2018 Palm Springs, CA Search for Non Standard Model Higgs Boson Ana Elena Dumitriu (IFIN-HH, CPPM), On behalf of the ATLAS Collaboration 5/18/18 1 Introduction and Motivation ● The discovery of the Higgs (125 GeV) by ATLAS and CMS collaborations → great success of particle physics and especially Standard Model (SM) ● However.... – MORE ROOM Hierarchy problem FOR HIGGS PHYSICS – Origin of dark matter, dark energy BEYOND SM – Baryon Asymmetry – Gravity – Higgs br to Beyond Standard Model (BSM) particles of BRBSM < 32% at 95% C.L. ● !!!!!!There is plenty of room for Higgs physics beyond the Standard Model. ● There are several theoretical models with an extended Higgs sector. – 2 Higgs Doublet Models (2HDM). Having two complex scalar SU(2) doublets, they are an effective extension of the SM. In total, 5 different Higgs bosons are predicted: two CP even and one CP odd electrically neutral Higgs bosons, denoted by h, H, and A, respectively, and two charged Higgs bosons, H±. The parameters used to describe a 2HDM are the Higgs boson masses and the ratios of their vacuum expectation values. ● type I, where one SU(2) doublet gives masses to all leptons and quarks and the other doublet essentially decouples from fermions ● type II, where one doublet gives mass to up-like quarks (and potentially neutrinos) and the down-type quarks and leptons receive mass from the other doublet. – Supersymmetry (SUSY), which brings along super-partners of the SM particles. The Minimal Supersymmetric Standard Model (MSSM), whose Higgs sector is equivalent to the one of a constrained 2HDM of type II and the next-to MSSM (NMSSM) are among the experimentally best tested models, because they provide good benchmarks for SUSY. -
JHEP05(2010)010 , 6 − Ing Springer and 10 May 4, 2010 9 : April 19, 2010 − : Tic Inflationary December 3, 2009 : Published Lar Potential, and No S
Published for SISSA by Springer Received: December 3, 2009 Accepted: April 19, 2010 Published: May 4, 2010 Light inflaton hunter’s guide JHEP05(2010)010 F. Bezrukova and D. Gorbunovb aMax-Planck-Institut f¨ur Kernphysik, P.O. Box 103980, 69029 Heidelberg, Germany bInstitute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312, Russia E-mail: [email protected], [email protected] Abstract: We study the phenomenology of a realistic version of the chaotic inflationary model, which can be fully and directly explored in particle physics experiments. The inflaton mixes with the Standard Model Higgs boson via the scalar potential, and no additional scales above the electroweak scale are present in the model. The inflaton-to- Higgs coupling is responsible for both reheating in the Early Universe and the inflaton production in particle collisions. We find the allowed range of the light inflaton mass, 270 MeV . mχ . 1.8 GeV, and discuss the ways to find the inflaton. The most promising are two-body kaon and B-meson decays with branching ratios of orders 10−9 and 10−6, respectively. The inflaton is unstable with the lifetime 10−9–10−10 s. The inflaton decays can be searched for in a beam-target experiment, where, depending on the inflaton mass, from several billions to several tenths of millions inflatons can be produced per year with modern high-intensity beams. Keywords: Cosmology of Theories beyond the SM, Rare Decays ArXiv ePrint: 0912.0390 Open Access doi:10.1007/JHEP05(2010)010 Contents 1 Introduction 1 2 The model 3 3 Inflaton decay palette 6 4 Inflaton from hadron decays 10 JHEP05(2010)010 5 Inflaton production in particle collisions 12 6 Limits from direct searches and predictions for forthcoming experiments 14 7 Conclusions 16 A The νMSM extension 16 1 Introduction In this paper we present an example of how (low energy) particle physics experiments can directly probe the inflaton sector (whose dynamics is important at high energies in the very Early Universe). -
Does Charged-Pion Decay Violate Conservation of Angular Momentum? Kirk T
Does Charged-Pion Decay Violate Conservation of Angular Momentum? Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (September 6, 2016, updated November 20, 2016) 1Problem + + Charged-pion decay, such as π → μ νµ, is considered in the Standard Model to involve the annihilation of the constituent quarks, ud¯,oftheπ+ into a virtual W + gauge boson, which + materializes as the final state μ νµ. While the pion is spinless, the W -boson is considered to have spin 1, which appears to violate conservation of angular momentum. What’s going on here?1 2Solution A remarked by Higgs in his Nobel Lecture [3], “... in this model the Goldstone massless (spin- 0) mode became the longitudinal polarization of a massive spin-1 photon, just as Anderson had suggested.” That is, in the Higgs’ mechanism, the Sz =0stateofaW boson is more or less still a spin-0 “particle.” Likewise, Weinberg in his Nobel Lecture [4] stated that: “The missing Goldstone bosons appear instead as helicity zero states of the vector particles, which thereby acquire a mass.” A similar view was given in [5]. References [1] S. Ogawa, On the Universality of the Weak Interaction, Prog. Theor. Phys. 15, 487 (1956), http://physics.princeton.edu/~mcdonald/examples/EP/ogawa_ptp_15_487_56.pdf [2] Y. Tanikawa and S. Watanabe, Fermi Interaction Caused by Intermediary Chiral Boson, Phys. Rev. 113, 1344 (1959), http://physics.princeton.edu/~mcdonald/examples/EP/tanikawa_pr_113_1344_59.pdf [3] P.W. Higgs, Evading the Goldstone Boson,Rev.Mod.Phys.86, 851 (2014), http://physics.princeton.edu/~mcdonald/examples/EP/higgs_rmp_86_851_14.pdf [4] S. -
Introduction to Supersymmetry
Introduction to Supersymmetry J.W. van Holten NIKHEF Amsterdam NL 1 Relativistic particles a. Energy and momentum The energy and momentum of relativistic particles are related by E2 = p2c2 + m2c4: (1) In covariant notation we define the momentum four-vector E E pµ = (p0; p) = ; p ; p = (p ; p) = − ; p : (2) c µ 0 c The energy-momentum relation (1) can be written as µ 2 2 p pµ + m c = 0; (3) where we have used the Einstein summation convention, which implies automatic summa- tion over repeated indices like µ. Particles can have different masses, spins and charges (electric, color, flavor, ...). The differences are reflected in the various types of fields used to describe the quantum states of the particles. To guarantee the correct energy-momentum relation (1), any free field Φ must satisfy the Klein-Gordon equation 2 − 2@µ@ + m2c2 Φ = ~ @2 − 2r2 + m2c2 Φ = 0: (4) ~ µ c2 t ~ Indeed, a plane wave Φ = φ(k) ei(k·x−!t); (5) satisfies the Klein-Gordon equation if E = ~!; p = ~k: (6) From now on we will use natural units in which ~ = c = 1. In these units we can write the plane-wave fields (5) as Φ = φ(p) eip·x = φ(p) ei(p·x−Et): (7) b. Spin Spin is the intrinsic angular momentum of particles. The word `intrinsic' is to be inter- preted somewhat differently for massive and massless particles. For massive particles it is the angular momentum in the rest-frame of the particles, whilst for massless particles {for which no rest-frame exists{ it is the angular momentum w.r.t. -
Field Theory of Anyons and the Fractional Quantum Hall Effect 30- 50
NO9900079 Field Theory of Anyons and the Fractional Quantum Hall Effect Susanne F. Viefers Thesis submitted for the Degree of Doctor Scientiarum Department of Physics University of Oslo November 1997 30- 50 Abstract This thesis is devoted to a theoretical study of anyons, i.e. particles with fractional statistics moving in two space dimensions, and the quantum Hall effect. The latter constitutes the only known experimental realization of anyons in that the quasiparticle excitations in the fractional quantum Hall system are believed to obey fractional statistics. First, the properties of ideal quantum gases in two dimensions and in particular the equation of state of the free anyon gas are discussed. Then, a field theory formulation of anyons in a strong magnetic field is presented and later extended to a system with several species of anyons. The relation of this model to fractional exclusion statistics, i.e. intermediate statistics introduced by a generalization of the Pauli principle, and to the low-energy excitations at the edge of the quantum Hall system is discussed. Finally, the Chern-Simons-Landau-Ginzburg theory of the fractional quantum Hall effect is studied, mainly focusing on edge effects; both the ground state and the low- energy edge excitations are examined in the simple one-component model and in an extended model which includes spin effets. Contents I General background 5 1 Introduction 7 2 Identical particles and quantum statistics 10 3 Introduction to anyons 13 3.1 Many-particle description 14 3.2 Field theory description