Fractional Graph Theory a Rational Approach to the Theory of Graphs

Total Page:16

File Type:pdf, Size:1020Kb

Fractional Graph Theory a Rational Approach to the Theory of Graphs Fractional Graph Theory A Rational Approach to the Theory of Graphs Edward R. Scheinerman The Johns Hopkins University Baltimore, Maryland Daniel H. Ullman The George Washington University Washington, DC With a Foreword by Claude Berge Centre National de la Recherche Scientifique Paris, France c 2008 by Edward R. Scheinerman and Daniel H. Ullman. This book was originally published by John Wiley & Sons. The copyright has reverted to the authors. Permission is hereby granted for readers to download, print, and copy this book for free so long as this copyright notice is retained. The PDF file for this book can be found here: http://www.ams.jhu.edu/~ers/fgt To Rachel, Sandy, Danny, Jessica, Naomi, Jonah, and Bobby Contents Foreword vii Preface viii 1 General Theory: Hypergraphs 1 1.1 Hypergraph covering and packing 1 1.2 Fractional covering and packing 2 1.3 Some consequences 4 1.4 A game-theoretic approach 5 1.5 Duality and duality 6 1.6 Asymptotic covering and packing 7 1.7 Exercises 12 1.8 Notes 13 2 Fractional Matching 14 2.1 Introduction 14 2.2 Results on maximum fractional matchings 17 2.3 Fractionally Hamiltonian graphs 21 2.4 Computational complexity 26 2.5 Exercises 27 2.6 Notes 28 3 Fractional Coloring 30 3.1 Definitions 30 3.2 Homomorphisms and the Kneser graphs 31 3.3 The duality gap 34 3.4 Graph products 38 3.5 The asymptotic chromatic and clique numbers 41 3.6 The fractional chromatic number of the plane 43 3.7 The Erd˝os-Faber-Lov´asz conjecture 49 3.8 List coloring 51 3.9 Computational complexity 53 3.10 Exercises 54 3.11 Notes 56 iv Contents v 4 Fractional Edge Coloring 57 4.1 Introduction 57 4.2 An exact formula 58 4.3 The matching polytope 59 4.4 Proof and consequences 61 4.5 Computational complexity 63 4.6 Fractional total chromatic number 63 4.7 Exercises 70 4.8 Notes 71 5 Fractional Arboricity and Matroid Methods 72 5.1 Arboricity and maximum average degree 72 5.2 Matroid theoretic tools 73 5.3 Matroid partitioning 77 5.4 Arboricity again 81 5.5 Maximum average degree again 84 5.6 Duality, duality, duality, and edge toughness 85 5.7 Exercises 90 5.8 Notes 91 6 Fractional Isomorphism 93 6.1 Relaxing isomorphism 93 6.2 Linear algebra tools 96 6.3 Equitable partitions 100 6.4 Iterated degree sequences 101 6.5 The main theorem 102 6.6 Other relaxations of isomorphism 105 6.7 Exercises 108 6.8 Notes 110 7 Fractional Odds and Ends 111 7.1 Fractional topological graph theory 111 7.2 Fractional cycle double covers 113 7.3 Fractional Ramsey theory 114 7.4 Fractional domination 116 7.5 Fractional intersection number 121 7.6 Fractional dimension of a poset 125 7.7 Sperner’s theorem: a fractional perspective 127 7.8 Exercises 128 7.9 Notes 129 vi Contents A Background 131 A.1 Basic graph theory and notation 131 A.2 Hypergraphs, multigraphs, multisets, fuzzy sets 134 A.3 Linear programming 134 A.4 The subadditivity lemma 137 A.5 Exercises 138 A.6 Notes 138 Bibliography 139 Author Index 148 Subject Index 152 Foreword Graph theory is one of the branches of modern mathematics having experienced a most impressive development in recent years. In the beginning, Graph Theory was only a collection of recreational or challenging problems like Euler tours or the four coloring of a map, with no clear connection among them, or among techniques used to attach them. The aim was to get a “yes” or “no” answer to simple existence questions. Under the impulse of Game Theory, Management Sciences, and Transportation Network Theory, the main concern shifted to the maximum size of entities attached to a graph. For instance, instead of establishing the existence of a 1-factor, as did Petersen and also K¨onig (whose famous theorem on bipartite graphs was discovered 20 years earlier by Steinitz in his dissertation in Breslau), the main problem was now to study the maximum number of edges in a matching, even if not a 1-factor or “perfect matching”. In this book, Scheinerman and Ullman present the next step of this evolution: Fractional Graph Theory. Fractional matchings, for instance, belong to this new facet of an old subject, a facet full of elegant results. By developing the fractional idea, the purpose of the authors is multiple: first, to enlarge the scope of applications in Scheduling, in Operations Research, or in various kinds of assignment problems; second, to simplify. The fractional version of a theorem is frequently easier to prove than the classical one, and a bound for a “fractional” coefficient of the graph is also a bound for the classical coefficient (or suggests a conjecture). A striking example is the simple and famous theorem of Vizing about the edge-chromatic number of a graph; no similar result is known for the edge- chromatic number of a hypergraph, but the reader will find in this book an analogous statement for the “fractional” edge-chromatic number which is a theorem. The conjecture of Vizing and Behzad about the total chromatic number becomes in its fractional version an elegant theorem. This book will draw the attention of the combinatorialists to a wealth of new problems and conjectures. The presentation is made accessible to students, who could find a clear exposition of the background material and a stimulating collection of exercises. And, above all, the pleasure afforded by these pages will contribute to making Combinatorics more appealing to many. Claude Berge Paris, France vii Preface Graphs model a wide variety of natural phenomena, and it is the study of these phenomena that gives rise to many of the questions asked by pure graph theorists. For example, one motivation for the study of the chromatic number in graph theory is the well-known connection to scheduling problems. Suppose that an assortment of committees needs to be scheduled, each for a total of one hour. Certain pairs of committees, because they have a member in common, cannot meet at the same time. What is the length of the shortest time interval in which all the committees can be scheduled? Let G be the graph whose vertices are these committees, with an edge between two committees if they cannot meet at the same time. The standard answer to the scheduling question is that the length of the shortest time interval is the chromatic number of G. As an illustration, suppose that there are 5 committees, with scheduling conflicts given by the graph in Figure A. Since G can be 1 5 2 4 3 Figure A: The graph C5, colored with three colors. colored with 3 colors, the scheduling can be done in 3 hours, as is illustrated in Figure B. It is a widely held misconception that, since the chromatic number of G is 3, the schedule in Figure B cannot be improved. In fact, the 5 committees can be scheduled in two-and-a-half hours, as is illustrated in Figure C. All that is required is a willingness to allow one committee to meet for half an hour, to interrupt their meeting for a time, and later to reconvene for the remaining half hour. All that is required is a willingness to break one whole hour into fractions of an hour—to break a discrete unit into fractional parts. The minimum length of time needed to schedule committees when interruptions are permitted is not the chromatic number of G but the less well-known fractional chromatic number of G. This example illustrates the theme of this book, which is to uncover the rational side of graph theory: How can integer-valued graph theory concepts be modified so they take on nonintegral values? This “fractionalization” bug has infected other parts of mathematics. Perhaps the best- known example is the fractionalization of the factorial function to give the gamma function. Fractal geometry recognizes objects whose dimension is not a whole number [126]. And analysts consider fractional derivatives [132]. Some even think about fractional partial derivatives! We are not the first to coin the term fractional graph theory; indeed, this is not the first book viii Preface ix 12345 12:00 1:00 2:00 3:00 Figure B: A schedule for the five committees. 12345 12:00 1:00 2:00 3:00 Figure C: An improved schedule for the five committees. on this subject. In the course of writing this book we found that Claude Berge wrote a short monograph [16] on this very subject. Berge’s Fractional Graph Theory is based on his lectures delivered at the Indian Statistical Institute twenty years ago. Berge includes a treatment of the fractional matching number and the fractional edge chromatic number.1 Two decades have seen a great deal of development in the field of fractional graph theory and the time is ripe for a new overview. Rationalization We have two principal methods to convert graph concepts from integer to fractional. The first is to formulate the concepts as integer programs and then to consider the linear programming relaxation (see §A.3). The second is to make use of the subadditivity lemma (Lemma A.4.1 on page 137). It is very pleasing that these two approaches typically yield the same results. Nearly every integer-valued invariant encountered in a first course in graph theory gives rise to a fractional analogue. Most of the fractional definitions in this book can be obtained from their integer-valued coun- terparts by replacing the notion of a set with the more generous notion of a “fuzzy” set [190].
Recommended publications
  • The Maximum Number of Cliques in a Graph Embedded in a Surface
    ON THE MAXIMUM NUMBER OF CLIQUES IN A GRAPH EMBEDDED IN A SURFACE VIDA DUJMOVIC,´ GASPERˇ FIJAVZ,ˇ GWENAEL¨ JORET, THOM SULANKE, AND DAVID R. WOOD Abstract. This paper studies the following question: Given a surface Σ and an integer n, what is the maximum number of cliques in an n-vertex graph embeddable in Σ? We characterise the extremal ! 5 ! ! graphs for this question, and prove that the answer is between 8(n − !) + 2 and 8n + 2 2 + o(2 ), where ! is the maximum integer such that the complete graph K! embeds in Σ. For the surfaces S0, S1, S2, N1, N2, N3 and N4 we establish an exact answer. MSC Classification: 05C10 (topological graph theory), 05C35 (extremal problems) 1. Introduction A clique in a graph1 is a set of pairwise adjacent vertices. Let c(G) be the number of cliques in a n graph G. For example, every set of vertices in the complete graph Kn is a clique, and c(Kn) = 2 . This paper studies the following question at the intersection of topological and extremal graph theory: Given a surface Σ and an integer n, what is the maximum number of cliques in an n-vertex graph embeddable in Σ? For previous bounds on the maximum number of cliques in certain graph families see [5,6, 13, 14, 22, 23] for example. For background on graphs embedded in surfaces see [11, 21]. Every surface is homeomorphic to Sg, the orientable surface with g handles, or to Nh, the non-orientable surface with h crosscaps. The Euler characteristic of Sg is 2 − 2g.
    [Show full text]
  • The Determining Number of Kneser Graphs José Cáceres, Delia Garijo, Antonio González, Alberto Márquez, Marıa Luz Puertas
    The determining number of Kneser graphs José Cáceres, Delia Garijo, Antonio González, Alberto Márquez, Marıa Luz Puertas To cite this version: José Cáceres, Delia Garijo, Antonio González, Alberto Márquez, Marıa Luz Puertas. The determining number of Kneser graphs. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2013, Vol. 15 no. 1 (1), pp.1–14. hal-00990602 HAL Id: hal-00990602 https://hal.inria.fr/hal-00990602 Submitted on 13 May 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Discrete Mathematics and Theoretical Computer Science DMTCS vol. 15:1, 2013, 1–14 The determining number of Kneser graphsy Jose´ Caceres´ 1z Delia Garijo2x Antonio Gonzalez´ 2{ Alberto Marquez´ 2k Mar´ıa Luz Puertas1∗∗ 1 Department of Statistics and Applied Mathematics, University of Almeria, Spain. 2 Department of Applied Mathematics I, University of Seville, Spain. received 21st December 2011, revised 19th December 2012, accepted 19th December 2012. A set of vertices S is a determining set of a graph G if every automorphism of G is uniquely determined by its action on S. The determining number of G is the minimum cardinality of a determining set of G.
    [Show full text]
  • Rounding Algorithms for Covering Problems
    Mathematical Programming 80 (1998) 63 89 Rounding algorithms for covering problems Dimitris Bertsimas a,,,1, Rakesh Vohra b,2 a Massachusetts Institute of Technology, Sloan School of Management, 50 Memorial Drive, Cambridge, MA 02142-1347, USA b Department of Management Science, Ohio State University, Ohio, USA Received 1 February 1994; received in revised form 1 January 1996 Abstract In the last 25 years approximation algorithms for discrete optimization problems have been in the center of research in the fields of mathematical programming and computer science. Re- cent results from computer science have identified barriers to the degree of approximability of discrete optimization problems unless P -- NP. As a result, as far as negative results are con- cerned a unifying picture is emerging. On the other hand, as far as particular approximation algorithms for different problems are concerned, the picture is not very clear. Different algo- rithms work for different problems and the insights gained from a successful analysis of a par- ticular problem rarely transfer to another. Our goal in this paper is to present a framework for the approximation of a class of integer programming problems (covering problems) through generic heuristics all based on rounding (deterministic using primal and dual information or randomized but with nonlinear rounding functions) of the optimal solution of a linear programming (LP) relaxation. We apply these generic heuristics to obtain in a systematic way many known as well as new results for the set covering, facility location, general covering, network design and cut covering problems. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.
    [Show full text]
  • Partial Duality and Closed 2-Cell Embeddings
    Partial duality and closed 2-cell embeddings To Adrian Bondy on his 70th birthday M. N. Ellingham1;3 Department of Mathematics, 1326 Stevenson Center Vanderbilt University, Nashville, Tennessee 37240, U.S.A. [email protected] Xiaoya Zha2;3 Department of Mathematical Sciences, Box 34 Middle Tennessee State University Murfreesboro, Tennessee 37132, U.S.A. [email protected] April 28, 2016; to appear in Journal of Combinatorics Abstract In 2009 Chmutov introduced the idea of partial duality for embeddings of graphs in surfaces. We discuss some alternative descriptions of partial duality, which demonstrate the symmetry between vertices and faces. One is in terms of band decompositions, and the other is in terms of the gem (graph-encoded map) representation of an embedding. We then use these to investigate when a partial dual is a closed 2-cell embedding, in which every face is bounded by a cycle in the graph. We obtain a necessary and sufficient condition for a partial dual to be closed 2-cell, and also a sufficient condition for no partial dual to be closed 2-cell. 1 Introduction In this paper a surface Σ means a connected compact 2-manifold without boundary. By an open or closed disk in Σ we mean a subset of the surface homeomorphic to such a subset of R2. By a simple closed curve or circle in Σ we mean an image of a circle in R2 under a continuous injective map; a simple arc is a similar image of [0; 1]. The closure of a set S is denoted S, and the boundary is denoted @S.
    [Show full text]
  • Strongly Regular and Pseudo Geometric Graphs
    Strongly regular and pseudo geometric graphs M. Mitjana 1;2 Departament de Matem`atica Aplicada I Universitat Polit`ecnica de Catalunya Barcelona, Spain E. Bendito, A.´ Carmona, A. M. Encinas 1;3 Departament de Matem`atica Aplicada III Universitat Polit`ecnica de Catalunya Barcelona, Spain Abstract Very often, strongly regular graphs appear associated with partial geometries. The point graph of a partial geometry is the graph whose vertices are the points of the geometry and adjacency is defined by collinearity. It is well known that the point graph associated to a partial geometry is a strongly regular graph and, in this case, the strongly regular graph is named geometric. When the parameters of a strongly regular graph, Γ, satisfy the relations of a geometric graph, then Γ is named a pseudo geometric graph. Moreover, it is known that not every pseudo geometric graph is geometric. In this work, we characterize strongly regular graphs that are pseudo geometric and we analyze when the complement of a pseudo geometric graph is also pseudo geometric. Keywords: Strongly regular graph, partial geometry, pseudo geometric graph. 1 Strongly regular graphs A strongly regular graph with parameters (n; k; λ, µ) is a graph on n vertices which is regular of degree k, any two adjacent vertices have exactly λ common neighbours and two non{adjacent vertices have exactly µ common neighbours. We recall that antipodal strongly regular graphs are characterized by sat- isfying µ = k, or equivalently λ = 2k − n, which in particular implies that 2k ≥ n. In addition, any bipartite strongly regular graph is antipodal and it is characterized by satisfying µ = k and n = 2k.
    [Show full text]
  • Strongly Regular Graphs
    Chapter 4 Strongly Regular Graphs 4.1 Parameters and Properties Recall that a (simple, undirected) graph is regular if all of its vertices have the same degree. This is a strong property for a graph to have, and it can be recognized easily from the adjacency matrix, since it means that all row sums are equal, and that1 is an eigenvector. If a graphG of ordern is regular of degreek, it means that kn must be even, since this is twice the number of edges inG. Ifk�n− 1 and kn is even, then there does exist a graph of ordern that is regular of degreek (showing that this is true is an exercise worth thinking about). Regularity is a strong property for a graph to have, and it implies a kind of symmetry, but there are examples of regular graphs that are not particularly “symmetric”, such as the disjoint union of two cycles of different lengths, or the connected example below. Various properties of graphs that are stronger than regularity can be considered, one of the most interesting of which is strong regularity. Definition 4.1.1. A graphG of ordern is called strongly regular with parameters(n,k,λ,µ) if every vertex ofG has degreek; • ifu andv are adjacent vertices ofG, then the number of common neighbours ofu andv isλ (every • edge belongs toλ triangles); ifu andv are non-adjacent vertices ofG, then the number of common neighbours ofu andv isµ; • 1 k<n−1 (so the complete graph and the null graph ofn vertices are not considered to be • � strongly regular).
    [Show full text]
  • Structural Graph Theory Meets Algorithms: Covering And
    Structural Graph Theory Meets Algorithms: Covering and Connectivity Problems in Graphs Saeed Akhoondian Amiri Fakult¨atIV { Elektrotechnik und Informatik der Technischen Universit¨atBerlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften Dr. rer. nat. genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. Rolf Niedermeier Gutachter: Prof. Dr. Stephan Kreutzer Gutachter: Prof. Dr. Marcin Pilipczuk Gutachter: Prof. Dr. Dimitrios Thilikos Tag der wissenschaftlichen Aussprache: 13. October 2017 Berlin 2017 2 This thesis is dedicated to my family, especially to my beautiful wife Atefe and my lovely son Shervin. 3 Contents Abstract iii Acknowledgementsv I. Introduction and Preliminaries1 1. Introduction2 1.0.1. General Techniques and Models......................3 1.1. Covering Problems.................................6 1.1.1. Covering Problems in Distributed Models: Case of Dominating Sets.6 1.1.2. Covering Problems in Directed Graphs: Finding Similar Patterns, the Case of Erd}os-P´osaproperty.......................9 1.2. Routing Problems in Directed Graphs...................... 11 1.2.1. Routing Problems............................. 11 1.2.2. Rerouting Problems............................ 12 1.3. Structure of the Thesis and Declaration of Authorship............. 14 2. Preliminaries and Notations 16 2.1. Basic Notations and Defnitions.......................... 16 2.1.1. Sets..................................... 16 2.1.2. Graphs................................... 16 2.2. Complexity Classes................................
    [Show full text]
  • On Computing Longest Paths in Small Graph Classes
    On Computing Longest Paths in Small Graph Classes Ryuhei Uehara∗ Yushi Uno† July 28, 2005 Abstract The longest path problem is to find a longest path in a given graph. While the graph classes in which the Hamiltonian path problem can be solved efficiently are widely investigated, few graph classes are known to be solved efficiently for the longest path problem. For a tree, a simple linear time algorithm for the longest path problem is known. We first generalize the algorithm, and show that the longest path problem can be solved efficiently for weighted trees, block graphs, and cacti. We next show that the longest path problem can be solved efficiently on some graph classes that have natural interval representations. Keywords: efficient algorithms, graph classes, longest path problem. 1 Introduction The Hamiltonian path problem is one of the most well known NP-hard problem, and there are numerous applications of the problems [17]. For such an intractable problem, there are two major approaches; approximation algorithms [20, 2, 35] and algorithms with parameterized complexity analyses [15]. In both approaches, we have to change the decision problem to the optimization problem. Therefore the longest path problem is one of the basic problems from the viewpoint of combinatorial optimization. From the practical point of view, it is also very natural approach to try to find a longest path in a given graph, even if it does not have a Hamiltonian path. However, finding a longest path seems to be more difficult than determining whether the given graph has a Hamiltonian path or not.
    [Show full text]
  • 3.1 Matchings and Factors: Matchings and Covers
    1 3.1 Matchings and Factors: Matchings and Covers This copyrighted material is taken from Introduction to Graph Theory, 2nd Ed., by Doug West; and is not for further distribution beyond this course. These slides will be stored in a limited-access location on an IIT server and are not for distribution or use beyond Math 454/553. 2 Matchings 3.1.1 Definition A matching in a graph G is a set of non-loop edges with no shared endpoints. The vertices incident to the edges of a matching M are saturated by M (M-saturated); the others are unsaturated (M-unsaturated). A perfect matching in a graph is a matching that saturates every vertex. perfect matching M-unsaturated M-saturated M Contains copyrighted material from Introduction to Graph Theory by Doug West, 2nd Ed. Not for distribution beyond IIT’s Math 454/553. 3 Perfect Matchings in Complete Bipartite Graphs a 1 The perfect matchings in a complete b 2 X,Y-bigraph with |X|=|Y| exactly c 3 correspond to the bijections d 4 f: X -> Y e 5 Therefore Kn,n has n! perfect f 6 matchings. g 7 Kn,n The complete graph Kn has a perfect matching iff… Contains copyrighted material from Introduction to Graph Theory by Doug West, 2nd Ed. Not for distribution beyond IIT’s Math 454/553. 4 Perfect Matchings in Complete Graphs The complete graph Kn has a perfect matching iff n is even. So instead of Kn consider K2n. We count the perfect matchings in K2n by: (1) Selecting a vertex v (e.g., with the highest label) one choice u v (2) Selecting a vertex u to match to v K2n-2 2n-1 choices (3) Selecting a perfect matching on the rest of the vertices.
    [Show full text]
  • Tight Lower Bounds for the Complexity of Multicoloring∗†
    Tight Lower Bounds for the Complexity of Multicoloring∗† Marthe Bonamy1, Łukasz Kowalik2, Michał Pilipczuk3, Arkadiusz Socała4, and Marcin Wrochna5 1 CNRS, LaBRI, Bordeaux, France [email protected] 2 University of Warsaw, Warsaw, Poland [email protected] 3 University of Warsaw, Warsaw, Poland [email protected] 4 University of Warsaw, Warsaw, Poland [email protected] 5 University of Warsaw, Warsaw, Poland [email protected] Abstract In ¢the multicoloring problem, also known as (a:b)-coloring or b-fold coloring, we are given a graph G and a set of a colors, and the task is to assign a subset of b colors to each vertex of G so that adjacent vertices receive disjoint color subsets. This natural generalization of the classic coloring problem (the b = 1 case) is equivalent to finding a homomorphism to the Kneser graph KGa,b, and gives relaxations approaching the fractional chromatic number. We study the complexity of determining whether a graph has an (a:b)-coloring. Our main result is that this problem does not admit an algorithm with running time f(b)·2o(log b)·n, for any computable f(b), unless the Exponential Time Hypothesis (ETH) fails. A (b + 1)n · poly(n)-time algorithm due to Nederlof [2008] shows that this is tight. A direct corollary of our result is that the graph homomorphism problem does not admit a 2O(n+h) algorithm unless ETH fails, even if the target graph is required to be a Kneser graph. This refines the understanding given by the recent lower bound of Cygan et al.
    [Show full text]
  • Vertex Deletion Problems on Chordal Graphs∗†
    Vertex Deletion Problems on Chordal Graphs∗† Yixin Cao1, Yuping Ke2, Yota Otachi3, and Jie You4 1 Department of Computing, Hong Kong Polytechnic University, Hong Kong, China [email protected] 2 Department of Computing, Hong Kong Polytechnic University, Hong Kong, China [email protected] 3 Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan [email protected] 4 School of Information Science and Engineering, Central South University and Department of Computing, Hong Kong Polytechnic University, Hong Kong, China [email protected] Abstract Containing many classic optimization problems, the family of vertex deletion problems has an important position in algorithm and complexity study. The celebrated result of Lewis and Yan- nakakis gives a complete dichotomy of their complexity. It however has nothing to say about the case when the input graph is also special. This paper initiates a systematic study of vertex deletion problems from one subclass of chordal graphs to another. We give polynomial-time algorithms or proofs of NP-completeness for most of the problems. In particular, we show that the vertex deletion problem from chordal graphs to interval graphs is NP-complete. 1998 ACM Subject Classification F.2.2 Analysis of Algorithms and Problem Complexity, G.2.2 Graph Theory Keywords and phrases vertex deletion problem, maximum subgraph, chordal graph, (unit) in- terval graph, split graph, hereditary property, NP-complete, polynomial-time algorithm Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2017.22 1 Introduction Generally speaking, a vertex deletion problem asks to transform an input graph to a graph in a certain class by deleting a minimum number of vertices.
    [Show full text]
  • Introducing Subclasses of Basic Chordal Graphs
    Introducing subclasses of basic chordal graphs Pablo De Caria 1 Marisa Gutierrez 2 CONICET/ Universidad Nacional de La Plata, Argentina Abstract Basic chordal graphs arose when comparing clique trees of chordal graphs and compatible trees of dually chordal graphs. They were defined as those chordal graphs whose clique trees are exactly the compatible trees of its clique graph. In this work, we consider some subclasses of basic chordal graphs, like hereditary basic chordal graphs, basic DV and basic RDV graphs, we characterize them and we find some other properties they have, mostly involving clique graphs. Keywords: Chordal graph, dually chordal graph, clique tree, compatible tree. 1 Introduction 1.1 Definitions For a graph G, V (G) is the set of its vertices and E(G) is the set of its edges. A clique is a maximal set of pairwise adjacent vertices. The family of cliques of G is denoted by C(G). For v ∈ V (G), Cv will denote the family of cliques containing v. All graphs considered will be assumed to be connected. A set S ⊆ V (G) is a uv-separator if vertices u and v are in different connected components of G−S. It is minimal if no proper subset of S has the 1 Email: [email protected] aaURL: www.mate.unlp.edu.ar/~pdecaria 2 Email: [email protected] same property. S is a minimal vertex separator if there exist two nonadjacent vertices u and v such that S is a minimal uv-separator. S(G) will denote the family of all minimal vertex separators of G.
    [Show full text]