‣ Poly-Time Reductions ‣ Packing and Covering Problems ‣ Constraint

Total Page:16

File Type:pdf, Size:1020Kb

‣ Poly-Time Reductions ‣ Packing and Covering Problems ‣ Constraint 8. INTRACTABILITY I 8. INTRACTABILITY I ‣ poly-time reductions ‣ poly-time reductions ‣ packing and covering problems ‣ packing and covering problems ‣ constraint satisfaction problems ‣ constraint satisfaction problems ‣ sequencing problems ‣ sequencing problems ‣ partitioning problems ‣ partitioning problems ‣ graph coloring ‣ graph coloring ‣ numerical problems ‣ numerical problems SECTION 8.1 Lecture slides by Kevin Wayne Copyright © 2005 Pearson-Addison Wesley http://www.cs.princeton.edu/~wayne/kleinberg-tardos Last updated on 2/25/20 3:57 PM Algorithm design patterns and antipatterns Classify problems according to computational requirements Algorithm design patterns. Q. Which problems will we be able to solve in practice? ・Greedy. ・Divide and conquer. A working definition. Those with poly-time algorithms. ・Dynamic programming. ・Duality. ・Reductions. ・Local search. ・Randomization. von Neumann Nash Gödel Cobham Edmonds Rabin (1953) (1955) (1956) (1964) (1965) (1966) Algorithm design antipatterns. Turing machine, word RAM, uniform circuits, … ・NP-completeness. O(nk) algorithm unlikely. ・PSPACE-completeness. O(nk) certification algorithm unlikely. Theory. Definition is broad and robust. ・Undecidability. No algorithm possible. constants tend to be small, e.g., 3 n 2 Practice. Poly-time algorithms scale to huge problems. 3 4 Classify problems according to computational requirements Classify problems Q. Which problems will we be able to solve in practice? Desiderata. Classify problems according to those that can be solved in polynomial time and those that cannot. A working definition. Those with poly-time algorithms. input size = c + log k Provably requires exponential time. ・Given a constant-size program, does it halt in at most k steps? yes probably no ・Given a board position in an n-by-n generalization of checkers, shortest path longest path can black guarantee a win? using forced capture rule min cut max cut 2-satisfiability 3-satisfiability planar 4-colorability planar 3-colorability bipartite vertex cover vertex cover matching 3d-matching primality testing factoring Frustrating news. Huge number of fundamental problems have defied linear programming integer linear programming classification for decades. 5 6 Poly-time reductions Poly-time reductions Desiderata′. Suppose we could solve problem Y in polynomial time. Desiderata′. Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial time? What else could we solve in polynomial time? Reduction. Problem X polynomial-time (Cook) reduces to problem Y if Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using: arbitrary instances of problem X can be solved using: ・Polynomial number of standard computational steps, plus ・Polynomial number of standard computational steps, plus ・Polynomial number of calls to oracle that solves problem Y. ・Polynomial number of calls to oracle that solves problem Y. computational model supplemented by special piece of hardware that solves instances of Y in a single step Notation. X ≤ P Y. Note. We pay for time to write down instances of Y sent to oracle ⇒ instances of Y must be of polynomial size. Algorithm instance I solution S to I for Y (of X) Novice mistake. Confusing X ≤ P Y with Y ≤ P X. Algorithm for X 7 8 Intractability: quiz 1 Intractability: quiz 2 Suppose that X ≤ P Y. Which of the following can we infer? Which of the following poly-time reductions are known? O(mn2) time: Dinitz’ algorithm A. If X can be solved in polynomial time, then so can Y. A. FIND-MAX-FLOW ≤ P FIND-MIN-CUT. O(m) time: given max flow f, B. X can be solved in poly time iff Y can be solved in poly time. B. FIND-MIN-CUT ≤ FIND-MAX-FLOW. P let A = set of nodes reachable from s in Gf C. If X cannot be solved in polynomial time, then neither can Y. C. Both A and B. D. If Y cannot be solved in polynomial time, then neither can X. D. Neither A nor B. 9 10 Poly-time reductions Design algorithms. If X ≤ P Y and Y can be solved in polynomial time, then X can be solved in polynomial time. 8. INTRACTABILITY I Establish intractability. If X ≤ P Y and X cannot be solved in polynomial time, ‣ poly-time reductions then Y cannot be solved in polynomial time. ‣ packing and covering problems ‣ constraint satisfaction problems Establish equivalence. If both X ≤ P Y and Y ≤ P X, we use notation X ≡ P Y. In this case, X can be solved in polynomial time iff Y can be. ‣ sequencing problems ‣ partitioning problems ‣ graph coloring ‣ numerical problems SECTION 8.1 Bottom line. Reductions classify problems according to relative difficulty. 11 Independent set Vertex cover INDEPENDENT-SET. Given a graph G = (V, E) and an integer k, is there VERTEX-COVER. Given a graph G = (V, E) and an integer k, is there a a subset of k (or more) vertices such that no two are adjacent? subset of k (or fewer) vertices such that each edge is incident to at least one vertex in the subset? Ex. Is there an independent set of size ≥ 6 ? Ex. Is there an independent set of size ≥ 7 ? Ex. Is there a vertex cover of size ≤ 4 ? Ex. Is there a vertex cover of size ≤ 3 ? independent set of size 6 independent set of size 6 vertex cover of size 4 13 14 Intractability: quiz 3 Vertex cover and independent set reduce to one another Consider the following graph G. Which are true? Theorem. INDEPENDENT-SET ≡ P VERTEX-COVER. Pf. We show S is an independent set of size k iff V − S is a vertex cover of size n – k. A. The white vertices are a vertex cover of size 7. B. The black vertices are an independent set of size 3. C. Both A and B. D. Neither A nor B. independent set of size 6 vertex cover of size 4 15 16 Vertex cover and independent set reduce to one another Vertex cover and independent set reduce to one another Theorem. INDEPENDENT-SET ≡ P VERTEX-COVER. Theorem. INDEPENDENT-SET ≡ P VERTEX-COVER. Pf. We show S is an independent set of size k iff V − S is a vertex cover Pf. We show S is an independent set of size k iff V − S is a vertex cover of size n – k. of size n – k. ⇒ ⇐ ・Let S be any independent set of size k. ・Let V − S be any vertex cover of size n – k. ・V − S is of size n – k. ・S is of size k. ・Consider an arbitrary edge (u, v) ∈ E. ・Consider an arbitrary edge (u, v) ∈ E. ・S independent ⇒ either u ∉ S, or v ∉ S, or both. ・V − S is a vertex cover ⇒ either u ∈ V − S, or v ∈ V − S, or both. ⇒ either u ∈ V − S, or v ∈ V − S, or both. ⇒ either u ∉ S, or v ∉ S, or both. ・Thus, V − S covers (u, v). ▪ ・Thus, S is an independent set. ▪ 17 18 Set cover Intractability: quiz 4 SET-COVER. Given a set U of elements, a collection S of subsets of U, and an Given the universe U = { 1, 2, 3, 4, 5, 6, 7 } and the following sets, integer k, are there ≤ k of these subsets whose union is equal to U ? which is the minimum size of a set cover? Sample application. A. 1 U = { 1, 2, 3, 4, 5, 6, 7 } m available pieces of software. ・ S = { 1, 4, 6 } S = { 1, 6, 7 } ・Set U of n capabilities that we would like our system to have. B. 2 a b th S = { 1, 2, 3, 6 } S = { 1, 3, 5, 7 } ・The i piece of software provides the set Si ⊆ U of capabilities. C. 3 c d Goal: achieve all n capabilities using fewest pieces of software. S = { 2, 6, 7 } S = { 3, 4, 5 } ・ D. None of the above. e f U = { 1, 2, 3, 4, 5, 6, 7 } Sa = { 3, 7 } Sb = { 2, 4 } Sc = { 3, 4, 5, 6 } Sd = { 5 } Se = { 1 } Sf = { 1, 2, 6, 7 } k = 2 a set cover instance 19 20 Vertex cover reduces to set cover Vertex cover reduces to set cover Theorem. VERTEX-COVER ≤ P SET-COVER. Lemma. G = (V, E) contains a vertex cover of size k iff (U, S, k) contains Pf. Given a VERTEX-COVER instance G = (V, E) and k, we construct a a set cover of size k. SET-COVER instance (U, S, k) that has a set cover of size k iff G has a vertex cover of size k. Pf. ⇒ Let X ⊆ V be a vertex cover of size k in G. “yes” instances of VERTEX-COVER are solved correctly ・Then Y = { Sv : v ∈ X } is a set cover of size k. ▪ Construction. ・Universe U = E. ・Include one subset for each node v ∈ V : Sv = {e ∈ E : e incident to v }. a b a b e7 e2 e4 U = { 1, 2, 3, 4, 5, 6, 7 } e7 e2 e4 U = { 1, 2, 3, 4, 5, 6, 7 } e3 e3 Sa = { 3, 7 } Sb = { 2, 4 } Sa = { 3, 7 } Sb = { 2, 4 } f e6 c f e6 c Sc = { 3, 4, 5, 6 } Sd = { 5 } Sc = { 3, 4, 5, 6 } Sd = { 5 } e5 e5 e1 Se = { 1 } Sf = { 1, 2, 6, 7 } e1 Se = { 1 } Sf = { 1, 2, 6, 7 } e d e d vertex cover instance set cover instance vertex cover instance set cover instance (k = 2) (k = 2) (k = 2) (k = 2) 21 22 Vertex cover reduces to set cover Lemma. G = (V, E) contains a vertex cover of size k iff (U, S, k) contains a set cover of size k. 8. INTRACTABILITY I Pf. ⇐ Let Y ⊆ S be a set cover of size k in (U, S, k).
Recommended publications
  • Rounding Algorithms for Covering Problems
    Mathematical Programming 80 (1998) 63 89 Rounding algorithms for covering problems Dimitris Bertsimas a,,,1, Rakesh Vohra b,2 a Massachusetts Institute of Technology, Sloan School of Management, 50 Memorial Drive, Cambridge, MA 02142-1347, USA b Department of Management Science, Ohio State University, Ohio, USA Received 1 February 1994; received in revised form 1 January 1996 Abstract In the last 25 years approximation algorithms for discrete optimization problems have been in the center of research in the fields of mathematical programming and computer science. Re- cent results from computer science have identified barriers to the degree of approximability of discrete optimization problems unless P -- NP. As a result, as far as negative results are con- cerned a unifying picture is emerging. On the other hand, as far as particular approximation algorithms for different problems are concerned, the picture is not very clear. Different algo- rithms work for different problems and the insights gained from a successful analysis of a par- ticular problem rarely transfer to another. Our goal in this paper is to present a framework for the approximation of a class of integer programming problems (covering problems) through generic heuristics all based on rounding (deterministic using primal and dual information or randomized but with nonlinear rounding functions) of the optimal solution of a linear programming (LP) relaxation. We apply these generic heuristics to obtain in a systematic way many known as well as new results for the set covering, facility location, general covering, network design and cut covering problems. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.
    [Show full text]
  • Structural Graph Theory Meets Algorithms: Covering And
    Structural Graph Theory Meets Algorithms: Covering and Connectivity Problems in Graphs Saeed Akhoondian Amiri Fakult¨atIV { Elektrotechnik und Informatik der Technischen Universit¨atBerlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften Dr. rer. nat. genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. Rolf Niedermeier Gutachter: Prof. Dr. Stephan Kreutzer Gutachter: Prof. Dr. Marcin Pilipczuk Gutachter: Prof. Dr. Dimitrios Thilikos Tag der wissenschaftlichen Aussprache: 13. October 2017 Berlin 2017 2 This thesis is dedicated to my family, especially to my beautiful wife Atefe and my lovely son Shervin. 3 Contents Abstract iii Acknowledgementsv I. Introduction and Preliminaries1 1. Introduction2 1.0.1. General Techniques and Models......................3 1.1. Covering Problems.................................6 1.1.1. Covering Problems in Distributed Models: Case of Dominating Sets.6 1.1.2. Covering Problems in Directed Graphs: Finding Similar Patterns, the Case of Erd}os-P´osaproperty.......................9 1.2. Routing Problems in Directed Graphs...................... 11 1.2.1. Routing Problems............................. 11 1.2.2. Rerouting Problems............................ 12 1.3. Structure of the Thesis and Declaration of Authorship............. 14 2. Preliminaries and Notations 16 2.1. Basic Notations and Defnitions.......................... 16 2.1.1. Sets..................................... 16 2.1.2. Graphs................................... 16 2.2. Complexity Classes................................
    [Show full text]
  • 3.1 Matchings and Factors: Matchings and Covers
    1 3.1 Matchings and Factors: Matchings and Covers This copyrighted material is taken from Introduction to Graph Theory, 2nd Ed., by Doug West; and is not for further distribution beyond this course. These slides will be stored in a limited-access location on an IIT server and are not for distribution or use beyond Math 454/553. 2 Matchings 3.1.1 Definition A matching in a graph G is a set of non-loop edges with no shared endpoints. The vertices incident to the edges of a matching M are saturated by M (M-saturated); the others are unsaturated (M-unsaturated). A perfect matching in a graph is a matching that saturates every vertex. perfect matching M-unsaturated M-saturated M Contains copyrighted material from Introduction to Graph Theory by Doug West, 2nd Ed. Not for distribution beyond IIT’s Math 454/553. 3 Perfect Matchings in Complete Bipartite Graphs a 1 The perfect matchings in a complete b 2 X,Y-bigraph with |X|=|Y| exactly c 3 correspond to the bijections d 4 f: X -> Y e 5 Therefore Kn,n has n! perfect f 6 matchings. g 7 Kn,n The complete graph Kn has a perfect matching iff… Contains copyrighted material from Introduction to Graph Theory by Doug West, 2nd Ed. Not for distribution beyond IIT’s Math 454/553. 4 Perfect Matchings in Complete Graphs The complete graph Kn has a perfect matching iff n is even. So instead of Kn consider K2n. We count the perfect matchings in K2n by: (1) Selecting a vertex v (e.g., with the highest label) one choice u v (2) Selecting a vertex u to match to v K2n-2 2n-1 choices (3) Selecting a perfect matching on the rest of the vertices.
    [Show full text]
  • Bin Completion Algorithms for Multicontainer Packing, Knapsack, and Covering Problems
    Journal of Artificial Intelligence Research 28 (2007) 393-429 Submitted 6/06; published 3/07 Bin Completion Algorithms for Multicontainer Packing, Knapsack, and Covering Problems Alex S. Fukunaga [email protected] Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive Pasadena, CA 91108 USA Richard E. Korf [email protected] Computer Science Department University of California, Los Angeles Los Angeles, CA 90095 Abstract Many combinatorial optimization problems such as the bin packing and multiple knap- sack problems involve assigning a set of discrete objects to multiple containers. These prob- lems can be used to model task and resource allocation problems in multi-agent systems and distributed systms, and can also be found as subproblems of scheduling problems. We propose bin completion, a branch-and-bound strategy for one-dimensional, multicontainer packing problems. Bin completion combines a bin-oriented search space with a powerful dominance criterion that enables us to prune much of the space. The performance of the basic bin completion framework can be enhanced by using a number of extensions, in- cluding nogood-based pruning techniques that allow further exploitation of the dominance criterion. Bin completion is applied to four problems: multiple knapsack, bin covering, min-cost covering, and bin packing. We show that our bin completion algorithms yield new, state-of-the-art results for the multiple knapsack, bin covering, and min-cost cov- ering problems, outperforming previous algorithms by several orders of magnitude with respect to runtime on some classes of hard, random problem instances. For the bin pack- ing problem, we demonstrate significant improvements compared to most previous results, but show that bin completion is not competitive with current state-of-the-art cutting-stock based approaches.
    [Show full text]
  • Solving Packing Problems with Few Small Items Using Rainbow Matchings
    Solving Packing Problems with Few Small Items Using Rainbow Matchings Max Bannach Institute for Theoretical Computer Science, Universität zu Lübeck, Lübeck, Germany [email protected] Sebastian Berndt Institute for IT Security, Universität zu Lübeck, Lübeck, Germany [email protected] Marten Maack Department of Computer Science, Universität Kiel, Kiel, Germany [email protected] Matthias Mnich Institut für Algorithmen und Komplexität, TU Hamburg, Hamburg, Germany [email protected] Alexandra Lassota Department of Computer Science, Universität Kiel, Kiel, Germany [email protected] Malin Rau Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble, France [email protected] Malte Skambath Department of Computer Science, Universität Kiel, Kiel, Germany [email protected] Abstract An important area of combinatorial optimization is the study of packing and covering problems, such as Bin Packing, Multiple Knapsack, and Bin Covering. Those problems have been studied extensively from the viewpoint of approximation algorithms, but their parameterized complexity has only been investigated barely. For problem instances containing no “small” items, classical matching algorithms yield optimal solutions in polynomial time. In this paper we approach them by their distance from triviality, measuring the problem complexity by the number k of small items. Our main results are fixed-parameter algorithms for vector versions of Bin Packing, Multiple Knapsack, and Bin Covering parameterized by k. The algorithms are randomized with one-sided error and run in time 4k · k! · nO(1). To achieve this, we introduce a colored matching problem to which we reduce all these packing problems. The colored matching problem is natural in itself and we expect it to be useful for other applications.
    [Show full text]
  • An Overview of Graph Covering and Partitioning
    Takustr. 7 Zuse Institute Berlin 14195 Berlin Germany STEPHAN SCHWARTZ An Overview of Graph Covering and Partitioning ZIB Report 20-24 (August 2020) Zuse Institute Berlin Takustr. 7 14195 Berlin Germany Telephone: +49 30-84185-0 Telefax: +49 30-84185-125 E-mail: [email protected] URL: http://www.zib.de ZIB-Report (Print) ISSN 1438-0064 ZIB-Report (Internet) ISSN 2192-7782 An Overview of Graph Covering and Partitioning Stephan Schwartz Abstract While graph covering is a fundamental and well-studied problem, this eld lacks a broad and unied literature review. The holistic overview of graph covering given in this article attempts to close this gap. The focus lies on a characterization and classication of the dierent problems discussed in the literature. In addition, notable results and common approaches are also included. Whenever appropriate, our review extends to the corresponding partioning problems. Graph covering problems are among the most classical and central subjects in graph theory. They also play a huge role in many mathematical models for various real-world applications. There are two dierent variants that are concerned with covering the edges and, respectively, the vertices of a graph. Both draw a lot of scientic attention and are subject to prolic research. In this paper we attempt to give an overview of the eld of graph covering problems. In a graph covering problem we are given a graph G and a set of possible subgraphs of G. Following the terminology of Knauer and Ueckerdt [KU16], we call G the host graph while the set of possible subgraphs forms the template class.
    [Show full text]
  • Approximation Algorithm for Vertex Cover with Multiple Covering Constraints
    Approximation Algorithm for Vertex Cover with Multiple Covering Constraints Eunpyeong Hong Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan [email protected] Mong-Jen Kao Department of Computer Science and Information Engineering, National Chung-Cheng University, Chiayi, Taiwan [email protected] Abstract We consider the vertex cover problem with multiple coverage constraints in hypergraphs. In this problem, we are given a hypergraph G = (V, E) with a maximum edge size f, a cost function + w : V → Z , and edge subsets P1,P2,...,Pr of E along with covering requirements k1, k2, . , kr for each subset. The objective is to find a minimum cost subset S of V such that, for each edge subset Pi, at least ki edges of it are covered by S. This problem is a basic yet general form of classical vertex cover problem and a generalization of the edge-partitioned vertex cover problem considered by Bera et al. We present a primal-dual algorithm yielding an (f · Hr + Hr)-approximation for this problem, th where Hr is the r harmonic number. This improves over the previous ratio of (3cf log r), where c is a large constant used to ensure a low failure probability for Monte-Carlo randomized algorithms. Compared to previous result, our algorithm is deterministic and pure combinatorial, meaning that no Ellipsoid solver is required for this basic problem. Our result can be seen as a novel reinterpretation of a few classical tight results using the language of LP primal-duality. 2012 ACM Subject Classification Mathematics of computing → Approximation algorithms Keywords and phrases Vertex cover, multiple cover constraints, Approximation algorithm Digital Object Identifier 10.4230/LIPIcs.ISAAC.2018.43 Funding This work is supported in part by Ministry of Science and Technology (MOST), Taiwan, under Grants MOST107-2218-E-194-015-MY3 and MOST106-2221-E-001-006-MY3.
    [Show full text]
  • Graph Covering and Subgraph Problems
    Graph Covering and Subgraph Problems Gabrovˇsek, Peter and Miheliˇc, Jurij Abstract: Combinatorial optimization prob- For each problem, we first present its for- lems and graph theory play an important role in mal definition and give its hardness of solving. several fields including logistics, artificial intel- Afterward, we also list several exact, heuristic ligence, software engineering, etc. In this pa- and approximation algorithms for solving it. per, we explore a subset of combinatorial graph problems which we placed into two groups, Our survey methodology is as follows. First namely, graph covering and subgraph problems. we investigated definitions in several generic 1 Here, the former include well-known dominat- sources such as online compendiums , encyclo- ing set and vertex cover problem, and the lat- pedias2 and books [1, 13, 14]. Afterward, we ter include clique and independent set prob- searched for the research papers on the focused lem. For each problem we give its definition, graph problems using Google scholar. Our goal report state-of-the-art exact algorithms as well was to supplement each problem with refer- as heuristic and approximation algorithms, and list real-world applications if we were able to ences to exact, heuristics and approximation obtain any. At the end of the paper, we also algorithms. Moreover, we also supplemented relate the problems among each other. our descriptions with real-world applications. Finally, we also collected a list of reductions Index Terms: combinatorial optimization, among the selected problems. graph covering, subgraph problems, exact al- Let us present a few basic notions used in gorithms, approximation algorithms the rest of the paper.
    [Show full text]
  • Finding Optimal Solutions for Covering and Matching Problems
    Finding Optimal Solutions for Covering and Matching Problems Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt dem Rat der Fakult¨at fur¨ Mathematik und Informatik der Friedrich-Schiller-Universit¨at Jena von Dipl.-Inform. Hannes Moser geboren am 18.11.1978 in Munchen¨ Gutachter Prof. Dr. Rolf Niedermeier (Friedrich-Schiller-Universit¨at Jena) • Prof. Dr. Iyad Kanj (DePaul University, Chicago, U.S.A.) • Prof. Dr. Dimitrios Thilikos (National and Kapodistrian University of Athens, • Griechenland) Tag der ¨offentlichen Verteidigung: 17. November 2009 Zusammenfassung Diese Arbeit besch¨aftigt sich mit kombinatorischen Problemen, welche als Verall- gemeinerungen der beiden klassischen Graphprobleme Vertex Cover und Ma- ximum Matching aufgefasst werden k¨onnen. Das Vertex Cover-Problem ist wie folgt definiert. Gegeben ein ungerichteter Graph, finde eine kleinstm¨ogliche Knotenteilmenge, die jede Kante abdeckt“, d.h. dass einer der beiden Endpunkte ” jeder Kante in der Knotenteilmenge liegt. Dieses Problem wird auch oft Kno- ” tenuberdeckungsproblem“¨ genannt. Das Maximum Matching-Problem fragt nach einer gr¨oßtm¨oglichen Kantenteilmenge in einem ungerichteten Graphen, so dass sich die gew¨ahlten Kanten keinen Endpunkt teilen. Dieses Problem sucht also nach einer m¨oglichst großen Anzahl von Knotenpaaren, die durch eine Kante verbunden sind. In bipartiten Graphen wird dieses Problem auch oft Heirats- ” problem“ genannt. Sowohl Vertex Cover als auch Maximum Matching haben eine lange Geschichte; diese Probleme wurden schon in den Anfangsjahren der Informa- tik untersucht und sind immer noch Gegenstand der aktuellen Forschung. Es gibt fur¨ beide Probleme viele Anwendungen, beispielsweise in der Bioinformatik, der Computer-Chemie oder auch in der Verkehrsplanung. Maximum Matching wird in unz¨ahligen Anwendungen als Hilfsroutine zur L¨osung anderer Aufgaben eingesetzt.
    [Show full text]
  • Online Algorithms for Covering and Packing Problems with Convex Objectives
    Online Algorithms for Covering and Packing Problems with Convex Objectives Yossi Azar∗, Niv Buchbindery, T-H. Hubert Chanz, Shahar Chenx, Ilan Reuven Coheny, Anupam Gupta{, Zhiyi Huangz, Ning Kangz, Viswanath Nagarajank, Joseph (Seffi) Naorx, Debmalya Panigrahi∗∗ ∗Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel. Email: [email protected], [email protected] yDepartment of Statistics and Operations Research, Tel Aviv University, Tel Aviv, Israel. Email: [email protected] zDepartment of Computer Science, The University of Hong Kong, Hong Kong, China. Email: fhubert,zhiyi,[email protected] xDepartment of Computer Science, Technion - Israel Institute of Technology, Haifa, Israel. Email:[email protected], [email protected] {Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA. Email: [email protected] kDepartment of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109, USA. Email: [email protected] ∗∗Department of Computer Science, Duke University, Durham, NC 27708, USA. Email: [email protected] Abstract—We present online algorithms for covering and a primal-dual algorithm, and then rounding it, has proved to be packing problems with (non-linear) convex objectives. The convex a very powerful general technique (see [4] for a survey). This covering problem is defined as: minx2 n f(x) s.t. Ax ≥ 1, where R+ framework is applicable to many central online problems, like f : n ! A m × n R+ R+ is a monotone convex function, and is an the classic ski rental problem, online set-cover [5], generalized matrix with non-negative entries. In the online version, a new row of the constraint matrix, representing a new covering constraint, paging [6], [7], k-server and metrical task systems [8], [9], is revealed in each step and the algorithm is required to maintain graph connectivity [10], [11], routing [12], load balancing and a feasible and monotonically non-decreasing assignment x over machine scheduling [13], [14], matching [15], and budgeted time.
    [Show full text]
  • Revisiting Path-Type Covering and Partitioning Problems
    This is a survey article which is at the initial stage. The au- thor will appreciate to receive your comments and contributions to improve the quality of the article. The author's contact address is [email protected]. arXiv:1807.10613v1 [math.CO] 25 Jul 2018 1 Revisiting path-type covering and partitioning problems Paul Manuel July 30, 2018 Department of Information Science, College of Computing Science and Engineering, Kuwait University, Kuwait [email protected] Abstract Covering problems belong to the foundation of graph theory. There are several types of covering problems in graph theory such as covering the vertex set by stars (domination problem), covering the vertex set by cliques (clique covering problem), covering the vertex set by independent sets (coloring problem), and covering the vertex set by paths or cycles. A similar concept which is partitioning problem is also equally important. Lately research in graph theory has produced unprece- dented growth because of its various application in engineering and science. The covering and partitioning problem by paths itself have produced a sizable volume of literatures. The research on these problems is expanding in multiple directions and the volume of research papers is exploding. It is the time to simplify and unify the literature on different types of the covering and partitioning problems. The problems considered in this article are path cover problem, induced path cover problem, isometric path cover problem, path partition problem, induced path par- tition problem and isometric path partition problem. The objective of this article is to summarize the recent developments on these problems, classify their literatures and correlate the inter-relationship among the related concepts.
    [Show full text]
  • A History of Satisfiability
    i i “p01c01˙his” — 2008/11/20 — 10:11 — page 3 — #3 i i Handbook of Satisfiability 3 Armin Biere, Marijn Heule, Hans van Maaren and Toby Walsh (Eds.) IOS Press, 2009 c 2009 John Franco and John Martin and IOS Press. All rights reserved. doi:10.3233/978-1-58603-929-5-3 Chapter 1 A History of Satisfiability John Franco and John Martin with sections contributed by Miguel Anjos, Holger Hoos, Hans Kleine B¨uning, Ewald Speckenmeyer, Alasdair Urquhart, and Hantao Zhang 1.1. Preface: the concept of satisfiability Interest in Satisfiability is expanding for a variety of reasons, not in the least because nowadays more problems are being solved faster by SAT solvers than other means. This is probably because Satisfiability stands at the crossroads of logic, graph theory, computer science, computer engineering, and operations research. Thus, many problems originating in one of these fields typically have multiple translations to Satisfiability and there exist many mathematical tools available to the SAT solver to assist in solving them with improved performance. Because of the strong links to so many fields, especially logic, the history of Satisfiability can best be understood as it unfolds with respect to its logic roots. Thus, in addition to time-lining events specific to Satisfiability, the chapter follows the presence of Satisfiability in logic as it was developed to model human thought and scientific reasoning through its use in computer design and now as modeling tool for solving a variety of practical problems. In order to succeed in this, we must introduce many ideas that have arisen during numerous attempts to reason with logic and this requires some terminology and perspective that has developed over the past two millennia.
    [Show full text]