Quantum Field Theory I + II

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Field Theory I + II Quantum Field Theory I + II Institute for Theoretical Physics, Heidelberg University Timo Weigand Literature This is a writeup of my Master programme course on Quantum Field Theory I (Chapters 1-6) and Quantum Field Theory II. The primary source for this course has been • Peskin, Schröder: An introduction to Quantum Field Theory, ABP 1995, • Itzykson, Zuber: Quantum Field Theory, Dover 1980, • Kugo: Eichtheorie, Springer 1997, which I urgently recommend for more details and for the many topics which time constraints have forced me to abbreviate or even to omit. Among the many other excellent textbooks on Quantum Field Theory I particularly recommend • Weinberg: Quantum Field Theory I + II, Cambridge 1995, • Srednicki: Quantum Field Theory, Cambridge 2007, • Banks: Modern Quantum Field Theory, Cambridge 2008 as further reading. All three of them oftentimes take an approach different to the one of this course. Excellent lecture notes available online include • A. Hebecker: Quantum Field Theory, • D. Tong: Quantum Field Theory. Special thanks to Robert Reischke1 for his fantastic work in typing these notes. 1For corrections and improvement suggestions please send a mail to [email protected]. 4 Contents 1 The free scalar field9 1.1 Why Quantum Field Theory?..............................9 1.2 Classical scalar field: Lagrangian formulation..................... 11 1.3 Noether’s Theorem................................... 14 1.4 Quantisation in the Schrödinger Picture........................ 17 1.5 Mode expansion..................................... 18 1.6 The Fock space..................................... 21 1.7 Some important technicalities.............................. 23 1.7.1 Normalisation.................................. 23 1.7.2 The identity................................... 24 1.7.3 Position-space representation.......................... 24 1.8 On the vacuum energy................................. 25 1.9 The complex scalar field................................ 28 1.10 Quantisation in the Heisenberg picture......................... 30 1.11 Causality and Propagators............................... 33 1.11.1 Commutators.................................. 33 1.11.2 Propagators................................... 35 1.11.3 The Feynman-propagator............................ 36 1.11.4 Propagators as Green’s functions........................ 39 2 Interacting scalar theory 41 2.1 Introduction....................................... 41 2.2 Källén-Lehmann spectral representation........................ 42 2.3 S-matrix and asymptotic in/out-states......................... 46 2.4 The LSZ reduction formula............................... 48 2.5 Correlators in the interaction picture.......................... 53 2.5.1 Time evolution................................. 55 2.5.2 From the interacting to the free vacuum.................... 56 2.6 Wick’s theorem..................................... 59 2.7 Feynman diagrams................................... 61 5 6 CONTENTS 2.7.1 Position space Feynman-rules......................... 63 2.7.2 Momentum space Feynman-rules....................... 63 2.8 Disconnected diagrams................................. 65 2.8.1 Vacuum bubbles................................ 67 2.9 1-particle-irreducible diagrams............................. 67 2.10 Scattering amplitudes.................................. 70 2.10.1 Feynman-rules for the S -matrix........................ 72 2.11 Cross-sections...................................... 73 1 3 Quantising spin 2 -fields 77 3.1 The Lorentz algebra so(1, 3) .............................. 77 3.2 The Dirac spinor representation............................. 81 3.3 The Dirac action.................................... 84 3.4 Chirality and Weyl spinors............................... 86 3.5 Classical plane-wave solutions............................. 89 3.6 Quantisation of the Dirac field............................. 91 3.6.1 Using the commutator............................. 91 3.6.2 Using the anti-commutator........................... 94 3.7 Propagators....................................... 97 3.8 Wick’s theorem and Feynman diagrams........................ 99 3.9 LSZ and Feynman rules................................. 100 4 Quantising spin 1-fields 103 4.1 Classical Maxwell-theory................................ 103 4.2 Canonical quantisation of the free field......................... 105 4.3 Gupta-Bleuler quantisation............................... 108 4.4 Massive vector fields.................................. 112 4.5 Coupling vector fields to matter............................ 113 4.5.1 Coupling to Dirac fermions.......................... 114 4.5.2 Coupling to scalars............................... 116 4.6 Feynman rules for QED................................. 117 4.7 Recovering Coulomb’s potential............................ 121 4.7.1 Massless and massive vector fields....................... 124 5 Quantum Electrodynamics 127 5.1 QED process at tree-level................................ 127 5.1.1 Feynman rules for in/out-states of definite polarisation............ 127 5.1.2 Sum over all spin and polarisation states.................... 128 5.1.3 Trace identities................................. 129 5.1.4 Centre-of-mass frame.............................. 130 CONTENTS 7 5.1.5 Cross-section.................................. 130 5.2 The Ward-Takahashi identity.............................. 132 5.2.1 Relation between current conservation and gauge invariance......... 135 5.2.2 Photon polarisation sums in QED....................... 136 5.2.3 Decoupling of potential ghosts......................... 136 5.3 Radiative corrections in QED - Overview....................... 137 5.4 Self-energy of the electron at 1-loop.......................... 138 5.4.1 Feynman parameters.............................. 139 5.4.2 Wick rotation.................................. 140 5.4.3 Regularisation of the integral.......................... 141 5.5 Bare mass m0 versus physical mass m ......................... 144 5.5.1 Mass renormalisation.............................. 146 5.6 The photon propagator................................. 146 5.7 The running coupling.................................. 149 5.8 The resummed QED vertex............................... 150 5.8.1 Physical charge revisited............................ 153 5.8.2 Anomalous magnetic moment......................... 153 5.9 Renormalised perturbation theory of QED....................... 154 5.9.1 Bare perturbation theory............................ 155 5.9.2 Renormalised Perturbation theory....................... 158 5.10 Infrared divergences................................... 164 6 Classical non-abelian gauge theory 165 6.1 Geometric perspective on abelian gauge theory.................... 165 6.2 Non-abelian gauge symmetry.............................. 167 6.3 The Standard Model.................................. 171 7 Path integral quantisation 173 7.1 Path integral in Quantum Mechanics.......................... 173 7.1.1 Transition amplitudes.............................. 173 7.1.2 Correlation functions.............................. 178 7.2 The path integral for scalar fields............................ 179 7.3 Generating functional for correlation functions.................... 183 7.3.1 Functional calculus............................... 183 7.4 Free scalar field theory................................. 185 7.5 Perturbative expansion in interacting theory...................... 188 7.6 The Schwinger-Dyson equation............................ 191 7.7 Connected diagrams................................... 195 7.8 The 1PI effective action................................. 196 7.9 G(') as a quantum effective action and background field method........... 200 8 CONTENTS 7.10 Euclidean QFT and statistical field theory....................... 203 7.11 Grassman algebra calculus............................... 206 7.12 The fermionic path integral............................... 211 8 Renormalisation of Quantum Field Theory 217 8.1 Superficial divergence and power counting....................... 217 8.2 Renormalisability and BPHZ theorem......................... 220 8.3 Renormalisation of φ4 theory up to 2-loops...................... 222 8.3.1 1-loop renormalisation............................. 224 8.3.2 Renormalisation at 2-loop........................... 226 8.4 Renormalisation of QED revisited........................... 231 8.5 The renormalisation scale................................ 233 8.6 The Callan-Symanzyk (CS) equation.......................... 234 8.7 Computation of β-functions in massless theories.................... 237 8.8 The running coupling.................................. 239 8.9 RG flow of dimensionful operators........................... 243 8.10 Wilsonian effective action & Renormalisation Semi-Group.............. 245 9 Quantisation of Yang-Mills-Theory 253 9.1 Recap of classical YM-Theory............................. 253 9.2 Gauge fixing the path integral.............................. 255 9.3 Faddeev-Popov ghosts................................. 259 9.4 Canonical quantisation and asymptotic Fock space.................. 262 9.5 BRST symmetry and the physical Hilbert space.................... 264 Chapter 1 The free scalar field 1.1 Why Quantum Field Theory? In (non-relativistic) Quantum Mechanics, the dynamics of a particle is described by the time-evolution of its associated wave-function (t, ~x) with respect to the non-relativistic Schrödinger equation @ ih¯ (t, ~x) = H (t, ~x), (1.1) @t ~pˆ2 with the Hamilitonian given by H = 2m + V(xˆ). In order
Recommended publications
  • A New Renormalization Scheme of Fermion Field in Standard Model
    A New Renormalization Scheme of Fermion Field in Standard Model Yong Zhoua a Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100080, China (Jan 10, 2003) In order to obtain proper wave-function renormalization constants for unstable fermion and consist with Breit-Wigner formula in the resonant region, We have assumed an extension of the LSZ reduction formula for unstable fermion and adopted on-shell mass renormalization scheme in the framework of without field renormaization. The comparison of gauge dependence of physical amplitude between on-shell mass renormalization and complex-pole mass renormalization has been discussed. After obtaining the fermion wave-function renormalization constants, we extend them to two matrices in order to include the contributions of off-diagonal two-point diagrams at fermion external legs for the convenience of calculations of S-matrix elements. 11.10.Gh, 11.55.Ds, 12.15.Lk I. INTRODUCTION We are interested in the LSZ reduction formula [1] in the case of unstable particle, for the purpose of obtaining a proper wave function renormalization constant(wrc.) for unstable fermion. In this process we have demanded the form of the unstable particle’s propagator in the resonant region resembles the relativistic Breit-Wigner formula. Therefore the on-shell mass renormalization scheme is a suitable choice compared with the complex-pole mass renormalization scheme [2], as we will discuss in section 2. We also discard the field renormalization constants which have been proven at question in the case of having fermions mixing [3]. The layout of this article is as follows.
    [Show full text]
  • An Introduction to Quantum Field Theory
    AN INTRODUCTION TO QUANTUM FIELD THEORY By Dr M Dasgupta University of Manchester Lecture presented at the School for Experimental High Energy Physics Students Somerville College, Oxford, September 2009 - 1 - - 2 - Contents 0 Prologue....................................................................................................... 5 1 Introduction ................................................................................................ 6 1.1 Lagrangian formalism in classical mechanics......................................... 6 1.2 Quantum mechanics................................................................................... 8 1.3 The Schrödinger picture........................................................................... 10 1.4 The Heisenberg picture............................................................................ 11 1.5 The quantum mechanical harmonic oscillator ..................................... 12 Problems .............................................................................................................. 13 2 Classical Field Theory............................................................................. 14 2.1 From N-point mechanics to field theory ............................................... 14 2.2 Relativistic field theory ............................................................................ 15 2.3 Action for a scalar field ............................................................................ 15 2.4 Plane wave solution to the Klein-Gordon equation ...........................
    [Show full text]
  • Quantum Field Theory*
    Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement.
    [Show full text]
  • Feynman Diagrams, Momentum Space Feynman Rules, Disconnected Diagrams, Higher Correlation Functions
    PHY646 - Quantum Field Theory and the Standard Model Even Term 2020 Dr. Anosh Joseph, IISER Mohali LECTURE 05 Tuesday, January 14, 2020 Topics: Feynman Diagrams, Momentum Space Feynman Rules, Disconnected Diagrams, Higher Correlation Functions. Feynman Diagrams We can use the Wick’s theorem to express the n-point function h0jT fφ(x1)φ(x2) ··· φ(xn)gj0i as a sum of products of Feynman propagators. We will be interested in developing a diagrammatic interpretation of such expressions. Let us look at the expression containing four fields. We have h0jT fφ1φ2φ3φ4g j0i = DF (x1 − x2)DF (x3 − x4) +DF (x1 − x3)DF (x2 − x4) +DF (x1 − x4)DF (x2 − x3): (1) We can interpret Eq. (1) as the sum of three diagrams, if we represent each of the points, x1 through x4 by a dot, and each factor DF (x − y) by a line joining x to y. These diagrams are called Feynman diagrams. In Fig. 1 we provide the diagrammatic interpretation of Eq. (1). The interpretation of the diagrams is the following: particles are created at two spacetime points, each propagates to one of the other points, and then they are annihilated. This process can happen in three different ways, and they correspond to the three ways to connect the points in pairs, as shown in the three diagrams in Fig. 1. Thus the total amplitude for the process is the sum of these three diagrams. PHY646 - Quantum Field Theory and the Standard Model Even Term 2020 ⟨0|T {ϕ1ϕ2ϕ3ϕ4}|0⟩ = DF(x1 − x2)DF(x3 − x4) + DF(x1 − x3)DF(x2 − x4) +DF(x1 − x4)DF(x2 − x3) 1 2 1 2 1 2 + + 3 4 3 4 3 4 Figure 1: Diagrammatic interpretation of Eq.
    [Show full text]
  • An Introduction to Supersymmetry
    An Introduction to Supersymmetry Ulrich Theis Institute for Theoretical Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, D–07743 Jena, Germany [email protected] This is a write-up of a series of five introductory lectures on global supersymmetry in four dimensions given at the 13th “Saalburg” Summer School 2007 in Wolfersdorf, Germany. Contents 1 Why supersymmetry? 1 2 Weyl spinors in D=4 4 3 The supersymmetry algebra 6 4 Supersymmetry multiplets 6 5 Superspace and superfields 9 6 Superspace integration 11 7 Chiral superfields 13 8 Supersymmetric gauge theories 17 9 Supersymmetry breaking 22 10 Perturbative non-renormalization theorems 26 A Sigma matrices 29 1 Why supersymmetry? When the Large Hadron Collider at CERN takes up operations soon, its main objective, besides confirming the existence of the Higgs boson, will be to discover new physics beyond the standard model of the strong and electroweak interactions. It is widely believed that what will be found is a (at energies accessible to the LHC softly broken) supersymmetric extension of the standard model. What makes supersymmetry such an attractive feature that the majority of the theoretical physics community is convinced of its existence? 1 First of all, under plausible assumptions on the properties of relativistic quantum field theories, supersymmetry is the unique extension of the algebra of Poincar´eand internal symmtries of the S-matrix. If new physics is based on such an extension, it must be supersymmetric. Furthermore, the quantum properties of supersymmetric theories are much better under control than in non-supersymmetric ones, thanks to powerful non- renormalization theorems.
    [Show full text]
  • PHY 2404S Lecture Notes
    PHY 2404S Lecture Notes Michael Luke Winter, 2003 These notes are perpetually under construction. Please let me know of any typos or errors. Once again, large portions of these notes have been plagiarized from Sidney Coleman’s field theory lectures from Harvard, written up by Brian Hill. 1 Contents 1 Preliminaries 3 1.1 Counterterms and Divergences: A Simple Example . 3 1.2 CountertermsinScalarFieldTheory . 11 2 Reformulating Scattering Theory 18 2.1 Feynman Diagrams with External Lines off the Mass Shell . .. 18 2.1.1 AnswerOne: PartofaLargerDiagram . 19 2.1.2 Answer Two: The Fourier Transform of a Green Function 20 2.1.3 Answer Three: The VEV of a String of Heisenberg Fields 22 2.2 GreenFunctionsandFeynmanDiagrams. 23 2.3 TheLSZReductionFormula . 27 2.3.1 ProofoftheLSZReductionFormula . 29 3 Renormalizing Scalar Field Theory 36 3.1 The Two-Point Function: Wavefunction Renormalization .... 37 3.2 The Analytic Structure of G(2), and1PIGreenFunctions . 40 3.3 Calculation of Π(k2) to order g2 .................. 44 3.4 The definition of g .......................... 50 3.5 Unstable Particles and the Optical Theorem . 51 3.6 Renormalizability. 57 4 Renormalizability 60 4.1 DegreesofDivergence . 60 4.2 RenormalizationofQED. 65 4.2.1 TroubleswithVectorFields . 65 4.2.2 Counterterms......................... 66 2 1 Preliminaries 1.1 Counterterms and Divergences: A Simple Example In the last semester we considered a variety of field theories, and learned to calculate scattering amplitudes at leading order in perturbation theory. Unfor- tunately, although things were fine as far as we went, the whole basis of our scattering theory had a gaping hole in it.
    [Show full text]
  • Basic Ideas of the Standard Model
    BASIC IDEAS OF THE STANDARD MODEL V.I. ZAKHAROV Randall Laboratory of Physics University of Michigan, Ann Arbor, Michigan 48109, USA Abstract This is a series of four lectures on the Standard Model. The role of conserved currents is emphasized. Both degeneracy of states and the Goldstone mode are discussed as realization of current conservation. Remarks on strongly interact- ing Higgs fields are included. No originality is intended and no references are given for this reason. These lectures can serve only as a material supplemental to standard textbooks. PRELIMINARIES Standard Model (SM) of electroweak interactions describes, as is well known, a huge amount of exper- imental data. Comparison with experiment is not, however, the aspect of the SM which is emphasized in present lectures. Rather we treat SM as a field theory and concentrate on basic ideas underlying this field theory. Th Standard Model describes interactions of fields of various spins and includes spin-1, spin-1/2 and spin-0 particles. Spin-1 particles are observed as gauge bosons of electroweak interactions. Spin- 1/2 particles are represented by quarks and leptons. And spin-0, or Higgs particles have not yet been observed although, as we shall discuss later, we can say that scalar particles are in fact longitudinal components of the vector bosons. Interaction of the vector bosons can be consistently described only if it is highly symmetrical, or universal. Moreover, from experiment we know that the corresponding couplings are weak and can be treated perturbatively. Interaction of spin-1/2 and spin-0 particles are fixed by theory to a much lesser degree and bring in many parameters of the SM.
    [Show full text]
  • Finite Quantum Field Theory and Renormalization Group
    Finite Quantum Field Theory and Renormalization Group M. A. Greena and J. W. Moffata;b aPerimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada bDepartment of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada September 15, 2021 Abstract Renormalization group methods are applied to a scalar field within a finite, nonlocal quantum field theory formulated perturbatively in Euclidean momentum space. It is demonstrated that the triviality problem in scalar field theory, the Higgs boson mass hierarchy problem and the stability of the vacuum do not arise as issues in the theory. The scalar Higgs field has no Landau pole. 1 Introduction An alternative version of the Standard Model (SM), constructed using an ultraviolet finite quantum field theory with nonlocal field operators, was investigated in previous work [1]. In place of Dirac delta-functions, δ(x), the theory uses distributions (x) based on finite width Gaussians. The Poincar´eand gauge invariant model adapts perturbative quantumE field theory (QFT), with a finite renormalization, to yield finite quantum loops. For the weak interactions, SU(2) U(1) is treated as an ab initio broken symmetry group with non- zero masses for the W and Z intermediate× vector bosons and for left and right quarks and leptons. The model guarantees the stability of the vacuum. Two energy scales, ΛM and ΛH , were introduced; the rate of asymptotic vanishing of all coupling strengths at vertices not involving the Higgs boson is controlled by ΛM , while ΛH controls the vanishing of couplings to the Higgs. Experimental tests of the model, using future linear or circular colliders, were proposed.
    [Show full text]
  • U(1) Symmetry of the Complex Scalar and Scalar Electrodynamics
    Fall 2019: Classical Field Theory (PH6297) U(1) Symmetry of the complex scalar and scalar electrodynamics August 27, 2019 1 Global U(1) symmetry of the complex field theory & associated Noether charge Consider the complex scalar field theory, defined by the action, h i h i I Φ(x); Φy(x) = d4x (@ Φ)y @µΦ − V ΦyΦ : (1) ˆ µ As we have noted earlier complex scalar field theory action Eq. (1) is invariant under multiplication by a constant complex phase factor ei α, Φ ! Φ0 = e−i αΦ; Φy ! Φ0y = ei αΦy: (2) The phase,α is necessarily a real number. Since a complex phase is unitary 1 × 1 matrix i.e. the complex conjugation is also the inverse, y −1 e−i α = e−i α ; such phases are also called U(1) factors (U stands for Unitary matrix and since a number is a 1×1 matrix, U(1) is unitary matrix of size 1 × 1). Since this symmetry transformation does not touch spacetime but only changes the fields, such a symmetry is called an internal symmetry. Also note that since α is a constant i.e. not a function of spacetime, it is a global symmetry (global = same everywhere = independent of spacetime location). Check: Under the U(1) symmetry Eq. (2), the combination ΦyΦ is obviously invariant, 0 Φ0yΦ = ei αΦy e−i αΦ = ΦyΦ: This implies any function of the product ΦyΦ is also invariant. 0 V Φ0yΦ = V ΦyΦ : Note that this is true whether α is a constant or a function of spacetime i.e.
    [Show full text]
  • Introduction to Supersymmetry
    Introduction to Supersymmetry Pre-SUSY Summer School Corpus Christi, Texas May 15-18, 2019 Stephen P. Martin Northern Illinois University [email protected] 1 Topics: Why: Motivation for supersymmetry (SUSY) • What: SUSY Lagrangians, SUSY breaking and the Minimal • Supersymmetric Standard Model, superpartner decays Who: Sorry, not covered. • For some more details and a slightly better attempt at proper referencing: A supersymmetry primer, hep-ph/9709356, version 7, January 2016 • TASI 2011 lectures notes: two-component fermion notation and • supersymmetry, arXiv:1205.4076. If you find corrections, please do let me know! 2 Lecture 1: Motivation and Introduction to Supersymmetry Motivation: The Hierarchy Problem • Supermultiplets • Particle content of the Minimal Supersymmetric Standard Model • (MSSM) Need for “soft” breaking of supersymmetry • The Wess-Zumino Model • 3 People have cited many reasons why extensions of the Standard Model might involve supersymmetry (SUSY). Some of them are: A possible cold dark matter particle • A light Higgs boson, M = 125 GeV • h Unification of gauge couplings • Mathematical elegance, beauty • ⋆ “What does that even mean? No such thing!” – Some modern pundits ⋆ “We beg to differ.” – Einstein, Dirac, . However, for me, the single compelling reason is: The Hierarchy Problem • 4 An analogy: Coulomb self-energy correction to the electron’s mass A point-like electron would have an infinite classical electrostatic energy. Instead, suppose the electron is a solid sphere of uniform charge density and radius R. An undergraduate problem gives: 3e2 ∆ECoulomb = 20πǫ0R 2 Interpreting this as a correction ∆me = ∆ECoulomb/c to the electron mass: 15 0.86 10− meters m = m + (1 MeV/c2) × .
    [Show full text]
  • Vacuum Energy
    Vacuum Energy Mark D. Roberts, 117 Queen’s Road, Wimbledon, London SW19 8NS, Email:[email protected] http://cosmology.mth.uct.ac.za/ roberts ∼ February 1, 2008 Eprint: hep-th/0012062 Comments: A comprehensive review of Vacuum Energy, which is an extended version of a poster presented at L¨uderitz (2000). This is not a review of the cosmolog- ical constant per se, but rather vacuum energy in general, my approach to the cosmological constant is not standard. Lots of very small changes and several additions for the second and third versions: constructive feedback still welcome, but the next version will be sometime in coming due to my sporadiac internet access. First Version 153 pages, 368 references. Second Version 161 pages, 399 references. arXiv:hep-th/0012062v3 22 Jul 2001 Third Version 167 pages, 412 references. The 1999 PACS Physics and Astronomy Classification Scheme: http://publish.aps.org/eprint/gateway/pacslist 11.10.+x, 04.62.+v, 98.80.-k, 03.70.+k; The 2000 Mathematical Classification Scheme: http://www.ams.org/msc 81T20, 83E99, 81Q99, 83F05. 3 KEYPHRASES: Vacuum Energy, Inertial Mass, Principle of Equivalence. 1 Abstract There appears to be three, perhaps related, ways of approaching the nature of vacuum energy. The first is to say that it is just the lowest energy state of a given, usually quantum, system. The second is to equate vacuum energy with the Casimir energy. The third is to note that an energy difference from a complete vacuum might have some long range effect, typically this energy difference is interpreted as the cosmological constant.
    [Show full text]
  • Search for Non Standard Model Higgs Boson
    Thirteenth Conference on the Intersections of Particle and Nuclear Physics May 29 – June 3, 2018 Palm Springs, CA Search for Non Standard Model Higgs Boson Ana Elena Dumitriu (IFIN-HH, CPPM), On behalf of the ATLAS Collaboration 5/18/18 1 Introduction and Motivation ● The discovery of the Higgs (125 GeV) by ATLAS and CMS collaborations → great success of particle physics and especially Standard Model (SM) ● However.... – MORE ROOM Hierarchy problem FOR HIGGS PHYSICS – Origin of dark matter, dark energy BEYOND SM – Baryon Asymmetry – Gravity – Higgs br to Beyond Standard Model (BSM) particles of BRBSM < 32% at 95% C.L. ● !!!!!!There is plenty of room for Higgs physics beyond the Standard Model. ● There are several theoretical models with an extended Higgs sector. – 2 Higgs Doublet Models (2HDM). Having two complex scalar SU(2) doublets, they are an effective extension of the SM. In total, 5 different Higgs bosons are predicted: two CP even and one CP odd electrically neutral Higgs bosons, denoted by h, H, and A, respectively, and two charged Higgs bosons, H±. The parameters used to describe a 2HDM are the Higgs boson masses and the ratios of their vacuum expectation values. ● type I, where one SU(2) doublet gives masses to all leptons and quarks and the other doublet essentially decouples from fermions ● type II, where one doublet gives mass to up-like quarks (and potentially neutrinos) and the down-type quarks and leptons receive mass from the other doublet. – Supersymmetry (SUSY), which brings along super-partners of the SM particles. The Minimal Supersymmetric Standard Model (MSSM), whose Higgs sector is equivalent to the one of a constrained 2HDM of type II and the next-to MSSM (NMSSM) are among the experimentally best tested models, because they provide good benchmarks for SUSY.
    [Show full text]