Ecology and Extinction of Southeast Asia's Megafauna

Total Page:16

File Type:pdf, Size:1020Kb

Ecology and Extinction of Southeast Asia's Megafauna ECOLOGY AND EXTINCTION OF SOUTHEAST ASIA’S MEGAFAUNA JULIEN LOUYS Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy in the School of Biological, Earth and Environmental Sciences University of New South Wales Sydney, Australia December 2007 THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Louys First name: Julien Other name/s: Claude Alexandre Abbreviation for degree as given in the University calendar: PhD School: Biological, Earth and Environmental Sciences Faculty: Science Title: Ecology and Extinction of Southeast Asia’s Megafauna Abstract 350 words maximum: (PLEASE TYPE) The Quaternary megafauna of Southeast Asia are among the world’s poorest known. Throughout the Pleistocene, continental collisions, active volcanic systems and fluctuations in sea level have had dramatic effects on the region’s geography, from southern China to Indonesia. Many Southeast Asian megafauna experienced geographical range reduction or complete extinction during that interval. This thesis explores the relative influence of environmental change and human interaction in these extinctions. There is currently no direct evidence to suggest that humans had a negative impact on Southeast Asian megafauna until the Holocene. Rather, extinctions and geographical range reduction experienced by megafauna are likely to have resulted from of loss of suitable habitats, in particular the loss of more open habitats. Environmental change throughout the Pleistocene of Southeast Asia is reconstructed on the basis of discriminant functions analysis of megafauna from twenty-seven Southeast Asian Quaternary sites, as well as Gongwangling, an early Pleistocene hominin site previously interpreted as paleoarctic. The discriminant functions were defined on the basis of species lists drawn from modern Asian nature reserves and national parks, and were analysed using both taxonomic and phylogeny-free variables. Biases present in these species lists were mitigated against using a range of mulitvariate techniques. The reconstructions show that Pleistocene environments in Southeast Asia varied from open (e.g. savannah), mixed (woodland) and closed (e.g. rainforest) habitats. Changes in habitats through time are likely to have been driven, at least in part, by changes in sea-level, in turn related to oscillations between glacial and interglacial conditions. The environmental changes associated with these oscillations are likely to have adversely affected many of Southeast Asia’s megafauna. The Toba super-eruption (~74kya) is unlikely to have been responsible for any of the megafauna extinctions of the Late Pleistocene. Declaration relating to disposition of project thesis/dissertation I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all property rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to doctoral theses only). …………………………………………………………… ……………………………………..……………… ……….……………………...…….… Signature Witness Date The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for restriction for a period of up to 2 years must be made in writing. Requests for a longer period of restriction may be considered in exceptional circumstances and require the approval of the Dean of Graduate Research. FOR OFFICE USE ONLY Date of completion of requirements for Award: THIS SHEET IS TO BE GLUED TO THE INSIDE FRONT COVER OF THE THESIS ii ORIGINALITY STATEMENT ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.’ Signed …………………………………………….............. Date …………………………………………….............. iii To my parents Pierre and Chantal Louys who provided boundless inspiration, moral and financial support iv Acknowledgments This thesis could not have been completed without the support and encouragement of many people. I would firstly like to thank my supervisors Mike Archer and Darren Curnoe, and my co-supervisor Sue Hand, who gave me the complete freedom to pursue whatever topic interested me, and to construct this thesis on my own terms. Many thanks to them for helpful discussions, critical readings and support provided from initial conception to finished product. A special thanks to Darren, who initially took me on, supported my move back to BEES, and helped finance my data collection trip. Many people have provided support, inspiration, helpful comments, reviews and discussions on the various ideas, papers and chapters produced throughout this thesis, including anonymous reviewers, Mina Bassarova, Robin Beck, Pip Brewer, Andy Coate, Darren Curnoe, Henk Godthelp, Yamila Gurovich, Sue Hand, Andy Herries, Scott Hocknull, Pierre Louys, Geoff Mulhearn, Gilbert Price, Jim Rose, Rachael Tomlins, Haowen Tong, Kenny Travouillon, John de Vos, Vera Weisbecker, Jolee West and Steve Wroe. Many thanks to Guillaume Louys and Kenny Travouillon for providing much needed assistance in generating the various figures; and to Diane Louys for her boundless enthusiasm in tackling all the tedious formatting chores I put to her. I thank the staff at the Museum of Natural History, Leiden (Naturalis), in particular John de Vos and Reiner van Zelst, for kindly hosting me, and making my trip to Holland so enjoyable. I also thank the staff at the Institute of Vertebrate Palaeontology and v Palaeoanthropology, Beijing for their kind hospitality, in particular Haowen Tong for his welcome and constant support during my time in China. The time spent working on this project would have been much duller had it not been for the students and friends in both the Biological Anthropology (Andy Coate, Hayley Green, Andy Herries, Diana Neuweger) and Vertebrate Palaeontology (Rick Arena, Mina Bassarova, Hayley Bates, Robin Beck, Karen Black, Pip Brewer, Kirstin Crosby, Anna Gillespie, Yamila Gurovich, Zac Kirkham, Karen Marino, Jackie Nguyen, Liz Price, Karen Roberts, Kenny Travouillon, Vera Weisbecker, Steve Wroe) Labs, in particular Robin and Kenny. Thanks guys. And finally, I wish to thank my family; my brothers Guillaume and Greg, my sister Diane, my sister-in-law Trinette and my parents Pierre and Chantal. If it wasn’t for their constant financial, moral, and emotional support throughout my many years of study, none of this would have been possible. vi Table of Contents 1. Introduction 1 1.1 Background 1 1.2 Aims 5 1.3 Specific objectives 5 1.4 Chapter outline 6 1.5 A note on the nature of the chapters 8 Part 1. Extinction 10 2. Characteristics of Pleistocene megafauna Extinctions in Southeast Asia 11 2.1 Abstract 11 2.2 Introduction 12 2.3 Methodology 13 2.4 Results and Discussion 15 2.4.1 Indochinese province 16 2.4.2 Sundaic Province 29 2.4.3 Taxa 37 2.4.4 Influence of humans in the region 46 2.4.5 Climate and vegetation 52 2.5 Conclusions 54 3. Southeast Asian Quaternary Extinctions: Position in the Debate and Further Analysis 56 3.1 Introduction 56 3.2 The Quaternary “megafauna” extinctions 57 3.2.1 What are megafauna? 57 3.2.2 The debate 58 3.2.3 Human-induced extinctions 59 3.2.4 Climate-induced extinctions 62 3.2.5 Towards a reconciliation 64 3.3 Quaternary extinctions in Southeast Asia 64 3.3.1 Geography of Southeast Asia 66 3.3.2 Southeast Asia’s megafauna 74 3.3.3 Human overhunting in Southeast Asia? 81 3.3.4 Climate change and megafauna 83 3.3.5 The modern extinction crisis 87 3.4 Summary 89 4. The Role of Volcanism in Extinctions: the Case of the Toba Eruption 90 4.1 Abstract 90 4.2. Introduction 90 4.3 Methods 92 4.4 Results 98 vii 4.4.1 Borneo 98 4.4.2 Vietnam 99 4.4.3 Sumatra 99 4.4.4 Java 100 4.4.5 Southern China 101 4.5 Discussion 102 4.5.1. General discussion 102 4.5.2 Volcanic winter 104 4.5.3 No volcanic winter 107 4.6 Conclusions 109 Part 2. Ecology 110 5. Palaeoecology Multivariate Methods: Examining Modern Habitat Biases and Application to Gongwangling Hominin Site, China 111 5.1 Abstract 111 5.2 Introduction 112 5.2.1 Geological context 115 5.2.2 Previous palaeoenvironmental analyses 115 5.3 Materials and Methods 116 5.3.1 Materials 116 5.3.2 Taphonomy 123 5.3.3 Zoogeographic identity 124 5.3.4 Palaeoecology 125 5.4 Results and Discussion 137 5.4.1 Taphonomy 137 5.4.2 Zoogeography 146 5.4.3 Palaeoecology 152 5.5 Summary 165 6. Palaeoecology of Quaternary Southeast Asian Sites Revealed Through Phylogeny-Free Discriminant Functions Analysis 167 6.1 Abstract 167 6.2 Introduction 168 6.3 Methods 171 6.4 Results 176 6.5 Discussion 191 6.5.1 Early Pleistocene sites 193 6.5.2 Middle Pleistocene sites 194 6.5.3 Late Pleistocene and Holocene sites 196 6.6 Conclusion 198 7.
Recommended publications
  • The Impact of Large Terrestrial Carnivores on Pleistocene Ecosystems Blaire Van Valkenburgh, Matthew W
    The impact of large terrestrial carnivores on SPECIAL FEATURE Pleistocene ecosystems Blaire Van Valkenburgha,1, Matthew W. Haywardb,c,d, William J. Ripplee, Carlo Melorof, and V. Louise Rothg aDepartment of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095; bCollege of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, United Kingdom; cCentre for African Conservation Ecology, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa; dCentre for Wildlife Management, University of Pretoria, Pretoria, South Africa; eTrophic Cascades Program, Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331; fResearch Centre in Evolutionary Anthropology and Palaeoecology, School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom; and gDepartment of Biology, Duke University, Durham, NC 27708-0338 Edited by Yadvinder Malhi, Oxford University, Oxford, United Kingdom, and accepted by the Editorial Board August 6, 2015 (received for review February 28, 2015) Large mammalian terrestrial herbivores, such as elephants, have analogs, making their prey preferences a matter of inference, dramatic effects on the ecosystems they inhabit and at high rather than observation. population densities their environmental impacts can be devas- In this article, we estimate the predatory impact of large (>21 tating. Pleistocene terrestrial ecosystems included a much greater kg, ref. 11) Pleistocene carnivores using a variety of data from diversity of megaherbivores (e.g., mammoths, mastodons, giant the fossil record, including species richness within guilds, pop- ground sloths) and thus a greater potential for widespread habitat ulation density inferences based on tooth wear, and dietary in- degradation if population sizes were not limited.
    [Show full text]
  • Suitable Habitat Modeling of Prehistoric Antelope-Like Bovid Duboisia Santeng in Java Island in the Early Pleistocene Andriwibowo*
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 September 2020 doi:10.20944/preprints202009.0355.v1 Suitable Habitat Modeling of Prehistoric Antelope-like Bovid Duboisia Santeng in Java Island in The Early Pleistocene Andriwibowo* Keywords: Abstract Bovid, forest, habitat, model, The migration routes have facilitated the distribution of mammals from south Pleistocene east Asian mainland to the Sundaland including Java island in the early Pleistocene. One of species that has migrated through that route is antelope-like bovid Duboisia santeng. In the present study, the potential distribution areas and the suitable habitats of D. santeng have been projected and modeled. The modeled habitat was a forest river basin sizing 302.91 Ha in the central of Java island. The model has classified and reconstructed the habitat suitability ranged *Email: paleobio2020@gmail from low to high back to Pleistocene. The surrounding areas of forest were .com mostly classified as medium and low related to the limited tree covers. Most *Address: suitable habitats were identified in the middle of forest river basin where the U. o. Indonesia, West Java, Indonesia tree covers were presented. Introduction The adaptation and distribution of prehistoric mammals were favoured by migration routes. Presences of large mammal fossil from Indochinese and Sundaic provinces, which are distinct climatically, floristically, and faunistically support the hypothesis of a continental migration route during the middle and late Pleistocene periods. During the glacial periods, the faunal exchanges were favored by the emersion of a huge continental shelf known as Sundaland. This emerged land connected the South East Asian mainland to Borneo and other Indonesia islands including Java island.
    [Show full text]
  • Fossil Bovidae from the Malay Archipelago and the Punjab
    FOSSIL BOVIDAE FROM THE MALAY ARCHIPELAGO AND THE PUNJAB by Dr. D. A. HOOIJER (Rijksmuseum van Natuurlijke Historie, Leiden) with pls. I-IX CONTENTS Introduction 1 Order Artiodactyla Owen 8 Family Bovidae Gray 8 Subfamily Bovinae Gill 8 Duboisia santeng (Dubois) 8 Epileptobos groeneveldtii (Dubois) 19 Hemibos triquetricornis Rütimeyer 60 Hemibos acuticornis (Falconer et Cautley) 61 Bubalus palaeokerabau Dubois 62 Bubalus bubalis (L.) subsp 77 Bibos palaesondaicus Dubois 78 Bibos javanicus (d'Alton) subsp 98 Subfamily Caprinae Gill 99 Capricornis sumatraensis (Bechstein) subsp 99 Literature cited 106 Explanation of the plates 11o INTRODUCTION The Bovidae make up a very large portion of the Dubois collection of fossil vertebrates from Java, second only to the Proboscidea in bulk. Before Dubois began his explorations in Java in 1890 we knew very little about the fossil bovids of that island. Martin (1887, p. 61, pl. VII fig. 2) described a horn core as Bison sivalensis Falconer (?); Bison sivalensis Martin has al• ready been placed in the synonymy of Bibos palaesondaicus Dubois by Von Koenigswald (1933, p. 93), which is evidently correct. Pilgrim (in Bron- gersma, 1936, p. 246) considered the horn core in question to belong to a Bibos species closely related to the banteng. Two further horn cores from Java described by Martin (1887, p. 63, pl. VI fig. 4; 1888, p. 114, pl. XII fig. 4) are not sufficiently well preserved to allow of a specific determination, although they probably belong to Bibos palaesondaicus Dubois as well. In a preliminary faunal list Dubois (1891) mentions four bovid species as occurring in the Pleistocene of Java, viz., two living species (the banteng and the water buffalo) and two extinct forms, Anoa spec.
    [Show full text]
  • Autecology of the Sunda Pangolin (Manis Javanica) in Singapore
    AUTECOLOGY OF THE SUNDA PANGOLIN (MANIS JAVANICA) IN SINGAPORE LIM T-LON, NORMAN (B.Sc. (Hons.), NUS) A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF BIOLOGICAL SCIENCES NATIONAL UNIVERSITY OF SINGAPORE 2007 An adult male Manis javanica (MJ17) raiding an arboreal Oceophylla smaradgina nest. By shutting its nostrils and eyes, the Sunda Pangolin is able to protect its vulnerable parts from the powerful bites of this ant speces. The scales and thick skin further reduce the impacts of the ants’ attack. ii ACKNOWLEDGEMENTS My supervisor Professor Peter Ng Kee Lin is a wonderful mentor who provides the perfect combination of support and freedom that every graduate student should have. Despite his busy schedule, he always makes time for his students and provides the appropriate advice needed. His insightful comments and innovative ideas never fail to impress and inspire me throughout my entire time in the University. Lastly, I am most grateful to Prof. Ng for seeing promise in me and accepting me into the family of the Systematics and Ecology Laboratory. I would also like to thank Benjamin Lee for introducing me to the subject of pangolins, and subsequently introducing me to Melvin Gumal. They have guided me along tremendously during the preliminary phase of the project and provided wonderful comments throughout the entire course. The Wildlife Conservation Society (WCS) provided funding to undertake this research. In addition, field biologists from the various WCS offices in Southeast Asia have helped tremendously throughout the project, especially Anthony Lynam who has taken time off to conduct a camera-trapping workshop.
    [Show full text]
  • Stegodon Florensis Insularis
    Trends of body size evolution in the fossil record of insular Southeast Asia Alexandra van der Geer, George Lyras, Hara Drinia SAGE 2013 University of Athens 11.03.2013 Aim of our project Isolario: morphological changes in insular endemics the impact of humans on endemic island species (and vice versa) Study especially episodes IV to VI Applied to South East Asia First of all, which fossil, pre-Holocene faunas are known from this area? Note: fossil faunas are often incomplete (fossilization is a rare process), and taxonomy of fossil species is necessarily less diverse because morphological distinctions based on coat color and pattern, tail tuft, vocalizations, genetic composition etc do not play a role © Hoe dieren op eilanden evolueren; Veen Magazines, 2009 Java Unbalanced fauna (typical island fauna Java, Early Pleistocene with hippos, deer and elephants), ‘swampy’ (pollen studies) Faunal level: Satir (Bumiayu area) Only endemics (on the species level) Fossils: Mastodon (Sinomastodon bumiajuensis) Dwarf hippo (small Hexaprotodon sivajavanicus, aka H. simplex) Deer (indet) Giant tortoise (Colossochelys) ? Tree-mouse? (Chiropodomys) Sinomastodon bumiajuensis ?pygmy stegodont? (isolated, Hexaprotodon sivajavanicus (= H simplex) scattered findings: Sambungmacan, Cirebon, Carian, Jetis), Stegodon hypsilophus of Hooijer 1954 Maybe also Stegoloxodon indonesicus from Ci Panggloseran (Bumiayu area) Progressively more balanced, marginally Java, Middle Pleistocene impovered (‘filtered’) faunas (mainland- like), Homo erectus – Stegodon faunas, Faunal levels: Ci Saat - Trinil HK– Kedung Brubus “dry, open woodland” – Ngandong Endemics on (sub)species level, strongly related to ‘Siwaliks’ fauna of India Fossils: Homo erectus, large and small herbivores (Bubalus, Bibos, Axis, Muntiacus, Tapirus, Duboisia santeng Duboisia, Elephas, Stegodon, Rhinoceros 2x), large and small carnivores (Pachycrocuta, Axis lydekkeri Panthera 2x, Mececyon, Lutrogale 2x), pigs (Sus 2x), Macaca, rodents (Hystrix Elephas hysudrindicus brachyura, Maxomys, five (!) native Rattus species), birds (e.g.
    [Show full text]
  • Quaternary International 603 (2021) 40–63
    Quaternary International 603 (2021) 40–63 Contents lists available at ScienceDirect Quaternary International journal homepage: www.elsevier.com/locate/quaint Taxonomy, taphonomy and chronology of the Pleistocene faunal assemblage at Ngalau Gupin cave, Sumatra Holly E. Smith a,*, Gilbert J. Price b, Mathieu Duval c,a, Kira Westaway d, Jahdi Zaim e, Yan Rizal e, Aswan e, Mika Rizki Puspaningrum e, Agus Trihascaryo e, Mathew Stewart f, Julien Louys a a Australian Research Centre for Human Evolution, Environmental Futures Research Institute, Griffith University, Nathan, Queensland, 4111, Australia b School of Earth and Environmental Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia c Centro Nacional de Investigacion´ Sobre la Evolucion´ Humana (CENIEH), Burgos, 09002, Spain d Department of Earth and Environmental Sciences, Macquarie University, Sydney, New South Wales, Australia e Geology Study Program, Institut Teknologi Bandung, Jawa Barat, 40132, Indonesia f Extreme Events Research Group, Max Planck Institutes for Chemical Ecology, the Science of Human History, and Biogeochemistry, Jena, Germany ARTICLE INFO ABSTRACT Keywords: Ngalau Gupin is a broad karstic cave system in the Padang Highlands of western Sumatra, Indonesia. Abundant Taxonomy fossils, consisting of mostly isolated teeth from small-to large-sized animals, were recovered from breccias Taphonomy cemented on the cave walls and unconsolidated sediments on the cave floor.Two loci on the walls and floorsof Cave Ngalau Gupin, named NG-A and NG-B respectively, are studied. We determine that NG-B most likely formed as a Pleistocene result of the erosion and redeposition of material from NG-A. The collection reveals a rich, diverse Pleistocene Southeast Asia Hexaprotodon faunal assemblage (Proboscidea, Primates, Rodentia, Artiodactyla, Perissodactyla, Carnivora) largely analogous ESR and U-series dating to extant fauna in the modern rainforests of Sumatra.
    [Show full text]
  • Endangered Species (Protection, Conser Va Tion and Regulation of Trade)
    ENDANGERED SPECIES (PROTECTION, CONSER VA TION AND REGULATION OF TRADE) THE ENDANGERED SPECIES (PROTECTION, CONSERVATION AND REGULATION OF TRADE) ACT ARRANGEMENT OF SECTIONS Preliminary Short title. Interpretation. Objects of Act. Saving of other laws. Exemptions, etc., relating to trade. Amendment of Schedules. Approved management programmes. Approval of scientific institution. Inter-scientific institution transfer. Breeding in captivity. Artificial propagation. Export of personal or household effects. PART I. Administration Designahem of Mana~mentand establishment of Scientific Authority. Policy directions. Functions of Management Authority. Functions of Scientific Authority. Scientific reports. PART II. Restriction on wade in endangered species 18. Restriction on trade in endangered species. 2 ENDANGERED SPECIES (PROTECTION, CONSERVATION AND REGULA TION OF TRADE) Regulation of trade in species spec fled in the First, Second, Third and Fourth Schedules Application to trade in endangered specimen of species specified in First, Second, Third and Fourth Schedule. Export of specimens of species specified in First Schedule. Importation of specimens of species specified in First Schedule. Re-export of specimens of species specified in First Schedule. Introduction from the sea certificate for specimens of species specified in First Schedule. Export of specimens of species specified in Second Schedule. Import of specimens of species specified in Second Schedule. Re-export of specimens of species specified in Second Schedule. Introduction from the sea of specimens of species specified in Second Schedule. Export of specimens of species specified in Third Schedule. Import of specimens of species specified in Third Schedule. Re-export of specimens of species specified in Third Schedule. Export of specimens specified in Fourth Schedule. PART 111.
    [Show full text]
  • Bibliography
    Bibliography Many books were read and researched in the compilation of Binford, L. R, 1983, Working at Archaeology. Academic Press, The Encyclopedic Dictionary of Archaeology: New York. Binford, L. R, and Binford, S. R (eds.), 1968, New Perspectives in American Museum of Natural History, 1993, The First Humans. Archaeology. Aldine, Chicago. HarperSanFrancisco, San Francisco. Braidwood, R 1.,1960, Archaeologists and What They Do. Franklin American Museum of Natural History, 1993, People of the Stone Watts, New York. Age. HarperSanFrancisco, San Francisco. Branigan, Keith (ed.), 1982, The Atlas ofArchaeology. St. Martin's, American Museum of Natural History, 1994, New World and Pacific New York. Civilizations. HarperSanFrancisco, San Francisco. Bray, w., and Tump, D., 1972, Penguin Dictionary ofArchaeology. American Museum of Natural History, 1994, Old World Civiliza­ Penguin, New York. tions. HarperSanFrancisco, San Francisco. Brennan, L., 1973, Beginner's Guide to Archaeology. Stackpole Ashmore, w., and Sharer, R. J., 1988, Discovering Our Past: A Brief Books, Harrisburg, PA. Introduction to Archaeology. Mayfield, Mountain View, CA. Broderick, M., and Morton, A. A., 1924, A Concise Dictionary of Atkinson, R J. C., 1985, Field Archaeology, 2d ed. Hyperion, New Egyptian Archaeology. Ares Publishers, Chicago. York. Brothwell, D., 1963, Digging Up Bones: The Excavation, Treatment Bacon, E. (ed.), 1976, The Great Archaeologists. Bobbs-Merrill, and Study ofHuman Skeletal Remains. British Museum, London. New York. Brothwell, D., and Higgs, E. (eds.), 1969, Science in Archaeology, Bahn, P., 1993, Collins Dictionary of Archaeology. ABC-CLIO, 2d ed. Thames and Hudson, London. Santa Barbara, CA. Budge, E. A. Wallis, 1929, The Rosetta Stone. Dover, New York. Bahn, P.
    [Show full text]
  • Discovery of the Fuyan Teeth: Challenging Or Complementing the Out-Of-Africa Scenario?
    ZOOLOGICAL RESEARCH Discovery of the Fuyan teeth: challenging or complementing the out-of-Africa scenario? Yu-Chun LI, Jiao-Yang TIAN, Qing-Peng KONG Although it is widely accepted that modern humans (Homo route about 40-60 kya (Macaulay et al, 2005; Sun et al, 2006). sapiens sapiens) can trace their African origins to 150-200 kilo The lack of human fossils dating earlier than 70 kya in eastern years ago (kya) (recent African origin model; Henn et al, 2012; Eurasia implies that the out-of-Africa immigrants around 100 Ingman et al, 2000; Poznik et al, 2013; Weaver, 2012), an kya likely failed to expand further east (Shea, 2008). Consistent alternative model suggests that the diverse populations of our with this notion, the Late Pleistocene hominid records species evolved separately on different continents from archaic previously found in eastern Eurasia have been dated to only human forms (multiregional origin model; Wolpoff et al, 2000; 40-70 kya, including the Liujiang man (67 kya; Shen et al, 2002) Wu, 2006). The recent discovery of 47 teeth from a Fuyan cave and Tianyuan man (40 kya; Fu et al, 2013b; Shang et al, 2007) in southern China (Liu et al, 2015) indicated the presence of H. in China, the Mungo Man in Australia (40-60 kya; Bowler et al, s. sapiens in eastern Eurasia during the early Late Pleistocene. 1972), the Niah Cave skull from Borneo (40 kya; Barker et al, Since the age of the Fuyan teeth (80-120 kya) predates the 2007) and the Tam Pa Ling cave man in Laos (46-51 kya; previously assumed out-of-Africa exodus (60 kya) by at least 20 Demeter et al, 2012).
    [Show full text]
  • Mammals of Borneo – Small Size on a Large Island
    Journal of Biogeography (J. Biogeogr.) (2008) 35, 1087–1094 ORIGINAL Mammals of Borneo – small size on a ARTICLE large island Shai Meiri1,*, Erik Meijaard2,3, Serge A. Wich4, Colin P. Groves3 and Kristofer M. Helgen5 1NERC Centre for Population Biology, ABSTRACT Imperial College London, Silwood Park Aim Island mammals have featured prominently in models of the evolution of Campus, Ascot, UK, 2Tropical Forest Initiative, The Nature Conservancy, Balikpapan, body size. Most of these models examine size evolution across a wide range of Indonesia, 3School of Archaeology and islands in order to test which island characteristics influence evolutionary Anthropology, Australian National University, pathways. Here, we examine the mammalian fauna of a single island, Borneo, Canberra, Australia, 4Great Ape Trust of Iowa, where previous work has detected that some mammal species have evolved a Des Moines, IA, USA, 5Division of Mammals, relatively small size. We test whether Borneo is characterized by smaller mammals National Museum of Natural History, than adjacent areas, and examine possible causes for the different trajectories of Smithsonian Institution, Washington, DC, size evolution between different Bornean species. USA Location Sundaland: Borneo, Sumatra, Java and the Malay/Thai Peninsula. Methods We compared the mammalian body size frequency distributions in the four areas to examine whether the large mammal fauna of Borneo is more depauperate than elsewhere. We measured specimens belonging to 54 mammal species that are shared between Borneo and any of the other areas in order to determine whether there is an intraspecific tendency for Bornean mammals to evolve small body size. Using data on diet, body size and geographical ranges we examine factors that are thought to influence body size.
    [Show full text]
  • Curriculum Vitae Erik Trinkaus
    9/2014 Curriculum Vitae Erik Trinkaus Education and Degrees 1970-1975 University of Pennsylvania Ph.D 1975 Dissertation: A Functional Analysis of the Neandertal Foot M.A. 1973 Thesis: A Review of the Reconstructions and Evolutionary Significance of the Fontéchevade Fossils 1966-1970 University of Wisconsin B.A. 1970 ACADEMIC APPOINTMENTS Primary Academic Appointments Current 2002- Mary Tileston Hemenway Professor of Arts & Sciences, Department of Anthropolo- gy, Washington University Previous 1997-2002 Professor: Department of Anthropology, Washington University 1996-1997 Regents’ Professor of Anthropology, University of New Mexico 1983-1996 Assistant Professor to Professor: Dept. of Anthropology, University of New Mexico 1975-1983 Assistant to Associate Professor: Department of Anthropology, Harvard University MEMBERSHIPS Honorary 2001- Academy of Science of Saint Louis 1996- National Academy of Sciences USA Professional 1992- Paleoanthropological Society 1990- Anthropological Society of Nippon 1985- Société d’Anthropologie de Paris 1973- American Association of Physical Anthropologists AWARDS 2013 Faculty Mentor Award, Graduate School, Washington University 2011 Arthur Holly Compton Award for Faculty Achievement, Washington University 2005 Faculty Mentor Award, Graduate School, Washington University PUBLICATIONS: Books Trinkaus, E., Shipman, P. (1993) The Neandertals: Changing the Image of Mankind. New York: Alfred A. Knopf Pub. pp. 454. PUBLICATIONS: Monographs Trinkaus, E., Buzhilova, A.P., Mednikova, M.B., Dobrovolskaya, M.V. (2014) The People of Sunghir: Burials, Bodies and Behavior in the Earlier Upper Paleolithic. New York: Ox- ford University Press. pp. 339. Trinkaus, E., Constantin, S., Zilhão, J. (Eds.) (2013) Life and Death at the Peştera cu Oase. A Setting for Modern Human Emergence in Europe. New York: Oxford University Press.
    [Show full text]
  • PROCEEDINGS of the WORKSHOP on TRADE and CONSERVATION of PANGOLINS NATIVE to SOUTH and SOUTHEAST ASIA 30 June – 2 July 2008, Singapore Zoo Edited by S
    PROCEEDINGS OF THE WORKSHOP ON TRADE AND CONSERVATION OF PANGOLINS NATIVE TO SOUTH AND SOUTHEAST ASIA 30 June – 2 July 2008, Singapore Zoo Edited by S. Pantel and S.Y. Chin Wildlife Reserves Singapore Group PROCEEDINGS OF THE WORKSHOP ON TRADE AND CONSERVATION OF PANGOLINS NATIVE TO SOUTH AND SOUTHEAST ASIA 30 JUNE –2JULY 2008, SINGAPORE ZOO EDITED BY S. PANTEL AND S. Y. CHIN 1 Published by TRAFFIC Southeast Asia, Petaling Jaya, Selangor, Malaysia © 2009 TRAFFIC Southeast Asia All rights reserved. All material appearing in these proceedings is copyrighted and may be reproduced with permission. Any reproduction, in full or in part, of this publication must credit TRAFFIC Southeast Asia as the copyright owner. The views of the authors expressed in these proceedings do not necessarily reflect those of the TRAFFIC Network, WWF or IUCN. The designations of geographical entities in this publication, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of TRAFFIC or its supporting organizations concerning the legal status of any country, territory, or area, or its authorities, or concerning the delimitation of its frontiers or boundaries. The TRAFFIC symbol copyright and Registered Trademark ownership is held by WWF. TRAFFIC is a joint programme of WWF and IUCN. Layout by Sandrine Pantel, TRAFFIC Southeast Asia Suggested citation: Sandrine Pantel and Chin Sing Yun (ed.). 2009. Proceedings of the Workshop on Trade and Conservation of Pangolins Native to South and Southeast Asia, 30 June-2 July
    [Show full text]