The NP-Hardness of Covering Points with Lines, Paths and Tours and Their Tractability with FPT-Algorithms

Total Page:16

File Type:pdf, Size:1020Kb

The NP-Hardness of Covering Points with Lines, Paths and Tours and Their Tractability with FPT-Algorithms The NP-Hardness of Covering Points with Lines, Paths and Tours and their Tractability with FPT-Algorithms Author Heednacram, Apichat Published 2010 Thesis Type Thesis (PhD Doctorate) School School of Information and Communication Technology DOI https://doi.org/10.25904/1912/1694 Copyright Statement The author owns the copyright in this thesis, unless stated otherwise. Downloaded from http://hdl.handle.net/10072/367754 Griffith Research Online https://research-repository.griffith.edu.au The NP-Hardness of Covering Points with Lines, Paths and Tours and their Tractability with FPT-Algorithms by Apichat Heednacram B. Eng. (1st Class Hons), Griffith University, 2001 Submitted in fulfilment of the requirements of the degree of Doctor of Philosophy Institute for Integrated and Intelligent Systems Science, Environment, Engineering and Technology Griffith University March 2010 i Abstract Given a problem for which no polynomial-time algorithm is likely to exist, we investigate how to attack this seemingly intractable problem based on parame- terized complexity theory. We study hard geometric problems, and show that they are fixed-parameter tractable (FPT) given an instance and a parameter k. This allows the problems to be solved exactly, rather than approximately, in polynomial time in the size of the input and exponential time in the parameter. Although the parameterized approach is still young, in recent years, there have been many results published concerning graph problems and databases. However, not many earlier results apply the parameterized approach in the field of computational geometry. This thesis, therefore, focuses on geometric NP-hard problems. These problems are the Line Cover problem, the Rectilinear Line Cover problem in higher dimensions, the Rectilinear Minimum-Links Spanning Path problem in higher dimensions, the Rectilinear Hyper- plane Cover problem, the Minimum-Bends Traveling Salesman Prob- lem and the Rectilinear Minimum-Bends Traveling Salesman Prob- lem, in addition to some other variants of these problems. The Rectilinear Minimum-Links Spanning Path problem in higher dimensions and the Rectilinear Hyperplane Cover problem had been the subject of only conjectures about their intractability. Therefore, we present the NP-completeness proofs for these problems. After verifying their hardness, we use the fixed-parameter approach to solve the two problems. We focus on solving the decision version of the problems, rather than solving the optimizations. However, with the Line Cover problem we demonstrate that it is not difficult to adapt algorithms for the decision version to algorithms for the optimization version. We also implement several algorithms for the Line Cover problem and conduct experimental evaluations of our algorithms with respect to previously known algorithms. For the remaining problems in the thesis, we will establish only the fundamental results. That is, we determine fixed-parameter tractability of those problems. ii iv v c Copyright 2010 Apichat Heednacram vi vii Approval Name: Apichat Heednacram Student No: 964128 Degree: Doctor of Philosophy Thesis Title: The NP-Hardness of Covering Points with Lines, Paths and Tours and their Tractability with FPT- Algorithms Submission Date: 01 March 2010 Principal Supervisor: Professor Vladimir Estivill-Castro School of Information and Communication Technology, Griffith University Australia Principal Supervisor: Dr. Francis Suraweera School of Information and Communication Technology, Griffith University Australia viii ix Acknowledgements I would like to thank the Australian Government, Department of Education, Em- ployment and Workplace Relations (DEEWR) for awarding me the Endeavour Postgraduate Award. The scholarship was generously supplied for three years, thus enabling me to enjoy my research with sufficient financial support. I express my sincere gratitude to my two supervisors, Dr Francis Suraweera and Professor Vladimir Estivill-Castro. Without their support, this thesis would not have been possible. I cannot thank them enough for their guidance over the years, in particular, their commitment and time in making weekly discussions extremely useful. I would also like to acknowledge Professor Vladimir Estivill-Castro for his financial support for my travels overseas and for the many opportunities he has provided. Thanks for providing the sponsorship to conferences such as ISAAC08, CATS08, CATS09 and particularly, a visit to the Yahoo Research and the Barcelona Media Innovation Centre (FBM-UPF) at the Universitat Pompeu Fabra (UPF) in Barcelona, Spain. Thank you Professor Josep Blat, Director of Departament de Tecnologia for providing a working space for several weeks at the UPF. I also thank Professor Abdul Sattar, Director of the Institute for Integrated and Intelligent Systems (IIIS) for helping me on several occa- sions with the VISA application and travel-documents. I would like to thank the Enterprise Information Infrastructure (EII) for providing sponsorship to the Theoretical Computer Science Day in Sydney and the EII PhD School. Thanks also to Kathleen Williamson, The University of Queensland, for making each trip as convenient as possible. Thanks to Mike Fellows and Frances Rosamond for the few meetings we had and thank you for keeping me updated about the FPT news. I would like to thank Rod Downey for providing some interesting papers during the ACSW2009 in New Zealand. I thank Joel Fenwick and Artak Amirbekyan for helping me with the initial stages of the PhD. Thank you Mahdi Parsa, my fellow PhD student, who shares the same passion about parameterized complexity theory. Finally, thanks to my family and friends for their unconditional love. x xi To Lord Buddha who told us that our innate wisdom and virtuous abilities are not truly lost, just not yet uncovered. xii xiii List of Outcomes Arising from this Thesis International journals with papers fully refereed 1. V. Estivill-Castro, A. Heednacram, and F. Suraweera. Reduction Rules Deliver Efficient FPT-Algorithms for Covering Points with Lines. ACM Journal of Experimental Algorithmics, 14:1.7{1.26, November 2009. 2. V. Estivill-Castro, A. Heednacram, and F. Suraweera. NP-completeness and FPT Results for Rectilinear Covering Problems. Journal of Universal Computer Science, 16(5):622{652, May 2010. 3. V. Estivill-Castro, A. Heednacram, and F. Suraweera. FPT-algorithms for Minimum-Bends Tours. International Journal of Computational Geometry and Applications, August 2010 (Accepted with minor corrections). International conferences with papers fully refereed 1. V. Estivill-Castro, A. Heednacram, and F. Suraweera. The Rectilinear k- Bends TSP. In, M. T. Thai and S. Sahni, editors, Proceedings of the 16th Annual International Combinatorics Conference (COCOON), volume 6196 of Lecture Notes in Computer Science, pages 264{277. Springer, Berlin, July 19{21, 2010. xiv xv Notation S | a set of input points. n | the size of S. S0 | a subset of S; that is, S0 S. ⊆ n0 | the size of S0 where n0 n. ≤ P | the class of polynomial-time solvable problems. Q | a parameterized problem. k | a positive integer and a parameter of parameterized problems. d | the number of dimensions. φ | the number of orientations. L3 | the set of all lines that cover at least 3 points in S. L n=k | the set of all lines that cover at least n=k points in S. d e d e Lk+1 | the set of all lines that cover at least k + 1 points in S. L | the cardinality of a set L. j j cover(L) | all points in S covered by some line in L. lines(T ) | the set of lines used by the line-segments in a tour T . p1; p2 | the line through points p1 and p2. p1p2 | the line-segment between points p1 and p2. d(p1; p2) | the distance from point p1 to p2. (L) | the arrangement of lines induced by L. A dual(p) | a line in dual space to the point p in primal space. Rd | the real coordinate space of d-dimensions. Π(x; ; ) | the yz-plane. ∗ ∗ Π( ; y; ) | the xz-plane. ∗ ∗ Π( ; ; z) | the xy-plane. ∗ ∗ xvi xvii Glossary of Terms Confidence Interval: A confidence interval indicates that the expected run- ning time of the algorithm on an instance has 95% probability of falling inside the interval. A confidence interval is defined by the following for- mula: 95%C.I. = M (1:96 SD=pN) where M is the sample mean, SD is the standard deviation,± and∗ N is the number of samples. If the confi- dence intervals are disjoint, then we have statistical significance that one algorithm's CPU time is lesser than the other. Direction: We use this term for the direction of travel of a line-segment in a tour; for example, a vertical line-segment can be traveled North-South or in the opposite direction, South-North. Dual Space: The dual-space mapping assigns a line l given by y = mx + b in a 2-dimensional space to the point pl = (m; b), and a point p = (px; py) to a line l given by y = p x p . This mapping− has the property that two p x − y lines lp and lq in dual space intersect at a point pl, which, in primal space, is the line l through the points p and q that are images of the two lines. Fan-out: The number of children nodes in a parent node in a tree. FPT: This denotes the class of fixed-parameter tractable parameterized prob- lems. Hard Problems: The problems for which no polynomial-time algorithms are known. In this thesis, the problems discussed are in the class of NP-hard. Hyperplane: A generalization of the concept of a plane in geometry into a larger number of dimensions. Line: An unbounded infinite set of points with zero-width that is convex and contains the shortest path between any of two points in it. Alternatively, a linear vector space of dimension 1. Line-segment: The bounded portion of a line that constitutes the shortest path between the extremes of the segment. Line Cover: A line cover is a set of lines that cover the points in S.
Recommended publications
  • Rounding Algorithms for Covering Problems
    Mathematical Programming 80 (1998) 63 89 Rounding algorithms for covering problems Dimitris Bertsimas a,,,1, Rakesh Vohra b,2 a Massachusetts Institute of Technology, Sloan School of Management, 50 Memorial Drive, Cambridge, MA 02142-1347, USA b Department of Management Science, Ohio State University, Ohio, USA Received 1 February 1994; received in revised form 1 January 1996 Abstract In the last 25 years approximation algorithms for discrete optimization problems have been in the center of research in the fields of mathematical programming and computer science. Re- cent results from computer science have identified barriers to the degree of approximability of discrete optimization problems unless P -- NP. As a result, as far as negative results are con- cerned a unifying picture is emerging. On the other hand, as far as particular approximation algorithms for different problems are concerned, the picture is not very clear. Different algo- rithms work for different problems and the insights gained from a successful analysis of a par- ticular problem rarely transfer to another. Our goal in this paper is to present a framework for the approximation of a class of integer programming problems (covering problems) through generic heuristics all based on rounding (deterministic using primal and dual information or randomized but with nonlinear rounding functions) of the optimal solution of a linear programming (LP) relaxation. We apply these generic heuristics to obtain in a systematic way many known as well as new results for the set covering, facility location, general covering, network design and cut covering problems. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.
    [Show full text]
  • Structural Graph Theory Meets Algorithms: Covering And
    Structural Graph Theory Meets Algorithms: Covering and Connectivity Problems in Graphs Saeed Akhoondian Amiri Fakult¨atIV { Elektrotechnik und Informatik der Technischen Universit¨atBerlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften Dr. rer. nat. genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. Rolf Niedermeier Gutachter: Prof. Dr. Stephan Kreutzer Gutachter: Prof. Dr. Marcin Pilipczuk Gutachter: Prof. Dr. Dimitrios Thilikos Tag der wissenschaftlichen Aussprache: 13. October 2017 Berlin 2017 2 This thesis is dedicated to my family, especially to my beautiful wife Atefe and my lovely son Shervin. 3 Contents Abstract iii Acknowledgementsv I. Introduction and Preliminaries1 1. Introduction2 1.0.1. General Techniques and Models......................3 1.1. Covering Problems.................................6 1.1.1. Covering Problems in Distributed Models: Case of Dominating Sets.6 1.1.2. Covering Problems in Directed Graphs: Finding Similar Patterns, the Case of Erd}os-P´osaproperty.......................9 1.2. Routing Problems in Directed Graphs...................... 11 1.2.1. Routing Problems............................. 11 1.2.2. Rerouting Problems............................ 12 1.3. Structure of the Thesis and Declaration of Authorship............. 14 2. Preliminaries and Notations 16 2.1. Basic Notations and Defnitions.......................... 16 2.1.1. Sets..................................... 16 2.1.2. Graphs................................... 16 2.2. Complexity Classes................................
    [Show full text]
  • 3.1 Matchings and Factors: Matchings and Covers
    1 3.1 Matchings and Factors: Matchings and Covers This copyrighted material is taken from Introduction to Graph Theory, 2nd Ed., by Doug West; and is not for further distribution beyond this course. These slides will be stored in a limited-access location on an IIT server and are not for distribution or use beyond Math 454/553. 2 Matchings 3.1.1 Definition A matching in a graph G is a set of non-loop edges with no shared endpoints. The vertices incident to the edges of a matching M are saturated by M (M-saturated); the others are unsaturated (M-unsaturated). A perfect matching in a graph is a matching that saturates every vertex. perfect matching M-unsaturated M-saturated M Contains copyrighted material from Introduction to Graph Theory by Doug West, 2nd Ed. Not for distribution beyond IIT’s Math 454/553. 3 Perfect Matchings in Complete Bipartite Graphs a 1 The perfect matchings in a complete b 2 X,Y-bigraph with |X|=|Y| exactly c 3 correspond to the bijections d 4 f: X -> Y e 5 Therefore Kn,n has n! perfect f 6 matchings. g 7 Kn,n The complete graph Kn has a perfect matching iff… Contains copyrighted material from Introduction to Graph Theory by Doug West, 2nd Ed. Not for distribution beyond IIT’s Math 454/553. 4 Perfect Matchings in Complete Graphs The complete graph Kn has a perfect matching iff n is even. So instead of Kn consider K2n. We count the perfect matchings in K2n by: (1) Selecting a vertex v (e.g., with the highest label) one choice u v (2) Selecting a vertex u to match to v K2n-2 2n-1 choices (3) Selecting a perfect matching on the rest of the vertices.
    [Show full text]
  • Integer Programming Models for the Quasi-Polyomino Strip Packing Problem
    Irregular and quasi-polyomino strip packing problems Marcos Okamura Rodrigues Tese de Doutorado do Programa de Pós-Graduação em Ciências de Computação e Matemática Computacional (PPG-CCMC) UNIVERSIDADE DE SÃO PAULO DE SÃO UNIVERSIDADE Instituto de Ciências Matemáticas e de Computação Instituto Matemáticas de Ciências SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP Data de Depósito: Assinatura: ______________________ Marcos Okamura Rodrigues Irregular and quasi-polyomino strip packing problems Doctoral dissertation submitted to the Institute of Mathematics and Computer Sciences – ICMC-USP, in partial fulfillment of the requirements for the degree of the Doctorate Program in Computer Science and Computational Mathematics. FINAL VERSION Concentration Area: Computer Science and Computational Mathematics Advisor: Franklina Maria Bragion de Toledo USP – São Carlos May 2020 Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi e Seção Técnica de Informática, ICMC/USP, com os dados inseridos pelo(a) autor(a) Rodrigues, Marcos Okamura R685i Irregular and quasi-polyomino strip packing problems / Marcos Okamura Rodrigues; orientadora Franklina Maria Bragion de Toledo. -- São Carlos, 2020. 90 p. Tese (Doutorado - Programa de Pós-Graduação em Ciências de Computação e Matemática Computacional) -- Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, 2020. 1. Strip packing. 2. Nesting. 3. Irregular shapes. 4. Quasi-polyomino. 5. Polyomino. I. Toledo, Franklina Maria Bragion de, orient. II. Título. Bibliotecários responsáveis pela estrutura de catalogação da publicação de acordo com a AACR2: Gláucia Maria Saia Cristianini - CRB - 8/4938 Juliana de Souza Moraes - CRB - 8/6176 Marcos Okamura Rodrigues Problemas de empacotamento em faixa de itens irregulares e quasi-poliominós Tese apresentada ao Instituto de Ciências Matemáticas e de Computação – ICMC-USP, como parte dos requisitos para obtenção do título de Doutor em Ciências – Ciências de Computação e Matemática Computacional.
    [Show full text]
  • Bin Completion Algorithms for Multicontainer Packing, Knapsack, and Covering Problems
    Journal of Artificial Intelligence Research 28 (2007) 393-429 Submitted 6/06; published 3/07 Bin Completion Algorithms for Multicontainer Packing, Knapsack, and Covering Problems Alex S. Fukunaga [email protected] Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive Pasadena, CA 91108 USA Richard E. Korf [email protected] Computer Science Department University of California, Los Angeles Los Angeles, CA 90095 Abstract Many combinatorial optimization problems such as the bin packing and multiple knap- sack problems involve assigning a set of discrete objects to multiple containers. These prob- lems can be used to model task and resource allocation problems in multi-agent systems and distributed systms, and can also be found as subproblems of scheduling problems. We propose bin completion, a branch-and-bound strategy for one-dimensional, multicontainer packing problems. Bin completion combines a bin-oriented search space with a powerful dominance criterion that enables us to prune much of the space. The performance of the basic bin completion framework can be enhanced by using a number of extensions, in- cluding nogood-based pruning techniques that allow further exploitation of the dominance criterion. Bin completion is applied to four problems: multiple knapsack, bin covering, min-cost covering, and bin packing. We show that our bin completion algorithms yield new, state-of-the-art results for the multiple knapsack, bin covering, and min-cost cov- ering problems, outperforming previous algorithms by several orders of magnitude with respect to runtime on some classes of hard, random problem instances. For the bin pack- ing problem, we demonstrate significant improvements compared to most previous results, but show that bin completion is not competitive with current state-of-the-art cutting-stock based approaches.
    [Show full text]
  • Solving Packing Problems with Few Small Items Using Rainbow Matchings
    Solving Packing Problems with Few Small Items Using Rainbow Matchings Max Bannach Institute for Theoretical Computer Science, Universität zu Lübeck, Lübeck, Germany [email protected] Sebastian Berndt Institute for IT Security, Universität zu Lübeck, Lübeck, Germany [email protected] Marten Maack Department of Computer Science, Universität Kiel, Kiel, Germany [email protected] Matthias Mnich Institut für Algorithmen und Komplexität, TU Hamburg, Hamburg, Germany [email protected] Alexandra Lassota Department of Computer Science, Universität Kiel, Kiel, Germany [email protected] Malin Rau Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble, France [email protected] Malte Skambath Department of Computer Science, Universität Kiel, Kiel, Germany [email protected] Abstract An important area of combinatorial optimization is the study of packing and covering problems, such as Bin Packing, Multiple Knapsack, and Bin Covering. Those problems have been studied extensively from the viewpoint of approximation algorithms, but their parameterized complexity has only been investigated barely. For problem instances containing no “small” items, classical matching algorithms yield optimal solutions in polynomial time. In this paper we approach them by their distance from triviality, measuring the problem complexity by the number k of small items. Our main results are fixed-parameter algorithms for vector versions of Bin Packing, Multiple Knapsack, and Bin Covering parameterized by k. The algorithms are randomized with one-sided error and run in time 4k · k! · nO(1). To achieve this, we introduce a colored matching problem to which we reduce all these packing problems. The colored matching problem is natural in itself and we expect it to be useful for other applications.
    [Show full text]
  • An Overview of Graph Covering and Partitioning
    Takustr. 7 Zuse Institute Berlin 14195 Berlin Germany STEPHAN SCHWARTZ An Overview of Graph Covering and Partitioning ZIB Report 20-24 (August 2020) Zuse Institute Berlin Takustr. 7 14195 Berlin Germany Telephone: +49 30-84185-0 Telefax: +49 30-84185-125 E-mail: [email protected] URL: http://www.zib.de ZIB-Report (Print) ISSN 1438-0064 ZIB-Report (Internet) ISSN 2192-7782 An Overview of Graph Covering and Partitioning Stephan Schwartz Abstract While graph covering is a fundamental and well-studied problem, this eld lacks a broad and unied literature review. The holistic overview of graph covering given in this article attempts to close this gap. The focus lies on a characterization and classication of the dierent problems discussed in the literature. In addition, notable results and common approaches are also included. Whenever appropriate, our review extends to the corresponding partioning problems. Graph covering problems are among the most classical and central subjects in graph theory. They also play a huge role in many mathematical models for various real-world applications. There are two dierent variants that are concerned with covering the edges and, respectively, the vertices of a graph. Both draw a lot of scientic attention and are subject to prolic research. In this paper we attempt to give an overview of the eld of graph covering problems. In a graph covering problem we are given a graph G and a set of possible subgraphs of G. Following the terminology of Knauer and Ueckerdt [KU16], we call G the host graph while the set of possible subgraphs forms the template class.
    [Show full text]
  • Covering Orthogonal Polygons with Star Polygons: the Perfect Graph Approach
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF COMPUTER AND SYSTEM SCIENCES 40, 1948 (1990) Covering Orthogonal Polygons with Star Polygons: The Perfect Graph Approach RAJEEV MOTWANI* Computer Science Department, Stanford University, Stanford, California 94305 ARVIND RAGHLJNATHAN~AND HUZUR SARAN~ Computer Science Division, University of California, 573 Evans Hall, Berkeley, California 94720 Received November 29, 1988 This paper studies the combinatorial structure of visibility in orthogonal polygons. We show that the visibility graph for the problem of minimally covering simple orthogonal polygons with star polygons is perfect. A star polygon contains a point p, such that for every point 4 in the star polygon, there is an orthogonally convex polygon containing p and q. This perfectness property implies a polynomial algorithm for the above polygon covering problem. It further provides us with an interesting duality relationship. We first establish that a mini- mum clique cover of the visibility graph of a simple orthogonal polygon corresponds exactly to a minimum star cover of the polygon. In general, simple orthogonal polygons can have concavities (dents) with four possible orientations. In this case, we show that the visibility graph is weakly triangulated. We thus obtain an o(ns) algorithm. Since weakly triangulated graphs are perfect, we also obtain an interesting duality relationship. In the case where the polygon has at most three dent orientations, we show that the visibility graph is triangulated or chordal. This gives us an O(n’) algorithm. 0 1990 Academic Press, Inc. 1. INTRODUCTION One of the most well-studied class of problems in computational geometry con- cerns the notion of visibility.
    [Show full text]
  • Approximation Algorithm for Vertex Cover with Multiple Covering Constraints
    Approximation Algorithm for Vertex Cover with Multiple Covering Constraints Eunpyeong Hong Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan [email protected] Mong-Jen Kao Department of Computer Science and Information Engineering, National Chung-Cheng University, Chiayi, Taiwan [email protected] Abstract We consider the vertex cover problem with multiple coverage constraints in hypergraphs. In this problem, we are given a hypergraph G = (V, E) with a maximum edge size f, a cost function + w : V → Z , and edge subsets P1,P2,...,Pr of E along with covering requirements k1, k2, . , kr for each subset. The objective is to find a minimum cost subset S of V such that, for each edge subset Pi, at least ki edges of it are covered by S. This problem is a basic yet general form of classical vertex cover problem and a generalization of the edge-partitioned vertex cover problem considered by Bera et al. We present a primal-dual algorithm yielding an (f · Hr + Hr)-approximation for this problem, th where Hr is the r harmonic number. This improves over the previous ratio of (3cf log r), where c is a large constant used to ensure a low failure probability for Monte-Carlo randomized algorithms. Compared to previous result, our algorithm is deterministic and pure combinatorial, meaning that no Ellipsoid solver is required for this basic problem. Our result can be seen as a novel reinterpretation of a few classical tight results using the language of LP primal-duality. 2012 ACM Subject Classification Mathematics of computing → Approximation algorithms Keywords and phrases Vertex cover, multiple cover constraints, Approximation algorithm Digital Object Identifier 10.4230/LIPIcs.ISAAC.2018.43 Funding This work is supported in part by Ministry of Science and Technology (MOST), Taiwan, under Grants MOST107-2218-E-194-015-MY3 and MOST106-2221-E-001-006-MY3.
    [Show full text]
  • Visibility Algorithms in the Plane
    This page intentionally left blank iii VISIBILITY ALGORITHMS IN THE PLANE A human observer can effortlessly identify visible portions of geometric objects present in the environment. However, computations of visible portions of objects from a viewpoint involving thousands of objects is a time-consuming task even for high-speed computers. To solve such visibility problems, efficient algorithms have been designed. This book presents some of these visibility algorithms in two dimensions. Specifically, basic algorithms for point visibility, weak visibility, shortest paths, visibility graphs, link paths, and visibility queries are all discussed. Several geometric properties are also established through lemmas and theorems. With over 300 figures and hundreds of exercises, this book is ideal for graduate students and researchers in the field of computational geometry. It will also be useful as a reference for researchers working in algorithms, robotics, computer graphics, and geometric graph theory, and some algorithms from the book can be used in a first course in computational geometry. Subir Kumar Ghosh is a professor of computer science at the Tata Institute of Fundamental Research, Mumbai, India and is a fellow of the Indian Academy of Sciences. He is the author of around 40 papers in the fields of computational geometry and graph theory and has worked as a visiting scientist in many reputed universities and research institutes around the world. i iii VISIBILITY ALGORITHMS IN THE PLANE SUBIR KUMAR GHOSH School of Computer Science, Tata Institute of Fundamental Research, Mumbai 400005, India iii CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521875745 © S.
    [Show full text]
  • Graph Covering and Subgraph Problems
    Graph Covering and Subgraph Problems Gabrovˇsek, Peter and Miheliˇc, Jurij Abstract: Combinatorial optimization prob- For each problem, we first present its for- lems and graph theory play an important role in mal definition and give its hardness of solving. several fields including logistics, artificial intel- Afterward, we also list several exact, heuristic ligence, software engineering, etc. In this pa- and approximation algorithms for solving it. per, we explore a subset of combinatorial graph problems which we placed into two groups, Our survey methodology is as follows. First namely, graph covering and subgraph problems. we investigated definitions in several generic 1 Here, the former include well-known dominat- sources such as online compendiums , encyclo- ing set and vertex cover problem, and the lat- pedias2 and books [1, 13, 14]. Afterward, we ter include clique and independent set prob- searched for the research papers on the focused lem. For each problem we give its definition, graph problems using Google scholar. Our goal report state-of-the-art exact algorithms as well was to supplement each problem with refer- as heuristic and approximation algorithms, and list real-world applications if we were able to ences to exact, heuristics and approximation obtain any. At the end of the paper, we also algorithms. Moreover, we also supplemented relate the problems among each other. our descriptions with real-world applications. Finally, we also collected a list of reductions Index Terms: combinatorial optimization, among the selected problems. graph covering, subgraph problems, exact al- Let us present a few basic notions used in gorithms, approximation algorithms the rest of the paper.
    [Show full text]
  • Finding Optimal Solutions for Covering and Matching Problems
    Finding Optimal Solutions for Covering and Matching Problems Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt dem Rat der Fakult¨at fur¨ Mathematik und Informatik der Friedrich-Schiller-Universit¨at Jena von Dipl.-Inform. Hannes Moser geboren am 18.11.1978 in Munchen¨ Gutachter Prof. Dr. Rolf Niedermeier (Friedrich-Schiller-Universit¨at Jena) • Prof. Dr. Iyad Kanj (DePaul University, Chicago, U.S.A.) • Prof. Dr. Dimitrios Thilikos (National and Kapodistrian University of Athens, • Griechenland) Tag der ¨offentlichen Verteidigung: 17. November 2009 Zusammenfassung Diese Arbeit besch¨aftigt sich mit kombinatorischen Problemen, welche als Verall- gemeinerungen der beiden klassischen Graphprobleme Vertex Cover und Ma- ximum Matching aufgefasst werden k¨onnen. Das Vertex Cover-Problem ist wie folgt definiert. Gegeben ein ungerichteter Graph, finde eine kleinstm¨ogliche Knotenteilmenge, die jede Kante abdeckt“, d.h. dass einer der beiden Endpunkte ” jeder Kante in der Knotenteilmenge liegt. Dieses Problem wird auch oft Kno- ” tenuberdeckungsproblem“¨ genannt. Das Maximum Matching-Problem fragt nach einer gr¨oßtm¨oglichen Kantenteilmenge in einem ungerichteten Graphen, so dass sich die gew¨ahlten Kanten keinen Endpunkt teilen. Dieses Problem sucht also nach einer m¨oglichst großen Anzahl von Knotenpaaren, die durch eine Kante verbunden sind. In bipartiten Graphen wird dieses Problem auch oft Heirats- ” problem“ genannt. Sowohl Vertex Cover als auch Maximum Matching haben eine lange Geschichte; diese Probleme wurden schon in den Anfangsjahren der Informa- tik untersucht und sind immer noch Gegenstand der aktuellen Forschung. Es gibt fur¨ beide Probleme viele Anwendungen, beispielsweise in der Bioinformatik, der Computer-Chemie oder auch in der Verkehrsplanung. Maximum Matching wird in unz¨ahligen Anwendungen als Hilfsroutine zur L¨osung anderer Aufgaben eingesetzt.
    [Show full text]