Heft 61 / 2021
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Topic Paper Chilterns Beechwoods
. O O o . 0 O . 0 . O Shoping growth in Docorum Appendices for Topic Paper for the Chilterns Beechwoods SAC A summary/overview of available evidence BOROUGH Dacorum Local Plan (2020-2038) Emerging Strategy for Growth COUNCIL November 2020 Appendices Natural England reports 5 Chilterns Beechwoods Special Area of Conservation 6 Appendix 1: Citation for Chilterns Beechwoods Special Area of Conservation (SAC) 7 Appendix 2: Chilterns Beechwoods SAC Features Matrix 9 Appendix 3: European Site Conservation Objectives for Chilterns Beechwoods Special Area of Conservation Site Code: UK0012724 11 Appendix 4: Site Improvement Plan for Chilterns Beechwoods SAC, 2015 13 Ashridge Commons and Woods SSSI 27 Appendix 5: Ashridge Commons and Woods SSSI citation 28 Appendix 6: Condition summary from Natural England’s website for Ashridge Commons and Woods SSSI 31 Appendix 7: Condition Assessment from Natural England’s website for Ashridge Commons and Woods SSSI 33 Appendix 8: Operations likely to damage the special interest features at Ashridge Commons and Woods, SSSI, Hertfordshire/Buckinghamshire 38 Appendix 9: Views About Management: A statement of English Nature’s views about the management of Ashridge Commons and Woods Site of Special Scientific Interest (SSSI), 2003 40 Tring Woodlands SSSI 44 Appendix 10: Tring Woodlands SSSI citation 45 Appendix 11: Condition summary from Natural England’s website for Tring Woodlands SSSI 48 Appendix 12: Condition Assessment from Natural England’s website for Tring Woodlands SSSI 51 Appendix 13: Operations likely to damage the special interest features at Tring Woodlands SSSI 53 Appendix 14: Views About Management: A statement of English Nature’s views about the management of Tring Woodlands Site of Special Scientific Interest (SSSI), 2003. -
Maternal Care in Acanthosomatinae (Insecta: Heteroptera: Acanthosomatidae)̶Correlated Evolution with Title Morphological Change
Maternal care in Acanthosomatinae (Insecta: Heteroptera: Acanthosomatidae)̶correlated evolution with Title morphological change Author(s) Tsai, Jing-Fu; Kudo, Shin-ichi; Yoshizawa, Kazunori BMC Evolutionary Biology, 15, 258 Citation https://doi.org/10.1186/s12862-015-0537-4 Issue Date 2015-11-19 Doc URL http://hdl.handle.net/2115/63251 Rights(URL) http://creativecommons.org/licenses/by/4.0 Type article File Information 10.1186_s12862-015-0537-4.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Tsai et al. BMC Evolutionary Biology (2015) 15:258 DOI 10.1186/s12862-015-0537-4 RESEARCH ARTICLE Open Access Maternal care in Acanthosomatinae (Insecta: Heteroptera: Acanthosomatidae)— correlated evolution with morphological change Jing-Fu Tsai1,3*, Shin-ichi Kudo2 and Kazunori Yoshizawa1 Abstract Background: Maternal care (egg-nymph guarding behavior) has been recorded in some genera of Acanthosomatidae. However, the origin of the maternal care in the family has remained unclear due to the lack of phylogenetic hypotheses. Another reproductive mode is found in non-caring species whose females smear their eggs before leaving them. They possess pairs of complex organs on the abdominal venter called Pendergrast’s organ (PO) and spread the secretion of this organ onto each egg with their hind legs, which is supposed to provide a protective function against enemies. Some authors claim that the absence of PO may be associated with the presence of maternal care. No study, however, has tested this hypothesis of a correlated evolution between the two traits. Results: We reconstructed the molecular phylogeny of the subfamily Acanthosomatinae using five genetic markers sequenced from 44 species and one subspecies with and without maternal care. -
Overwintering Sites of Ladybirds, Shieldbugs and Allied Species In
Overwintering sites of ladybirds, shieldbugs and allied species in ANGOR UNIVERSITY Hertfordshire woodland: how important is aspect? Gray, Joe; Healey, John Transactions of the Hertfordshire Natural History Society PRIFYSGOL BANGOR / B Published: 01/01/2016 Cyswllt i'r cyhoeddiad / Link to publication Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Gray, J., & Healey, J. (2016). Overwintering sites of ladybirds, shieldbugs and allied species in Hertfordshire woodland: how important is aspect? Transactions of the Hertfordshire Natural History Society, 48(1), 89-98. Hawliau Cyffredinol / General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. 24. Sep. 2021 Overwintering sites of ladybirds, shieldbugs and allied species in Hertfordshire woodland: How important is aspect? Joe Gray and John R Healey About this article The fieldwork on which this article is based was conducted by Joe Gray for the dissertation component of his part-time MSc in Forestry with Bangor University. -
Proceedings of the United States National Museum
Proceedings of the United States National Museum SMITHSONIAN INSTITUTION • WASHINGTON, D.C. Volume 112 I960 Number 3431 LACE-BUG GENERA OF THE WORLD (HEMIPTERA: TINGIDAE) « By Carl J. Drake and Florence A. Ruhoff Introduction A treatise of the generic names of the family Tingidae from a global standpoint embodies problems similar to those frequently encountered in corresponding studies in other animal groups. The more im- portant criteria, including such basic desiderata as fixation of type species, synonyms, priority, and dates of technical publications implicate questions concomitant with recent trends toward the clarification and stabilization of zoological nomenclature. Zoogeography, predicated and authenticated on the generic level by the distribution of genera and species, is portrayed here by means of tables, charts, and maps of the tingifauna of the world. This visual pattern of distribution helps one to form a more vivid concept of the family and its hierarchic levels of subfamilies and genera. To a limited extent the data indicate distributional concentrations and probable centers of evolution and dispersal paths of genera. The phylogenetic relationship of genera is not discussed. The present treatise recognizes 216 genera (plus 79 synonyms, homonyms, and emendations) of the Tingidae of the world and gives 1 Research for this paper was supported In part by the National Science Foundation, grant No. 4095. 2 PROCEEDINGS OF THE NATIONAL MUSEUM vol. 112 the figure of 1,767 as the approximate number of species now recog- nized. These figures, collated with similar categories in Lethierry and Severin (1896), show that there has been an increase of many genera and hundreds of species of Tingidae during the past three- quarters of a century. -
Annotated Checklist of the Plant Bug Tribe Mirini (Heteroptera: Miridae: Mirinae) Recorded on the Korean Peninsula, with Descriptions of Three New Species
EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 115: 467–492, 2018 http://www.eje.cz doi: 10.14411/eje.2018.048 ORIGINAL ARTICLE Annotated checklist of the plant bug tribe Mirini (Heteroptera: Miridae: Mirinae) recorded on the Korean Peninsula, with descriptions of three new species MINSUK OH 1, 2, TOMOHIDE YASUNAGA3, RAM KESHARI DUWAL4 and SEUNGHWAN LEE 1, 2, * 1 Laboratory of Insect Biosystematics, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea; e-mail: [email protected] 2 Research Institute of Agriculture and Life Sciences, Seoul National University, Korea; e-mail: [email protected] 3 Research Associate, Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA; e-mail: [email protected] 4 Visiting Scientists, Agriculture and Agri-food Canada, 960 Carling Avenue, Ottawa, Ontario, K1A, 0C6, Canada; e-mail: [email protected] Key words. Heteroptera, Miridae, Mirinae, Mirini, checklist, key, new species, new record, Korean Peninsula Abstract. An annotated checklist of the tribe Mirini (Miridae: Mirinae) recorded on the Korean peninsula is presented. A total of 113 species, including newly described and newly recorded species are recognized. Three new species, Apolygus hwasoonanus Oh, Yasunaga & Lee, sp. n., A. seonheulensis Oh, Yasunaga & Lee, sp. n. and Stenotus penniseticola Oh, Yasunaga & Lee, sp. n., are described. Eight species, Apolygus adustus (Jakovlev, 1876), Charagochilus (Charagochilus) longicornis Reuter, 1885, C. (C.) pallidicollis Zheng, 1990, Pinalitopsis rhodopotnia Yasunaga, Schwartz & Chérot, 2002, Philostephanus tibialis (Lu & Zheng, 1998), Rhabdomiris striatellus (Fabricius, 1794), Yamatolygus insulanus Yasunaga, 1992 and Y. pilosus Yasunaga, 1992 are re- ported for the fi rst time from the Korean peninsula. -
Online Dictionary of Invertebrate Zoology: A
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Armand R. Maggenti Online Dictionary of Invertebrate Zoology Parasitology, Harold W. Manter Laboratory of September 2005 Online Dictionary of Invertebrate Zoology: A Mary Ann Basinger Maggenti University of California-Davis Armand R. Maggenti University of California, Davis Scott Lyell Gardner University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/onlinedictinvertzoology Part of the Zoology Commons Maggenti, Mary Ann Basinger; Maggenti, Armand R.; and Gardner, Scott Lyell, "Online Dictionary of Invertebrate Zoology: A" (2005). Armand R. Maggenti Online Dictionary of Invertebrate Zoology. 16. https://digitalcommons.unl.edu/onlinedictinvertzoology/16 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Armand R. Maggenti Online Dictionary of Invertebrate Zoology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Online Dictionary of Invertebrate Zoology 2 abdominal filament see cercus A abdominal ganglia (ARTHRO) Ganglia of the ventral nerve cord that innervate the abdomen, each giving off a pair of principal nerves to the muscles of the segment; located between the alimentary canal and the large ventral mus- cles. abactinal a. [L. ab, from; Gr. aktis, ray] (ECHINOD) Of or per- taining to the area of the body without tube feet that nor- abdominal process (ARTHRO: Crustacea) In Branchiopoda, mally does not include the madreporite; not situated on the fingerlike projections on the dorsal surface of the abdomen. ambulacral area; abambulacral. abactinally adv. abdominal somite (ARTHRO: Crustacea) Any single division of abambulacral see abactinal the body between the thorax and telson; a pleomere; a pleonite. -
Brown Marmorated Stink Bug, Halyomorpha Halys
Sparks et al. BMC Genomics (2020) 21:227 https://doi.org/10.1186/s12864-020-6510-7 RESEARCH ARTICLE Open Access Brown marmorated stink bug, Halyomorpha halys (Stål), genome: putative underpinnings of polyphagy, insecticide resistance potential and biology of a top worldwide pest Michael E. Sparks1* , Raman Bansal2, Joshua B. Benoit3, Michael B. Blackburn1, Hsu Chao4, Mengyao Chen5, Sammy Cheng6, Christopher Childers7, Huyen Dinh4, Harsha Vardhan Doddapaneni4, Shannon Dugan4, Elena N. Elpidina8, David W. Farrow3, Markus Friedrich9, Richard A. Gibbs4, Brantley Hall10, Yi Han4, Richard W. Hardy11, Christopher J. Holmes3, Daniel S. T. Hughes4, Panagiotis Ioannidis12,13, Alys M. Cheatle Jarvela5, J. Spencer Johnston14, Jeffery W. Jones9, Brent A. Kronmiller15, Faith Kung5, Sandra L. Lee4, Alexander G. Martynov16, Patrick Masterson17, Florian Maumus18, Monica Munoz-Torres19, Shwetha C. Murali4, Terence D. Murphy17, Donna M. Muzny4, David R. Nelson20, Brenda Oppert21, Kristen A. Panfilio22,23, Débora Pires Paula24, Leslie Pick5, Monica F. Poelchau7, Jiaxin Qu4, Katie Reding5, Joshua H. Rhoades1, Adelaide Rhodes25, Stephen Richards4,26, Rose Richter6, Hugh M. Robertson27, Andrew J. Rosendale3, Zhijian Jake Tu10, Arun S. Velamuri1, Robert M. Waterhouse28, Matthew T. Weirauch29,30, Jackson T. Wells15, John H. Werren6, Kim C. Worley4, Evgeny M. Zdobnov12 and Dawn E. Gundersen-Rindal1* Abstract Background: Halyomorpha halys (Stål), the brown marmorated stink bug, is a highly invasive insect species due in part to its exceptionally high levels of polyphagy. This species is also a nuisance due to overwintering in human- made structures. It has caused significant agricultural losses in recent years along the Atlantic seaboard of North America and in continental Europe. -
Shield Bugs and \Toodland Composition in Epping Forest
Field Studies6 (1985),253-268 SHIELD BUGS AND \TOODLAND COMPOSITION IN EPPING FOREST PAUL H. DULSTICH* EppingForest Conseraation Centre ABsrRAcr The distribution of five speciesof shield bug was studied with different host plant species,structure, condition and age in Epping Forest, Essex. Stands of beech, birch and oak-hornbeam, as well as scrubland gorse and hawthorn, were sampled, each tree being characterisedb1 a variet.vofparameters including bole circumference, pollard- ing and defoliation class. Correlations between shield bug species and host plant character were expressedthtough chi-squared analysesof presencelabsencedata for the samples.Resuits suggesta high degreeofhost specificity amongst the phytophage species studied and probably a preference for earlv successionalplant stages.Prei- erential utilisation of mature and non-defoliated hosts is aiso apparenr. The resuits are discussedin terms ofthe requirements ofthe bugs and the nutritional vaiue ofthe host. Ir is conciuded that nitrogen availability within and between host plant species is likeiy to be highly influential in deterrnining the diet and distribution of shielcj bugs, and indeed other selecrive-feedingheteroptera. INrRonucrroN Epprxc Fonssr comprisesof 2430hectares of woodland and grasslandwith small pockets of scrub and heathland, extending from the Wanstead Flats in the London Borough of Redbridge, north for approximarely l9 krn, just beyond Epping in Essex.The principal trce speciesare treech(Fagus sylz;atica),birch (Betula pendula and B. pubescens))common oak (Qtte r ctrs r obur) and hornbeam (C arp inus be tulu s). Pollen data indicate the late survival of the lir-:.e(Tilia) until about AD600 as the dominant tree species)then giving way to the familiar woodland associationsseen today. -
A Faunistic Approach to Assess Potential Side-Effects of Genetically Modified Bt-Corn on Non-Target Arthropods Under Field Conditions
Biocontrol Science and Technology (March 2004), Vol. 14, No. 2, 129Á/170 A Faunistic Approach to Assess Potential Side-Effects of Genetically Modified Bt-Corn on Non-Target Arthropods Under Field Conditions 1 2 1 1 M. P. CANDOLFI ,K.BROWN, C. GRIMM , B. REBER AND H. SCHMIDLI1 1Syngenta Crop Protection AG, CH-4002 Basel, Switzerland; 2Ecotox Limited, Tavistock, Devon, UK (Received 31 October 2001; accepted 13 May 2003) A faunistic study investigating the potential side-effects of corn (Zea mays) genetically modified to express a truncated Cry1Ab protein derived from Bacillus thuringiensis subsp. kurstaki, on non-target arthropods was carried out under field conditions. The communities of non-target arthropods in the soil, on the leaves and flying in the crop area were monitored throughout the growing season. Water-treated, untransformed corn served as a control, and a spray application of a bacterial Bt insecticide (Delfin WG) and a synthetic insecticide (Karate Xpress) used to control the European corn borer (Ostrinia nubilalis; Lepidoptera: Pyralidae) acted as positive reference treatments. Results were analyzed using a principal response curve. Significantly lower infestations by the lepidopteran target species O. nubilalis were observed in the Bt-corn plots compared to the control. No effects of Bt-corn on the communities of soil dwelling and non-target plant dwelling arthropods were observed. A trend towards a community effect on flying arthropods was observed with lower abundance of adult Lepidoptera, flies in the families Lonchopteridae, Mycetophilidae and Syrphidae, and the hymenopteran parasitoids Ceraphronidae. Effects were weak and restricted to two sampling dates corresponding to anthesis. -
Building-Up of a DNA Barcode Library for True Bugs (Insecta: Hemiptera: Heteroptera) of Germany Reveals Taxonomic Uncertainties and Surprises
Building-Up of a DNA Barcode Library for True Bugs (Insecta: Hemiptera: Heteroptera) of Germany Reveals Taxonomic Uncertainties and Surprises Michael J. Raupach1*, Lars Hendrich2*, Stefan M. Ku¨ chler3, Fabian Deister1,Je´rome Morinie`re4, Martin M. Gossner5 1 Molecular Taxonomy of Marine Organisms, German Center of Marine Biodiversity (DZMB), Senckenberg am Meer, Wilhelmshaven, Germany, 2 Sektion Insecta varia, Bavarian State Collection of Zoology (SNSB – ZSM), Mu¨nchen, Germany, 3 Department of Animal Ecology II, University of Bayreuth, Bayreuth, Germany, 4 Taxonomic coordinator – Barcoding Fauna Bavarica, Bavarian State Collection of Zoology (SNSB – ZSM), Mu¨nchen, Germany, 5 Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, Technische Universita¨tMu¨nchen, Freising-Weihenstephan, Germany Abstract During the last few years, DNA barcoding has become an efficient method for the identification of species. In the case of insects, most published DNA barcoding studies focus on species of the Ephemeroptera, Trichoptera, Hymenoptera and especially Lepidoptera. In this study we test the efficiency of DNA barcoding for true bugs (Hemiptera: Heteroptera), an ecological and economical highly important as well as morphologically diverse insect taxon. As part of our study we analyzed DNA barcodes for 1742 specimens of 457 species, comprising 39 families of the Heteroptera. We found low nucleotide distances with a minimum pairwise K2P distance ,2.2% within 21 species pairs (39 species). For ten of these species pairs (18 species), minimum pairwise distances were zero. In contrast to this, deep intraspecific sequence divergences with maximum pairwise distances .2.2% were detected for 16 traditionally recognized and valid species. With a successful identification rate of 91.5% (418 species) our study emphasizes the use of DNA barcodes for the identification of true bugs and represents an important step in building-up a comprehensive barcode library for true bugs in Germany and Central Europe as well. -
An Annotated Catalog of the Iranian Miridae (Hemiptera: Heteroptera: Cimicomorpha)
Zootaxa 3845 (1): 001–101 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3845.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:C77D93A3-6AB3-4887-8BBB-ADC9C584FFEC ZOOTAXA 3845 An annotated catalog of the Iranian Miridae (Hemiptera: Heteroptera: Cimicomorpha) HASSAN GHAHARI1 & FRÉDÉRIC CHÉROT2 1Department of Plant Protection, Shahre Rey Branch, Islamic Azad University, Tehran, Iran. E-mail: [email protected] 2DEMNA, DGO3, Service Public de Wallonie, Gembloux, Belgium, U. E. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by M. Malipatil: 15 May 2014; published: 30 Jul. 2014 HASSAN GHAHARI & FRÉDÉRIC CHÉROT An annotated catalog of the Iranian Miridae (Hemiptera: Heteroptera: Cimicomorpha) (Zootaxa 3845) 101 pp.; 30 cm. 30 Jul. 2014 ISBN 978-1-77557-463-7 (paperback) ISBN 978-1-77557-464-4 (Online edition) FIRST PUBLISHED IN 2014 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2014 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 3845 (1) © 2014 Magnolia Press GHAHARI & CHÉROT Table of contents Abstract . -
Biology of Natural Enemies at Greenhouse Scale
SESSI O N III BI O L O G Y O F N A T UR A L E N E M I ES A T G R E E N H O USE SC A L E 41! ! 42! SESSION III Use of the predators Orius laevigatus and Aeolothrips spp. to control F rankliniella occidentalis populations in greenhouse peppers in the region of Monastir, Tunisia Mohamed Elimem, Brahim Chermiti /DERUDWRLUHG¶HQWRPRORJLHHWGHOXWWHELRORJLTXH,QVWLWXW6XSpULHXUAgronomique de Chott- Mériem 4042, Université de Sousse, Tunisia The use of Orius laevigatus and Aeolothrips spp. to control Frankliniella occidentalis in greenhouse peppers in Tunisia produced different results according to predator species and different doses and release frequencies. In the case of the predator bug O. laevigatus, the most effective dose was 1 individual per m! repeated three times with an interval of one week. Although O. laevigatus releases caused F. occidentalis populations to decrease for only one week, the predator was able to become installed in the crop and to proliferate. In the case of the predatory thrips Aeolothrips spp., no individuals were recorded in the pepper greenhouse even after the third release. However, the F. occidentalis population decreased to low average values of 0.42 and 0.06 thrips per flower as a result of the spontaneous colonization of individuals of O. laevigatus from other greenhouses. 43! SESSION III Evaluation of four lacewing species for aphid control in sweet pepper Gerben Messelink1, Chantal Bloemhard1, Hans Hoogerbrugge2, Jeroen van Schelt2 1Wageningen UR Greenhouse Horticulture, PO Box 20, 2265 ZG Bleiswijk, The Netherlands; 2Koppert Biological Systems, PO Box 155, 2650 AD Berkel & Rodenrijs, The Netherlands Four species of lacewings were evaluated for control of the peach aphid Myzus persicae in sweet pepper.