Paleocene Mammalian Biostratigraphy of the Carbon Basin, Southeastern Wyoming, and Age Constraints on Local Phases of Tectonism

Total Page:16

File Type:pdf, Size:1020Kb

Paleocene Mammalian Biostratigraphy of the Carbon Basin, Southeastern Wyoming, and Age Constraints on Local Phases of Tectonism University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Earth and Atmospheric Sciences, Department Papers in the Earth and Atmospheric Sciences of 5-1998 Paleocene Mammalian Biostratigraphy of the Carbon Basin, Southeastern Wyoming, and Age Constraints on Local Phases of Tectonism Ross Secord University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/geosciencefacpub Part of the Earth Sciences Commons Secord, Ross, "Paleocene Mammalian Biostratigraphy of the Carbon Basin, Southeastern Wyoming, and Age Constraints on Local Phases of Tectonism" (1998). Papers in the Earth and Atmospheric Sciences. 170. https://digitalcommons.unl.edu/geosciencefacpub/170 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Paleocene mammalian biostratigraphy of the Carbon Bash, southeastern woming, and age constraints on local phases of tectonism Ross Secord Department of Geology and Geophysics, The University of Wyoming, Laramie, Wyoming 82071-3006, U.S.A. ABSTRACT Mammalian fossils from two principal collecting areas in the lower Hanna Formation of the Carbon Basin comprise three faunas, the Grayson Ridge, Halfway Hill, and Sand Creek faunas. The Grayson Ridge and Halfway Hill faunas are diverse, consisting cumulatively of 29 mammalian species, at least two of which are new. The faunas are approximately equivalent in age and are either latest lbrrejonian or earliest Tiffanian, or possibly sample both NALMAs. In any event, the faunas are very close in age to the lbrrejonian-Tiffanian boundary. Strata bear- ing the Grayson Ridge and Halfway Hill faunas were truncated by erosion, resulting in a previ- ously unrecognized intraformational unconformity (IFU). The Sand Creek fauna consists of a meager sampling of mammalian fossils from directly above the unconformity and provides a Ti3-Ti5 age (middle or late Tiffanian) for strata overlying the unconformity. Fortuitous stratigraphic positioning of the faunas allowed age constraints to be placed upon two local phases of deformation. Simpson Ridge anticline, which separates the Hanna and Carbon basins, resulted from the first phase. Based upon lithologic correlation of the lower Ferris Formation at Simpson Ridge to its type section, development of Simpson Ridge began in the Lancian or Puercan time. Based upon fossil ages in the lower Hanna Formation, which onlaps the anticline, most, or all, of Simpson Ridge had formed by the early Tiffanian. A younger episode of deformation occurred no earlier than Ti4 (middle Tiffanian) and overprinted the folding of Simpson Ridge. Additionally, fossils from above and below the IFU suggest a hiatus of 1 to 3.5 m.y. in the lower Hanna Formation. Age constraints and orientations of Simpson Ridge anticline and an overprinting syncline suggest a local change in the direction of maximum shortening from early Paleocene to late Paleocene or Eocene. INTRODUCTION Orogenesis that led to the structure of the Cretaceous. The basins were separated by local up- present day Rocky Mountains began in the Late lift that began in the latest Cretaceous or early Pa- Cretaceous during what is known as the Laramide leocene and culminated in the formation of a large orogeny and lasted into the early Eocene. Basement- north-northeast trending anticline, known as involved thrusting led to large-scale uplifts. Debris Simpson Ridge (Figs. 1 and 2). shed off the uplifts into newly forming basins re- The Hanna Formation is a thick sequence of sulted in deposition of thick Late Cretaceous and terrestrially derived sandstone, shale, and coal, fill- Paleogene sedimentary sequences. The Hanna and ing the central parts of the Hanna and Carbon ba- Carbon basins are relatively small basins located sins. The formation has only been recognized in in southeastern Wyoming formed during the and around the Hanna, Carbon, and the northern Laramide orogeny (Fig. 1). The Hanna and Carbon Laramie basins, and at the northern end of the basins were not distinct depositional centers until Medicine Bow Mountains (Fig. 1). The Hanna For- the early Paleocene, as this study demonstrates, but mation ranges in age from latest lbrrejonian or rather comprised a single basin during the Late earliest Tiffanian at its base, to at least late Tiffanian Rocky Mountain Geology, v. 33, no. 1, p. 119-154, lzfigs., 11 tables, May, 1998 119 R. SECORD (Ti5-Ti6) in the northern and eastern Carbon Basin, which is the focus of this study (see Fig. 3 for geochronologic scale). Vertebrate fossils are not com- mon in most parts of the Hanna Formation and preservation is generally poor. Fossils are, how- ever, occasionally found in local abundance, and recent discover- ies of fragmentary mammalian remains in the Hanna and Car- bon basins have greatly increased knowledge of Paleocene mamma- lian life in southeastern Wyo- ming. Mammalian fossils were first discovered in the Carbon Ba- sin by a field party from The Uni- versity of Wyoming led by Dr. Jason A. Lillegraven in the sum- mer of 1980 in response to a re- port of a new vertebrate locality Figure 1. Map showing locations of Carbon and Hanna basins, surrounding by M~.Bd G~~~~~~.~ili~~~tcol- uplifts, and distribution of Hanna Formation. Modified from Roberts (1989), letting of fossil vertebrates, how- Lillegraven (1994), and Brooks (1977). Dark areas show Laramide uplifts; arrows and teeth on faults toward hanging wall. ever, did not begin until 1994 when I devoted 14 weeks to col- lecting fossils and gathering geo- logic data for research leading to a Master of Science degree. A to- tal of 170 mammalian specimens consisting of isolated teeth, tooth fragments, and jaw fragments has been cataloged to date. Although the number of specimens is small, taxonomic diversity is high. At least 33 mammalian spe- cies are represented, comprising 7 orders and 16 families. The Hanna Formation in the Carbon Basin onlaps previously formed geologic structures and was itself deformed late in the Laramide orogeny. Because of this overlapping relationship and sub- sequent deformation, mamma- lian fossils from the lower Hanna Formation are critical in provid- ing age constraints on local phases of tectonism. The Grayson Ridge and Halfway Hill faunas have important biostratigraphic Key to Figure 2. implications as well. They pro- vide evidence for faunal changes near or across the boundary be- 120 Rocky Mountain Geology, v. 33, no. I, p. 119-154, 12 figs., ll tables, May, 1998 PALEOCENE BIOSTRATIGRAPHY OF CARBON BASIN Figure 2. Geologic map of Carbon and southeastern Hanna basins, including Simpson Ridge anticline, vertebrate collecting areas, and other locations discussed in text. Simpson Ridge anticline extends from the southern end of T21N to the northern end of T22N. The Ferris-Hanna contact marks the northern outer trace of the anticline. Modi- fied from Hansen (1986) and Dobbin et al. (1929). Rocky Mountain Geology, v. 33, no. I, p. 119-154,12figs., 11 tables, May, 1998 121 R SECORD uw Collection of Fossil Vertebrates, Departmental Scientific Collections, MAMMAL "AGES" Department of Geology and Geophys- ics, The University of Wyoming, I 54 Laramie Eo EARLY --, -. YPM-PU Yale Peabody Museum, Yale Univer- 55 WASATCHIAN sity, New Haven, and Princeton 56 CLARKFORKIAN c11 University, Princeton Ti5 57 W Miscellaneous b ---Ti4 NALMA North American land mammal "age" !2 !2 2 58 TIFFANIAN Ti3 w IFU intraformational unconformity u 59 Ti2 O gen. indet. genus indeterminate W 60 Ti1 m.y. million years 61 --Tj6 2 --Ti5 m meters 62 km kilometers 5 TORREJONIAN 2;--- - 63 Tj2 5 63.90t0.04 /64.11 t0.02 Tjl Dental Measurements 64 h3 PUERCAN 16: L length PUT 65 F '64.77t0.06 W width ' 66 LANCIAN AW anterior width of lower teeth 3 I PW posterior width of lower teeth Figure 3. Geochronologic chart showing correlations between relevant mammal "ages," epochs, and polarity L, length to first serration of chrons. Torrejonian zonal boundaries are not intended to represent durations or absolute ages of zones. Base chart H height of first serration of M, modified from Woodburne and Swisher (1995) with D depth below base of H to base of 'Zbrrejonian zones of Williamson (1996). exodaenodont lobe of M, S number of serrations of M, tween the 'Ibrrejonian and Tiffanian NALMAs and raise questions about the synchroneity of presumed moth Designations Tiffanian first appearances. D deciduous dentition ABBREVIATIONS I", 1" upper, lower incisor P", px upper, lower premolar Institutions M", Mx upper, lower molar AMNH American Museum of Natural History, New York 1Mb multituberculate lower blade (Sloan, 1987, p. 192) KU University of Kansas, Lawrence NMMNH New Mexico Museum of Natural STRATIGRAPHY OF HANNA FORnilATION History and Science, Albuquerque The Hanna Formation consists of sandstone, PU Princeton University, Princeton siltstone, conglomerate, carbonaceous shale, and TMM Texas Memorial Museum, Univer- coal. The formation reaches a maximum thickness sity of Texas, Austin in excess of 3,500 m in the northern Hanna Basin (Lillegraven and Snoke, 1996, fig. 13) and 325 m in USNM U.S. National Museum, Smithsonian the Carbon Basin (Brooks, 1977). The Hanna For- Institution, Washington mation in the Carbon Basin rests with depositional 122 Rocky Mountain Geology, v. 33, no. 1, p. 119-154,
Recommended publications
  • Asian Paleocene-Early Eocene Chronology and Biotic Events
    ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at Berichte Geol. B.-A., 85 (ISSN 1017-8880) – CBEP 2011, Salzburg, June 5th – 8th Asian Paleocene-Early Eocene Chronology and biotic events Suyin Ting1, Yongsheng Tong2, William C. Clyde3, Paul L.Koch4, Jin Meng5, Yuanqing Wang2, Gabriel J. Bowen6, Qian Li2, Snell E. Kathryn4 1 LSU Museum of Natural Science, Baton Rouge, LA 70803, USA 2 Institute of Vert. Paleont. & Paleoanth., CAS., Beijing 100044, China 3 University of New Hampshire, Durham, NH 03824, USA 4 University of California Santa Cruz, Santa Cruz, CA 95064, USA 5 American Museum of Natural History, New York, NY 10024, USA 6 Purdue University, West Lafayette, IN 47907, USA Biostratigraphic, chemostratigraphic, and magnetostratigraphic studies of the Paleocene and early Eocene strata in the Nanxiong Basin of Guangdong, Chijiang Basin of Jiangxi, Qianshan Basin of Anhui, Hengyang Basin of Hunan, and Erlian Basin of Inner Mongolia, China, in last ten years provide the first well-resolved geochronological constrains on stratigraphic framework for the early Paleogene of Asia. Asian Paleocene and early Eocene strata are subdivided into four biochronological units based on the fossil mammals (Land Mammal Ages). From oldest to youngest, they are the Shanghuan, the Nongshanian, the Gashatan, and the Bumbanian Asian Land Mammal Ages (ALMA). Recent paleomagnetic data from the Nanxiong Basin indicate that the base of the Shanghuan lies about 2/3 the way up Chron C29r. Nanxiong data and recent paleomagnetic and isotopic results from the Chijiang Basin show that the Shanghuan-Nongshanian ALMA boundary lies between the upper part of Chron C27n and the lower part of Chron C26r, close to the Chron C27n-C26r reversal.
    [Show full text]
  • A/L Hcan %Mlsdum
    A/LSoxfitateshcan %Mlsdum PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER 1957 AUGUST 5, 1959 Fossil Mammals from the Type Area of the Puerco and Nacimiento Strata, Paleocene of New Mexico BY GEORGE GAYLORD SIMPSON ANTECEDENTS The first American Paleocene mammals and the first anywhere from the early to middle Paleocene were found in the San Juan Basin of New Mexico. Somewhat more complete sequences and larger faunas are now known from elsewhere, but the San Juan Basin strata and faunas are classical and are still the standard of comparison for the most clearly established lower (Puercan), middle (Torrejonian), and upper (Tiffanian) stages and ages. The first geologist to distinguish clearly what are now known to be Paleocene beds in the San Juan Basin was Cope in 1S74. He named them "Puercan marls" (Cope, 1875) on the basis of beds along the upper Rio Puerco, and especially of a section west of the Rio Puerco southwest of the then settlement of Nacimiento and of the present town of Cuba, on the southern side of Cuba Mesa. Cope reported no fossils other than petrified wood, but in 1880 and later his collector, David Baldwin, found rather abundant mammals, described by Cope (1881 and later) in beds 50 miles and more to the west and northwest of the type locality but referred to the same formation. In the 1890's Wortman collected for the American Museum in the Puerco of Cope, and, on the basis of this work, Matthew (1897) recognized the presence of two quite distinct faunas of different ages.
    [Show full text]
  • The World at the Time of Messel: Conference Volume
    T. Lehmann & S.F.K. Schaal (eds) The World at the Time of Messel - Conference Volume Time at the The World The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment and the History of Early Primates 22nd International Senckenberg Conference 2011 Frankfurt am Main, 15th - 19th November 2011 ISBN 978-3-929907-86-5 Conference Volume SENCKENBERG Gesellschaft für Naturforschung THOMAS LEHMANN & STEPHAN F.K. SCHAAL (eds) The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference Frankfurt am Main, 15th – 19th November 2011 Conference Volume Senckenberg Gesellschaft für Naturforschung IMPRINT The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference 15th – 19th November 2011, Frankfurt am Main, Germany Conference Volume Publisher PROF. DR. DR. H.C. VOLKER MOSBRUGGER Senckenberg Gesellschaft für Naturforschung Senckenberganlage 25, 60325 Frankfurt am Main, Germany Editors DR. THOMAS LEHMANN & DR. STEPHAN F.K. SCHAAL Senckenberg Research Institute and Natural History Museum Frankfurt Senckenberganlage 25, 60325 Frankfurt am Main, Germany [email protected]; [email protected] Language editors JOSEPH E.B. HOGAN & DR. KRISTER T. SMITH Layout JULIANE EBERHARDT & ANIKA VOGEL Cover Illustration EVELINE JUNQUEIRA Print Rhein-Main-Geschäftsdrucke, Hofheim-Wallau, Germany Citation LEHMANN, T. & SCHAAL, S.F.K. (eds) (2011). The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates. 22nd International Senckenberg Conference. 15th – 19th November 2011, Frankfurt am Main. Conference Volume. Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main. pp. 203.
    [Show full text]
  • Perissodactyla: Tapirus) Hints at Subtle Variations in Locomotor Ecology
    JOURNAL OF MORPHOLOGY 277:1469–1485 (2016) A Three-Dimensional Morphometric Analysis of Upper Forelimb Morphology in the Enigmatic Tapir (Perissodactyla: Tapirus) Hints at Subtle Variations in Locomotor Ecology Jamie A. MacLaren1* and Sandra Nauwelaerts1,2 1Department of Biology, Universiteit Antwerpen, Building D, Campus Drie Eiken, Universiteitsplein, Wilrijk, Antwerp 2610, Belgium 2Centre for Research and Conservation, Koninklijke Maatschappij Voor Dierkunde (KMDA), Koningin Astridplein 26, Antwerp 2018, Belgium ABSTRACT Forelimb morphology is an indicator for order Perissodactyla (odd-toed ungulates). Modern terrestrial locomotor ecology. The limb morphology of the tapirs are widely accepted to belong to a single enigmatic tapir (Perissodactyla: Tapirus) has often been genus (Tapirus), containing four extant species compared to that of basal perissodactyls, despite the lack (Hulbert, 1973; Ruiz-Garcıa et al., 1985) and sev- of quantitative studies comparing forelimb variation in eral regional subspecies (Padilla and Dowler, 1965; modern tapirs. Here, we present a quantitative assess- ment of tapir upper forelimb osteology using three- Wilson and Reeder, 2005): the Baird’s tapir (T. dimensional geometric morphometrics to test whether bairdii), lowland tapir (T. terrestris), mountain the four modern tapir species are monomorphic in their tapir (T. pinchaque), and the Malayan tapir (T. forelimb skeleton. The shape of the upper forelimb bones indicus). Extant tapirs primarily inhabit tropical across four species (T. indicus; T. bairdii; T. terrestris; T. rainforest, with some populations also occupying pinchaque) was investigated. Bones were laser scanned wet grassland and chaparral biomes (Padilla and to capture surface morphology and 3D landmark analysis Dowler, 1965; Padilla et al., 1996). was used to quantify shape.
    [Show full text]
  • Functional Morphology of the Vertebral Column in Remingtonocetus (Mammalia, Cetacea) and the Evolution of Aquatic Locomotion in Early Archaeocetes
    Functional Morphology of the Vertebral Column in Remingtonocetus (Mammalia, Cetacea) and the Evolution of Aquatic Locomotion in Early Archaeocetes by Ryan Matthew Bebej A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ecology and Evolutionary Biology) in The University of Michigan 2011 Doctoral Committee: Professor Philip D. Gingerich, Co-Chair Professor Philip Myers, Co-Chair Professor Daniel C. Fisher Professor Paul W. Webb © Ryan Matthew Bebej 2011 To my wonderful wife Melissa, for her infinite love and support ii Acknowledgments First, I would like to thank each of my committee members. I will be forever grateful to my primary mentor, Philip D. Gingerich, for providing me the opportunity of a lifetime, studying the very organisms that sparked my interest in evolution and paleontology in the first place. His encouragement, patience, instruction, and advice have been instrumental in my development as a scholar, and his dedication to his craft has instilled in me the importance of doing careful and solid research. I am extremely grateful to Philip Myers, who graciously consented to be my co-advisor and co-chair early in my career and guided me through some of the most stressful aspects of life as a Ph.D. student (e.g., preliminary examinations). I also thank Paul W. Webb, for his novel thoughts about living in and moving through water, and Daniel C. Fisher, for his insights into functional morphology, 3D modeling, and mammalian paleobiology. My research was almost entirely predicated on cetacean fossils collected through a collaboration of the University of Michigan and the Geological Survey of Pakistan before my arrival in Ann Arbor.
    [Show full text]
  • Attachment J Assessment of Existing Paleontologic Data Along with Field Survey Results for the Jonah Field
    Attachment J Assessment of Existing Paleontologic Data Along with Field Survey Results for the Jonah Field June 12, 2007 ABSTRACT This is compilation of a technical analysis of existing paleontological data and a limited, selective paleontological field survey of the geologic bedrock formations that will be impacted on Federal lands by construction associated with energy development in the Jonah Field, Sublette County, Wyoming. The field survey was done on approximately 20% of the field, primarily where good bedrock was exposed or where there were existing, debris piles from recent construction. Some potentially rich areas were inaccessible due to biological restrictions. Heavily vegetated areas were not examined. All locality data are compiled in the separate confidential appendix D. Uinta Paleontological Associates Inc. was contracted to do this work through EnCana Oil & Gas Inc. In addition BP and Ultra Resources are partners in this project as they also have holdings in the Jonah Field. For this project, we reviewed a variety of geologic maps for the area (approximately 47 sections); none of maps have a scale better than 1:100,000. The Wyoming 1:500,000 geology map (Love and Christiansen, 1985) reveals two Eocene geologic formations with four members mapped within or near the Jonah Field (Wasatch – Alkali Creek and Main Body; Green River – Laney and Wilkins Peak members). In addition, Winterfeld’s 1997 paleontology report for the proposed Jonah Field II Project was reviewed carefully. After considerable review of the literature and museum data, it became obvious that the portion of the mapped Alkali Creek Member in the Jonah Field is probably misinterpreted.
    [Show full text]
  • Mammals from the Mesozoic of Mongolia
    Mammals from the Mesozoic of Mongolia Introduction and Simpson (1926) dcscrihed these as placental (eutherian) insectivores. 'l'he deltathcroids originally Mongolia produces one of the world's most extraordi- included with the insectivores, more recently have narily preserved assemblages of hlesozoic ma~nmals. t)een assigned to the Metatheria (Kielan-Jaworowska Unlike fossils at most Mesozoic sites, Inany of these and Nesov, 1990). For ahout 40 years these were the remains are skulls, and in some cases these are asso- only Mesozoic ~nanimalsknown from Mongolia. ciated with postcranial skeletons. Ry contrast, 'I'he next discoveries in Mongolia were made by the Mesozoic mammals at well-known sites in North Polish-Mongolian Palaeontological Expeditions America and other continents have produced less (1963-1971) initially led by Naydin Dovchin, then by complete material, usually incomplete jaws with den- Rinchen Barsbold on the Mongolian side, and Zofia titions, or isolated teeth. In addition to the rich Kielan-Jaworowska on the Polish side, Kazi~nierz samples of skulls and skeletons representing Late Koualski led the expedition in 1964. Late Cretaceous Cretaceous mam~nals,certain localities in Mongolia ma~nmalswere collected in three Gohi Desert regions: are also known for less well preserved, but important, Bayan Zag (Djadokhta Formation), Nenlegt and remains of Early Cretaceous mammals. The mammals Khulsan in the Nemegt Valley (Baruungoyot from hoth Early and Late Cretaceous intervals have Formation), and llcrmiin 'ISav, south-\vest of the increased our understanding of diversification and Neniegt Valley, in the Red beds of Hermiin 'rsav, morphologic variation in archaic mammals. which have heen regarded as a stratigraphic ecluivalent Potentially this new information has hearing on the of the Baruungoyot Formation (Gradzinslti r't crl., phylogenetic relationships among major branches of 1977).
    [Show full text]
  • Description and Correlation of Eocene Rocks in Stratigraphie Reference Sections for the Green River and Washakie Basins, Southwest Wyoiming
    Description and Correlation of Eocene Rocks in Stratigraphie Reference Sections for the Green River and Washakie Basins, Southwest Wyoiming U.S. GEOLOGICAL SURVEY PROFESSIONAE PAPER 1506-D Description and Correlation of Eocene Rocks in Stratigraphic Reference Sections for the Green River and Washakie Basins, Southwest Wyoming By HENRY W. ROEHLER GEOLOGY OF THE EOCENE WASATCH, GREEN RIVER, AND BRIDGER (WASHAKIE) FORMATIONS, GREATER GREEN RIVER BASIN, WYOMING, UTAH, AND COLORADO U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1506-D Includes analyses of Eocene rocks in the Washakie basin UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1992 U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging in Publication Data Roehler, Henry W. Description and correlation of Eocene rocks in stratigraphic reference sections for the Green River and Washakie basins, Southwest Wyoming : includes analyses of Eocene rocks in the Washakie Basin / by Henry W. Roehler. p. cm. (Geology of the Eocene Wasatch, Green River and Bridger (Washakie) formations, greater Green River Basin, Wyoming, Utah, and Colorado) (U.S. Geological Survey professional paper ; 1506-D) Includes bibliographical references. Supt. of Docs, no.: I 19.16:1506-D 1. Geology, Stratigraphic Eocene. 2. Stratigraphic correlation Wyoming. 3. Geology Wyoming. I. Title. II. Series. III. Series: U.S. Geological Survey professional paper : 1506-D. QE692.2.R58 1992 551.7'84'09787 dc20 91-4442 CIP For sale by Book and Open-File Report Sales, U.S.
    [Show full text]
  • Replica a Los Comentarios De Canudo Et Al. a «Asociacion
    Estudios Geol., 60: 53-59 (2004) REPLICA A LOS COMENTARIOS DE CANUDO ET AL. A «ASOCIACION FAUNISTICA DE VERTEBRADOS MESOZOICOS DE LA LOCALIDAD DE GALVE (TERUEL)>> [ESTUDIOS GEOL., 58 (2002), 189-193] B. Sánchez Hernández * Una vez analizados los Comentarios a mi artículo lizó en el año 1958, difícilmente pudo llevarse a realizados por Canudo, Ruiz-Omeñaca, Barco, cabo el trabajo de campo, selección del área correc­ Cuenca-Bescós y Royo, sorprende el exceso de celo ta de prospección, estudio del material hallado y para descalificar un artículo que nunca pretendió excavación de la zona atendiendo a los resultados otra cosa -como se especifica claramente en su de las etapas anteriores señaladas, estudio del mate­ introducción- que ser una actualización temporal rial hallado, redacción del artículo y publicación de de la «Lista faunística de los vertebrados de Galve éste en ese mismo año. Parece razonable que todo (Teruel)>> realizada por los investigadores Buscalio­ ese trabajo le llevara un poco más de tiempo, posi­ ni y Sanz (1987). En esta publicación se pretende blemente años. Cabe señalar que algunos de estos clarificar algunas afirmaciones contenidas en dichos mismos autores aceptaban fechas aún anteriores Comentarios. para esa actividad, como se puede comprobar en la Guía del Parque Paleontológico de Galve (Teruel), cuyos autores son J. 1. Canudo, G. Cuenca Bescós y Fecha de inicio del estudio de los yacimientos de J. 1. Ruiz Omeñaca (1996), en donde señalan «Este Galve yacimiento (el de Las Zabacheras) lo encontró José María (se refieren a D. José M.ª Herrero, antiguo Canudo et al. afirman que es incorrecta mi afir­ propietario de la colección Herrero donada al mación del comienzo de los estudios sobre los Museo de Galve) a la orilla de la carretera de depósitos de Galve a principios del siglo xx, así entrada al pueblo, construida sobre el año 1934, y como la fecha de 1950 para el comienzo de las cuyo trazado cortó el yacimiento y cuantos materia­ excavaciones.
    [Show full text]
  • Geology and Vertebrate Paleontology of Western and Southern North America
    OF WESTERN AND SOUTHERN NORTH AMERICA OF WESTERN AND SOUTHERN NORTH PALEONTOLOGY GEOLOGY AND VERTEBRATE Geology and Vertebrate Paleontology of Western and Southern North America Edited By Xiaoming Wang and Lawrence G. Barnes Contributions in Honor of David P. Whistler WANG | BARNES 900 Exposition Boulevard Los Angeles, California 90007 Natural History Museum of Los Angeles County Science Series 41 May 28, 2008 Paleocene primates from the Goler Formation of the Mojave Desert in California Donald L. Lofgren,1 James G. Honey,2 Malcolm C. McKenna,2,{,2 Robert L. Zondervan,3 and Erin E. Smith3 ABSTRACT. Recent collecting efforts in the Goler Formation in California’s Mojave Desert have yielded new records of turtles, rays, lizards, crocodilians, and mammals, including the primates Paromomys depressidens Gidley, 1923; Ignacius frugivorus Matthew and Granger, 1921; Plesiadapis cf. P. anceps; and Plesiadapis cf. P. churchilli. The species of Plesiadapis Gervais, 1877, indicate that Member 4b of the Goler Formation is Tiffanian. In correlation with Tiffanian (Ti) lineage zones, Plesiadapis cf. P. anceps indicates that the Laudate Discovery Site and Edentulous Jaw Site are Ti2–Ti3 and Plesiadapis cf. P. churchilli indicates that Primate Gulch is Ti4. The presence of Paromomys Gidley, 1923, at the Laudate Discovery Site suggests that the Goler Formation occurrence is the youngest known for the genus. Fossils from Member 3 and the lower part of Member 4 indicate a possible marine influence as Goler Formation sediments accumulated. On the basis of these specimens and a previously documented occurrence of marine invertebrates in Member 4d, the Goler Basin probably was in close proximity to the ocean throughout much of its existence.
    [Show full text]
  • Resolving the Relationships of Paleocene Placental Mammals
    Biol. Rev. (2015), pp. 000–000. 1 doi: 10.1111/brv.12242 Resolving the relationships of Paleocene placental mammals Thomas J. D. Halliday1,2,∗, Paul Upchurch1 and Anjali Goswami1,2 1Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, U.K. 2Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, U.K. ABSTRACT The ‘Age of Mammals’ began in the Paleocene epoch, the 10 million year interval immediately following the Cretaceous–Palaeogene mass extinction. The apparently rapid shift in mammalian ecomorphs from small, largely insectivorous forms to many small-to-large-bodied, diverse taxa has driven a hypothesis that the end-Cretaceous heralded an adaptive radiation in placental mammal evolution. However, the affinities of most Paleocene mammals have remained unresolved, despite significant advances in understanding the relationships of the extant orders, hindering efforts to reconstruct robustly the origin and early evolution of placental mammals. Here we present the largest cladistic analysis of Paleocene placentals to date, from a data matrix including 177 taxa (130 of which are Palaeogene) and 680 morphological characters. We improve the resolution of the relationships of several enigmatic Paleocene clades, including families of ‘condylarths’. Protungulatum is resolved as a stem eutherian, meaning that no crown-placental mammal unambiguously pre-dates the Cretaceous–Palaeogene boundary. Our results support an Atlantogenata–Boreoeutheria split at the root of crown Placentalia, the presence of phenacodontids as closest relatives of Perissodactyla, the validity of Euungulata, and the placement of Arctocyonidae close to Carnivora. Periptychidae and Pantodonta are resolved as sister taxa, Leptictida and Cimolestidae are found to be stem eutherians, and Hyopsodontidae is highly polyphyletic.
    [Show full text]
  • Rapid and Early Post-Flood Mammalian Diversification Videncede in the Green River Formation
    The Proceedings of the International Conference on Creationism Volume 6 Print Reference: Pages 449-457 Article 36 2008 Rapid and Early Post-Flood Mammalian Diversification videncedE in the Green River Formation John H. Whitmore Cedarville University Kurt P. Wise Southern Baptist Theological Seminary Follow this and additional works at: https://digitalcommons.cedarville.edu/icc_proceedings DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Whitmore, John H. and Wise, Kurt P. (2008) "Rapid and Early Post-Flood Mammalian Diversification Evidenced in the Green River Formation," The Proceedings of the International Conference on Creationism: Vol. 6 , Article 36. Available at: https://digitalcommons.cedarville.edu/icc_proceedings/vol6/iss1/36 In A. A. Snelling (Ed.) (2008). Proceedings of the Sixth International Conference on Creationism (pp. 449–457). Pittsburgh, PA: Creation Science Fellowship and Dallas, TX: Institute for Creation Research. Rapid and Early Post-Flood Mammalian Diversification Evidenced in the Green River Formation John H. Whitmore, Ph.D., Cedarville University, 251 N. Main Street, Cedarville, OH 45314 Kurt P. Wise, Ph.D., Southern Baptist Theological Seminary, 2825 Lexington Road.
    [Show full text]