The Higgs As a Pseudo-Goldstone Boson

Total Page:16

File Type:pdf, Size:1020Kb

The Higgs As a Pseudo-Goldstone Boson Universidad Autónoma de Madrid Facultad de Ciencias Departamento de Física Teórica The Higgs as a pseudo-Goldstone boson Memoria de Tesis Doctoral realizada por Sara Saa Espina y presentada ante el Departamento de Física Teórica de la Universidad Autónoma de Madrid para la obtención del Título de Doctora en Física Teórica. Tesis Doctoral dirigida por M. Belén Gavela Legazpi, Catedrática del Departamento de Física Teórica de la Universidad Autónoma de Madrid. Madrid, 27 de junio de 2017 Contents Purpose and motivation 1 Objetivo y motivación 4 I Foundations 9 1 The Standard Model (SM) 11 1.1 Gauge fields and fermions 11 1.2 Renormalizability and unitarity 14 2 Symmetry and spontaneous breaking 17 2.1 Symmetry types and breakings 17 2.2 Spontaneous breaking of a global symmetry 18 2.2.1 Goldstone theorem 20 2.2.2 Spontaneous breaking of the chiral symmetry in QCD 21 2.3 Spontaneous breaking of a gauge symmetry 26 3 The Higgs of the SM 29 3.1 The EWSB mechanism 29 3.2 SM Higgs boson phenomenology at the LHC: production and decay 32 3.3 The Higgs boson from experiment 34 3.4 Triviality and Stability 38 4 Having a light Higgs 41 4.1 Naturalness and the “Hierarchy Problem” 41 4.2 Higgsless EWSB 44 4.3 The Higgs as a pseudo-GB 45 II Higgs Effective Field Theory (HEFT) 49 5 Effective Lagrangians 51 5.1 Generalities of EFTs 51 5.2 The Chiral Effective Lagrangian 52 5.3 Including a light Higgs 54 5.4 Linear vs. Non-linear approach 56 6 Renormalization of the scalar sector 59 6.1 Renormalization in EFTs 59 iii Contents 6.2 The scalar Lagrangian 60 6.2.1 Parametrization of the GB matrix 62 6.2.2 Counterterm Lagrangian 64 6.3 Renormalization of the off-shell Green functions 66 6.3.1 1-point functions 67 6.3.2 2-point functions 67 6.3.3 3-point functions 69 6.3.4 4-point functions 72 6.3.5 Comparison with previous works and SM limit 75 6.3.6 Dealing with the apparent non-invariant divergences (NIDs) 76 6.4 Renormalization Group Equations 78 7 Complete renormalization 81 7.1 A gauge and Yukawa theory for a manifold of scalars 81 7.1.1 One-loop renormalization 83 7.2 One-loop HEFT 85 7.2.1 Renormalization of the Leading Lagrangian 88 7.2.2 Renormalization of the Sub-leading Lagrangian 90 III Linear sigma model for a pseudo-Goldstone Higgs 95 8 Presentation of the model 97 8.1 The SO(5)/SO(4) scalar sector 98 8.1.1 The scalar potential 99 8.1.2 Scalar-gauge boson couplings 102 8.1.3 Renormalization and scalar tree-level decays 102 8.1.4 Scalar parameter space 103 8.2 Fermionic sector 106 8.2.1 The fermionic Lagrangian 108 8.3 Coleman–Weinberg potential 110 9 Phenomenology 113 9.1 Bound from Higgs measurements 113 9.2 Precision electroweak constraints 114 b 9.2.1 S, T and gL 114 9.2.2 Scalar contributions in the linear SO(5) model: h and σ 115 9.2.3 Fermionic contributions 117 9.3 Higgs and σ coupling to gluons 122 9.3.1 h ↔ gg transitions 123 9.3.2 σ ↔ gg transitions 124 9.4 Higgs and σ decay into γγ 126 9.4.1 h ↔ γγ transitions 126 9.4.2 σ ↔ γγ transitions 128 9.5 The σ resonance at the LHC 129 10 Connection with EFTs 133 10.1 Model independent analysis 134 iv Contents 10.1.1 Impact on Higgs observables 140 10.2 Explicit fermion sector 143 10.2.1 Integrating out only the heavy fermions 144 10.2.2 Integrating out only the heavy scalar 146 10.2.3 Combining the two limits 147 IV HEFT and Baryon Number Violation 149 11 Baryon non-invariant couplings in Higgs effective field theory 151 11.1 The BNV HEFT Lagrangian 152 11.2 Comparison with the SMEFT 153 11.3 Flavor contraction counting 155 Summary and conclusions 157 Resumen y conclusiones 161 Bibliography 167 v List of Figures 1.1 Particle content of the SM 12 2.1 Spontaneous symmetry breaking in a ferromagnet 18 2.2 Paraboloid versus Mexican hat potentials 19 3.1 Diagrams contributing to WW scattering 32 3.2 Local p-value as a function of the Higgs mass observed in the CMS and ATLAS experiments 32 3.3 Computed SM Higgs production cross sections and branching ratios 33 3.4 Higgs production channels at LHC 33 3.5 Higgs decay channel into photons 34 3.6 ATLAS and CMS best fits for the signal strengths 36 3.7 ATLAS and CMS combined fit of κg vs κγ. 37 3.8 ATLAS and CMS combined measurements of coupling modifiers. 38 3.9 Fit for Higgs couplings as a function of the particle mass. 39 3.10 Regions for the stability of the SM vacuum in terms of Higgs and top pole masses. 40 4.1 Relaxion potential 43 6.1 Diagram contributing to the Higgs 1-point function. 67 6.2 Diagrams contributing to the π self-energy. 68 6.3 Diagrams contributing to the Higgs self-energy. 69 6.4 Diagrams contributing to the hh → h amplitude, not including dia- grams obtained by crossing. 70 6.5 Diagrams contributing to the ππ → h scattering amplitude, not in- cluding diagrams obtained by crossing. 71 6.6 Diagrams contributing to the hh → hh amplitude, not including dia- grams obtained by crossing. 73 6.7 Diagrams contributing to the ππ → hh amplitude, not including di- agrams obtained by crossing. 73 6.8 Diagrams contributing to the ππ → ππ amplitude, not including diagrams obtained by crossing. 75 8.1 Schematics of the SO(5) → SO(4) model 97 2 8.2 Parameter space for mσ and sin γ. 105 8.3 Schematics of light fermion mass generation 107 9.1 Uncombined contributions of the scalar sector (black curve) and the exotic fermionic sector to the parameters S and T . 116 vi List of Figures 9.2 Combined contributions to S and T from the scalar sector and the exotic fermionic sector. 117 9.3 Scalar and fermionic impact on the T parameter and on the Z-bL-bL L coupling gb . 120 9.4 Examples of correlations between fermion mixings and EW precision measurements. 122 9.5 LHC constraints on sin2 γ versus σ mass parameter space neglecting exotic heavy fermion contributions. 130 9.6 LHC constraints on sin2 γ versus σ mass parameter space considering non-negligible exotic heavy fermion contributions. 131 10.1 Schematic fermion mass operator at low scales with arbitrary inser- tions of the scalar fields. 135 vii List of Tables 1.1 Transformation properties of the SM fermions 13 6.1 Operators in the L4 Lagrangian for the Higgs and GBs. 63 6.2 Counterterms from the non-linear Lagrangian (only h and GBs) con- tributing to Green functions 67 8.1 Heavy fermion charges assignments under the different groups. 108 10.1 Yukawa effective interactions for different fermion embeddings in SO(5)135 10.2 Effective operators and first corrections in 1/λ 139 10.3 Table with the definitions for the renormalization factors. 144 10.4 Leading order effective operators with heavy fermions integrated out. 145 10.5 Effective operators up to order f/Mi and 1/λ 148 viii Purpose and motivation An extremely compact and elegant formulation of the dynamics of the known funda- mental particles is given by the so-called Standard Model (SM) of particle physics, which has withstood all experimental tests since its conception around forty years ago. Aside from strong interactions, the Lagrangian of the SM describes both the electromagnetic and weak interactions by an SU(2)L × U(1)Y gauge-invariant the- ory. In 2012 LHC data showed the existence of a spin zero resonance of mass around 125 GeV [1, 2]. This particle has been identified with the boson of the Higgs mech- anism [3–6], responsible for the mass of the SM particles. Nevertheless, despite its general success, there remain observations without expla- nation within the SM. Only around 5% of the Universe energy content is explained by ordinary matter. Then, around 27% of the energy balance seems to require an explanation in terms of particles, the so-called “dark matter”, not accounted for in the SM, while the rest is known as the “dark energy”, which encodes the accelerated expansion of the Universe. Besides, the SM does not explain massive neutrinos and it contains no mechanism to describe the matter/antimatter asymmetry present in the Universe either. Moreover, the SM has three unsatisfactory internal issues: it provides no hint about the hierarchy in particle flavors observed in nature (also known as the flavor puzzle), the absence of CP violation in strong interactions requires a stringent fine-tuning and the Higgs mass seems unnaturally light if there is New Physics (NP) to which it couples. The latter is often referred to as the so-called electroweak (EW) hierarchy problem. This might not be a real problem in the sense that the SM is mathe- matically consistent; but taking naturalness seriously could be a way to provide a good intuition on NP. Furthermore, Higgs physics has an impact on most of the SM problems mentioned above. As a consequence, a different nature of the Higgs particle than the SM one can lead to a change in the overall current picture. Despite having a lot of information on the interactions of the Goldstone bosons (GBs), which are absorbed to become the longitudinal components of the EW gauge bosons, little is known about the underlying dynamics of the electroweak symmetry breaking (EWSB).
Recommended publications
  • Arxiv:1406.7795V2 [Hep-Ph] 24 Apr 2017 Mass Renormalization in a Toy Model with Spontaneously Broken Symmetry
    UWThPh-2014-16 Mass renormalization in a toy model with spontaneously broken symmetry W. Grimus∗, P.O. Ludl† and L. Nogu´es‡ University of Vienna, Faculty of Physics Boltzmanngasse 5, A–1090 Vienna, Austria April 24, 2017 Abstract We discuss renormalization in a toy model with one fermion field and one real scalar field ϕ, featuring a spontaneously broken discrete symmetry which forbids a fermion mass term and a ϕ3 term in the Lagrangian. We employ a renormalization scheme which uses the MS scheme for the Yukawa and quartic scalar couplings and renormalizes the vacuum expectation value of ϕ by requiring that the one-point function of the shifted field is zero. In this scheme, the tadpole contributions to the fermion and scalar selfenergies are canceled by choice of the renormalization parameter δv of the vacuum expectation value. However, δv and, therefore, the tadpole contributions reenter the scheme via the mass renormalization of the scalar, in which place they are indispensable for obtaining finiteness. We emphasize that the above renormalization scheme provides a clear formulation of the hierarchy problem and allows a straightforward generalization to an arbitrary number of fermion and arXiv:1406.7795v2 [hep-ph] 24 Apr 2017 scalar fields. ∗E-mail: [email protected] †E-mail: [email protected] ‡E-mail: [email protected] 1 1 Introduction Our toy model is described by the Lagrangian 1 1 = iχ¯ γµ∂ χ + y χT C−1χ ϕ + H.c. + (∂ ϕ)(∂µϕ) V (ϕ) (1) L L µ L 2 L L 2 µ − with the scalar potential 1 1 V (ϕ)= µ2ϕ2 + λϕ4.
    [Show full text]
  • A Chiral Symmetric Calculation of Pion-Nucleon Scattering
    . s.-q3 4 4t' A Chiral Symmetric Calculation of Pion-Nucleon Scattering UNeOo M Sc (Rangoon University) A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy at the University of Adelaide Department of Physics and Mathematical Physics University of Adelaide South Australia February 1993 Aword""l,. ng3 Contents List of Figures v List of Tables IX Abstract xt Acknowledgements xll Declaration XIV 1 Introduction 1 2 Chiral Symmetry in Nuclear Physics 7 2.1 Introduction . 7 2.2 Pseudoscalar and Pseudovector pion-nucleon interactions 8 2.2.1 The S-wave interaction 8 2.3 Soft-pion Theorems L2 2.3.1 Partially Conserved Axial Current(PCAC) T2 2.3.2 Adler's Consistency condition l4 2.4 The Sigma Model 16 2.4.I The Linear Sigma, Mocìel 16 2.4.2 Broken Symmetry Mode 18 2.4.3 Correction to the S-wave amplitude . 19 2.4.4 The Non-linear sigma model 2.5 Summary 3 Relativistic Two-Body Propagators 3.1 Introduction . 3.2 Bethe-Salpeter Equation 3.3 Relativistic Two Particle Propagators 3.3.1 Blankenbecler-Sugar Method 3.3.2 Instantaneous-interaction approximation 3.4 Short Range Structure in the Propagators 3.5 Smooth Propagators 3.6 The One Body Limit 3.7 One Body Limit, the R factor 3.8 Application to the zr.lú system 3.9 Summary 4 The Formalisrn 4.r Introduction - 4.2 Interactions in the Cloudy Bag Model . 4.2.1 Vertex Functions 4.2.2 The Weinberg-Tomozawa Term 4.3 Higher order graphs 4.3.1 The Cross Box Interaction 4.3.2 Loop diagram 4.3.3 The Chiral Partner of the Sigma Diagram 4.3.4 Sigma like diagrams 4.3.5 The Contact Interaction 4.3.6 The Interaction for Diagram h .
    [Show full text]
  • 3. Models of EWSB
    The Higgs Boson and Electroweak Symmetry Breaking 3. Models of EWSB M. E. Peskin Chiemsee School September 2014 In this last lecture, I will take up a different topic in the physics of the Higgs field. In the first lecture, I emphasized that most of the parameters of the Standard Model are associated with the couplings of the Higgs field. These parameters determine the Higgs potential, the spectrum of quark and lepton masses, and the structure of flavor and CP violation in the weak interactions. These parameters are not computable within the SM. They are inputs. If we want to compute these parameters, we need to build a deeper and more predictive theory. In particular, a basic question about the SM is: Why is the SU(2)xU(1) gauge symmetry spontaneously broken ? The SM cannot answer this question. I will discuss: In what kind of models can we answer this question ? For orientation, I will present the explanation for spontaneous symmetry breaking in the SM. We have a single Higgs doublet field ' . It has some potential V ( ' ) . The potential is unknown, except that it is invariant under SU(2)xU(1). However, if the theory is renormalizable, the potential must be of the form V (')=µ2 ' 2 + λ ' 4 | | | | Now everything depends on the sign of µ 2 . If µ2 > 0 the minimum of the potential is at ' =0 and there is no symmetry breaking. If µ 2 < 0 , the potential has the form: and there is a minimum away from 0. That’s it. Don’t ask any more questions.
    [Show full text]
  • Goldstone Theorem, Higgs Mechanism
    Introduction to the Standard Model Lecture 12 Classical Goldstone Theorem and Higgs Mechanism The Classical Goldstone Theorem: To each broken generator corresponds a massless field (Goldstone boson). Proof: 2 ∂ V Mij = ∂φi∂φj φ~= φ~ h i V (φ~)=V (φ~ + iεaT aφ~) ∂V =V (φ~)+ iεaT aφ~ + ( ε 2) ∂φj O | | ∂ ∂V a Tjlφl =0 ⇒∂φk ∂φj 2 ∂ ∂V a ∂ V a ∂V a Til φl = Tjlφl + Tik ∂φk ∂φi ∂φi∂φj ∂φi φ~= φ~ h i 0= M T a φ +0 ki il h li =~0i | 6 {z } If T a is a broken generator one has T a φ~ = ~0 h i 6 ⇒ Mik has a null eigenvector null eigenvalues massless particle since the eigenvalues of the mass matrix are the particle⇒ masses. ⇒ We now combine the concept of a spontaneously broken symmetry to a gauge theory. The Higgs Mechanism for U(1) gauge theory Consider µ 2 2 1 µν = D φ∗ D φ µ φ∗φ λ φ∗φ F F L µ − − − 4 µν µν µ ν ν µ with Dµ = ∂µ + iQAµ and F = ∂ A ∂ A . Gauge symmetry here means invariance under Aµ Aµ ∂µΛ. − → − 2 2 2 case a) unbroken case, µ > 0 : V (φ)= µ φ∗φ + λ φ∗φ with a minimum at φ = 0. The ground state or vaccuum is U(1) symmetric. The corresponding theory is known as Scalar Electrodynamics of a massive spin-0 boson with mass µ and charge Q. 1 case b) nontrivial vaccuum case 2 µ 2 v iα V (φ) has a minimum for 2 φ∗φ = − = v which gives φ = e .
    [Show full text]
  • Strongly Coupled Fermions on the Lattice
    Syracuse University SURFACE Dissertations - ALL SURFACE December 2019 Strongly coupled fermions on the lattice Nouman Tariq Butt Syracuse University Follow this and additional works at: https://surface.syr.edu/etd Part of the Physical Sciences and Mathematics Commons Recommended Citation Butt, Nouman Tariq, "Strongly coupled fermions on the lattice" (2019). Dissertations - ALL. 1113. https://surface.syr.edu/etd/1113 This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact [email protected]. Abstract Since its inception with the pioneering work of Ken Wilson, lattice field theory has come a long way. Lattice formulations have enabled us to probe the non-perturbative structure of theories such as QCD and have also helped in exploring the phase structure and classification of phase transitions in a variety of other strongly coupled theories of interest to both high energy and condensed matter theorists. The lattice approach to QCD has led to an understanding of quark confinement, chiral sym- metry breaking and hadronic physics. Correlation functions of hadronic operators and scattering matrix of hadronic states can be calculated in terms of fundamental quark and gluon degrees of freedom. Since lat- tice QCD is the only well-understood method for studying the low-energy regime of QCD, it can provide a solid foundation for the understanding of nucleonic structure and interaction directly from QCD. Despite these successes problems remain. In particular, the study of chiral gauge theories on the lattice is an out- standing problem of great importance owing to its theoretical implications and for its relevance to the electroweak sector of the Standard Model.
    [Show full text]
  • Basic Ideas of the Standard Model
    BASIC IDEAS OF THE STANDARD MODEL V.I. ZAKHAROV Randall Laboratory of Physics University of Michigan, Ann Arbor, Michigan 48109, USA Abstract This is a series of four lectures on the Standard Model. The role of conserved currents is emphasized. Both degeneracy of states and the Goldstone mode are discussed as realization of current conservation. Remarks on strongly interact- ing Higgs fields are included. No originality is intended and no references are given for this reason. These lectures can serve only as a material supplemental to standard textbooks. PRELIMINARIES Standard Model (SM) of electroweak interactions describes, as is well known, a huge amount of exper- imental data. Comparison with experiment is not, however, the aspect of the SM which is emphasized in present lectures. Rather we treat SM as a field theory and concentrate on basic ideas underlying this field theory. Th Standard Model describes interactions of fields of various spins and includes spin-1, spin-1/2 and spin-0 particles. Spin-1 particles are observed as gauge bosons of electroweak interactions. Spin- 1/2 particles are represented by quarks and leptons. And spin-0, or Higgs particles have not yet been observed although, as we shall discuss later, we can say that scalar particles are in fact longitudinal components of the vector bosons. Interaction of the vector bosons can be consistently described only if it is highly symmetrical, or universal. Moreover, from experiment we know that the corresponding couplings are weak and can be treated perturbatively. Interaction of spin-1/2 and spin-0 particles are fixed by theory to a much lesser degree and bring in many parameters of the SM.
    [Show full text]
  • Doi:10.5281/Zenodo.2566644
    Higgs, dark sector and the vacuum: From Nambu-Goldstone bosons to massive particles via the hydrodynamics of a doped vacuum. Marco Fedi * v2, February 16, 2019 Abstract is the energy density of the vacuum, whose units corre- spond to pressure (J=m3 = Pa), hence justifying the re- Here the physical vacuum is treated as a superfluid, fun- pulsive action of dark energy. One can describe the damental quantum scalar field, coinciding with dark en- virtual pairs forming and annihilating in quantum vac- ergy and doped with particle dark matter, able to pro- uum – considered as a fundamental, scalar, quantum duce massive particles and interactions via a hydrody- field – as vortex-antivortex pairs of vacuum’s quanta, namic reinterpretation of the Higgs mechanism. Here via a mechanism analogous to the Higgs mechanism, the Nambu-Goldstone bosons are circularly polarized where phonons in the superfluid vacuum are the Nambu- phonons around the edge of the Brillouin zone of vac- Goldstone bosons, which here trigger quantized vortices uum’s quasi-lattice and they give mass to particles by trig- and the mass-acquisition process, due to the interaction gering quantized vortices, whose dynamics reproduces with diffused particle dark matter [2], which acts as a any possible spin. Doped vortices also exert hydrody- dopant of the superfluid vacuum and that could be the rea- namic forces which may correspond to fundamental in- son for vacuum dilatancy, described and proven in [22]. teractions. Hence, is the Higgs field really something different or along with the dark sector and quantum vacuum we are Keywords— quantum vacuum; dilatant vacuum; dark en- using different names to refer to the same thing? Dilatant ergy; dark matter; Higgs mechanism; spin; fundamental vacuum [22] could refer to the possible apparent viscosity interactions.
    [Show full text]
  • Exotic Goldstone Particles: Pseudo-Goldstone Boson and Goldstone Fermion
    Exotic Goldstone Particles: Pseudo-Goldstone Boson and Goldstone Fermion Guang Bian December 11, 2007 Abstract This essay describes two exotic Goldstone particles. One is the pseudo- Goldstone boson which is related to spontaneous breaking of an approximate symmetry. The other is the Goldstone fermion which is a natural result of spontaneously broken global supersymmetry. Their realization and implication in high energy physics are examined. 1 1 Introduction In modern physics, the idea of spontaneous symmetry breaking plays a crucial role in understanding various phenomena such as ferromagnetism, superconductivity, low- energy interactions of pions, and electroweak unification of the Standard Model. Nowadays, broken symmetry and order parameters emerged as unifying theoretical concepts are so universal that they have become the framework for constructing new theoretical models in nearly all branches of physics. For example, in particle physics there exist a number of new physics models based on supersymmetry. In order to explain the absence of superparticle in current high energy physics experiment, most of these models assume the supersymmetry is broken spontaneously by some underlying subtle mechanism. Application of spontaneous broken symmetry is also a common case in condensed matter physics [1]. Some recent research on high Tc superconductor [2] proposed an approximate SO(5) symmetry at least over part of the theory’s parameter space and the detection of goldstone bosons resulting from spontaneous symmetry breaking would be a ’smoking gun’ for the existence of this SO(5) symmetry. From the Goldstone’s Theorem [3], we know that there are two explicit common features among Goldstone’s particles: (1) they are massless; (2) they obey Bose-Einstein statistics i.e.
    [Show full text]
  • Optimized Probes of the CP Nature of the Top Quark Yukawa Coupling at Hadron Colliders
    S S symmetry Article Optimized Probes of the CP Nature of the Top Quark Yukawa Coupling at Hadron Colliders Darius A. Faroughy 1, Blaž Bortolato 2, Jernej F. Kamenik 2,3,* , Nejc Košnik 2,3 and Aleks Smolkoviˇc 2 1 Physik-Institut, Universitat Zurich, CH-8057 Zurich, Switzerland; [email protected] 2 Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; [email protected] (B.B.); [email protected] (N.K.); [email protected] (A.S.) 3 Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia * Correspondence: [email protected] Abstract: We summarize our recent proposals for probing the CP-odd ik˜t¯g5th interaction at the LHC and its projected upgrades directly using associated on-shell Higgs boson and top quark or top quark pair production. We first recount how to construct a CP-odd observable based on top quark polarization in Wb ! th scattering with optimal linear sensitivity to k˜. For the corresponding hadronic process pp ! thj we then present a method of extracting the phase-space dependent weight function that allows to retain close to optimal sensitivity to k˜. For the case of top quark pair production in association with the Higgs boson, pp ! tth¯ , with semileptonically decaying tops, we instead show how one can construct manifestly CP-odd observables that rely solely on measuring the momenta of the Higgs boson and the leptons and b-jets from the decaying tops without having to distinguish the charge of the b-jets. Finally, we introduce machine learning (ML) and non-ML techniques to study the phase-space optimization of such CP-odd observables.
    [Show full text]
  • Introduction to Supersymmetry
    Introduction to Supersymmetry Pre-SUSY Summer School Corpus Christi, Texas May 15-18, 2019 Stephen P. Martin Northern Illinois University [email protected] 1 Topics: Why: Motivation for supersymmetry (SUSY) • What: SUSY Lagrangians, SUSY breaking and the Minimal • Supersymmetric Standard Model, superpartner decays Who: Sorry, not covered. • For some more details and a slightly better attempt at proper referencing: A supersymmetry primer, hep-ph/9709356, version 7, January 2016 • TASI 2011 lectures notes: two-component fermion notation and • supersymmetry, arXiv:1205.4076. If you find corrections, please do let me know! 2 Lecture 1: Motivation and Introduction to Supersymmetry Motivation: The Hierarchy Problem • Supermultiplets • Particle content of the Minimal Supersymmetric Standard Model • (MSSM) Need for “soft” breaking of supersymmetry • The Wess-Zumino Model • 3 People have cited many reasons why extensions of the Standard Model might involve supersymmetry (SUSY). Some of them are: A possible cold dark matter particle • A light Higgs boson, M = 125 GeV • h Unification of gauge couplings • Mathematical elegance, beauty • ⋆ “What does that even mean? No such thing!” – Some modern pundits ⋆ “We beg to differ.” – Einstein, Dirac, . However, for me, the single compelling reason is: The Hierarchy Problem • 4 An analogy: Coulomb self-energy correction to the electron’s mass A point-like electron would have an infinite classical electrostatic energy. Instead, suppose the electron is a solid sphere of uniform charge density and radius R. An undergraduate problem gives: 3e2 ∆ECoulomb = 20πǫ0R 2 Interpreting this as a correction ∆me = ∆ECoulomb/c to the electron mass: 15 0.86 10− meters m = m + (1 MeV/c2) × .
    [Show full text]
  • Goldstone Bosons in a Crystalline Chiral Phase
    Goldstone Bosons in a Crystalline Chiral Phase Goldstone Bosonen in einer Kristallinen Chiralen Phase Zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation von M.Sc. Marco Schramm, Tag der Einreichung: 29.06.2017, Tag der Prüfung: 24.07.2017 Darmstadt 2017 — D 17 1. Gutachten: PD Dr. Michael Buballa 2. Gutachten: Prof. Dr. Jens Braun Fachbereich Physik Institut für Kernphysik NHQ Goldstone Bosons in a Crystalline Chiral Phase Goldstone Bosonen in einer Kristallinen Chiralen Phase Genehmigte Dissertation von M.Sc. Marco Schramm, 1. Gutachten: PD Dr. Michael Buballa 2. Gutachten: Prof. Dr. Jens Braun Tag der Einreichung: 29.06.2017 Tag der Prüfung: 24.07.2017 Darmstadt 2017 — D 17 Bitte zitieren Sie dieses Dokument als: URN: urn:nbn:de:tuda-tuprints-66977 URL: http://tuprints.ulb.tu-darmstadt.de/6697 Dieses Dokument wird bereitgestellt von tuprints, E-Publishing-Service der TU Darmstadt http://tuprints.ulb.tu-darmstadt.de [email protected] Die Veröffentlichung steht unter folgender Creative Commons Lizenz: Namensnennung – Keine kommerzielle Nutzung – Keine Bearbeitung 4.0 International https://creativecommons.org/licenses/by-nc-nd/4.0/ Abstract The phase diagram of strong interaction matter is expected to exhibit a rich structure. Different models have shown, that crystalline phases with a spatially varying chiral condensate can occur in the regime of low temperatures and moderate densities, where they replace the first-order phase transition found for spatially constant order parameters. We investigate this inhomogeneous phase, where in addition to the chiral symmetry, transla- tional and rotational symmetry are broken as well, in a two flavor Nambu–Jona-Lasinio model.
    [Show full text]
  • Search for Non Standard Model Higgs Boson
    Thirteenth Conference on the Intersections of Particle and Nuclear Physics May 29 – June 3, 2018 Palm Springs, CA Search for Non Standard Model Higgs Boson Ana Elena Dumitriu (IFIN-HH, CPPM), On behalf of the ATLAS Collaboration 5/18/18 1 Introduction and Motivation ● The discovery of the Higgs (125 GeV) by ATLAS and CMS collaborations → great success of particle physics and especially Standard Model (SM) ● However.... – MORE ROOM Hierarchy problem FOR HIGGS PHYSICS – Origin of dark matter, dark energy BEYOND SM – Baryon Asymmetry – Gravity – Higgs br to Beyond Standard Model (BSM) particles of BRBSM < 32% at 95% C.L. ● !!!!!!There is plenty of room for Higgs physics beyond the Standard Model. ● There are several theoretical models with an extended Higgs sector. – 2 Higgs Doublet Models (2HDM). Having two complex scalar SU(2) doublets, they are an effective extension of the SM. In total, 5 different Higgs bosons are predicted: two CP even and one CP odd electrically neutral Higgs bosons, denoted by h, H, and A, respectively, and two charged Higgs bosons, H±. The parameters used to describe a 2HDM are the Higgs boson masses and the ratios of their vacuum expectation values. ● type I, where one SU(2) doublet gives masses to all leptons and quarks and the other doublet essentially decouples from fermions ● type II, where one doublet gives mass to up-like quarks (and potentially neutrinos) and the down-type quarks and leptons receive mass from the other doublet. – Supersymmetry (SUSY), which brings along super-partners of the SM particles. The Minimal Supersymmetric Standard Model (MSSM), whose Higgs sector is equivalent to the one of a constrained 2HDM of type II and the next-to MSSM (NMSSM) are among the experimentally best tested models, because they provide good benchmarks for SUSY.
    [Show full text]