(12) Patent Application Publication (10) Pub. No.: US 2015/0209377 A1 Lin Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2015/0209377 A1 Lin Et Al US 20150209377A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0209377 A1 Lin et al. (43) Pub. Date: Jul. 30, 2015 (54) USE OF NOVEL MONOSACCHARIDE-LIKE filed on Sep. 13, 2014, provisional application No. GLYCYLATED SUGAR ALCOHOL 62/054,981, filed on Sep. 25, 2014. COMPOSITIONS FOR DESIGNING AND DEVELOPNG ANT-DABETC DRUGS Publication Classification (71) Applicants: Shi-Lung Lin, Arcadia, CA (US); (51) Int. Cl. Samantha Chang-Lin, Arcadia, CA A613 L/702 (2006.01) (US); Yi-Wen Lin, Arcadia, CA (US); A63L/22 (2006.01) Donald Chang, Arcadia, CA (US) (52) U.S. Cl. CPC ........... A6 IK3I/7012 (2013.01); A61 K3I/221 (72) Inventors: Shi-Lung Lin, Arcadia, CA (US); (2013.01) Samantha Chang-Lin, Arcadia, CA (US); Yi-Wen Lin, Santa Fe Spring, CA (57) ABSTRACT (US); Donald Chang, Cerritos, CA (US) This invention is related to a novel Sugar-like chemical com position and its use for diabetes therapy. Particularly, the (73) Assignees: Shi-Lung Lin, Arcadia, CA (US); present invention teaches the use of monosaccharide-like gly Samantha Chang-Lin, Arcadia, CA cylated Sugar alcohol compounds to block or reduce Sugar (US); Yi-Wen Lin, Arcadia, CA (US); absorption in diabetes patients, so as to prevent the risk of Donald Chang, Arcadia, CA (US) hyperglycemia symptoms. Glycylation of Sugar alcohols is a totally novel reaction that has never been reported before. (21) Appl. No.: 14/585,978 Therefore, the novelty of the present invention is that for the first time glycylated Sugar alcohols not only was found but (22) Filed: Dec. 30, 2014 also was found to be useful for treating Diabetes mellitus. In addition, the present invention teaches a method for produc Related U.S. Application Data ing these glycylated Sugar alcohols. In Sum, the present inven tion includes not only a kind of novel Sugar-like chemical (63) Continuation-in-part of application No. 14/457.829, compositions and its use for treating diabetes but also a state filed on Aug. 12, 2014. of-the-art protocol and methodology for producing Such a (60) Provisional application No. 61/931,650, filed on Jan. novel composition via glycylation of Sugars and Sugar alco 26, 2014, provisional application No. 62/050,107, hols. Patent Application Publication Jul. 30, 2015 Sheet 1 of 6 US 2015/0209377 A1 F.G. 1 Sample Nanne injection Waturne: 50, Wai Number Channed UV VS : Sangie type: Wavelength 26 Control Program, miR302.3x6mi-fows 20min ByTime Bandwidth: 3. Quantif Method Default 2. C. Processing fiftition acior 1880 Recording line: Sf2020A: Sample Weight 1,300 Run Tine (min); 9.8 Sanpie Annotint 18000 BW WS 1 WWL-260 min: m Peak Nare height Area ReArea. Anot At Ain % 2, 3 ra. DGGf GG 3.25 O339 2.78 4.25 3. MGG 2,225 22 82a 5431 88C 300 800 Patent Application Publication Jul. 30, 2015 Sheet 2 of 6 US 2015/0209377 A1 FIG. 2A glycerol (glycerin) glycine / Ya n "st- C-C 1-monoglycylglycerin (1-MGG) Of t c aw to-CKC-O-C C kits 3-monoglycylglycerin (3-MGG) Of C f cf. -e-q's* N 2-monoglycylglycero (2-MGG) Patent Application Publication Jul. 30, 2015 Sheet 3 of 6 US 2015/0209377 A1 FG. 2B glycerol (glycerin) glycine th C. ?h c. + n x -ca-C, th (n - 2 or 3) Glycylation of Sugar Alcohols (i.e. glycerol) t c re * \t -o-Cl ch:-0-C C is diglycylglycerol (DGG) Of FG. 2C t -- M Cix M triglycylglyceride dCast (TGG)TGG g: a’ c C o Nig-- Patent Application Publication Jul. 30, 2015 Sheet 4 of 6 US 2015/0209377 A1 Patent Application Publication Jul. 30, 2015 Sheet 5 of 6 US 2015/0209377 A1 s O O. O. 3 f f t s an S (p/au) Soon pools Patent Application Publication Jul. 30, 2015 Sheet 6 of 6 US 2015/0209377 A1 shas se o O O O if o f O tr ef ey ra N an in (ue?) Augie/W Apog US 2015/0209377 A1 Jul. 30, 2015 USE OF NOVEL MONOSACCHARDE-LIKE may not be treated with insulin, depending on the pathologi GLYCYLATED SUGAR ALCOHOL cal causes of insulin resistance. COMPOSITIONS FOR DESIGNING AND 0004 Current medications for type-II DM can be catego DEVELOPING ANT-DABETC DRUGS rized into five groups: first, drugs increase insulin production in pancreas. Such as Sulfonylureas, Meglitinides and Stita PRIORITY gliptin; second, drugs decrease Sugar production in liver, Such 0001. The present invention claims priority to the U.S. as Metformin; third, drugs increase Sugar excretion via urine, Provisional Application Ser. No. 61/931,650 filed on Jan. 26, Such as Canagliflozin, forth, drugs reduce insulin resistance 2014, which was entitled “Composition and Formulation of in fat tissues and muscles, such as Thiazolidinediones; and Sugar Alcohol-Based Complexes for Delivering Nucleic last, drugs delay and/or reduce Sugar absorption in intestines, Acid-Based Drugs. In Vitro and InVivo”. The present inven Such as alpha-glucosidase inhibitors. However, due to the tion also claims priority to the U.S. Provisional Application kinetic properties of these drugs directed against certain natu Ser. No. 62/050,107 filed on Sep. 13, 2014, which was ral metabolic pathways of the body, they often present various entitled “Novel Monosaccharide-like Glycylated Sugar Alco degrees of side effects, including hypoglycemia (Sulfony hol Compositions useful for Diabetes Therapy'. The present lureas, Meglitinides, Stitagliptin and alpha-glucosidase invention further claims priority to the U.S. patent application inhibitors), kidney failure (Metformin and Canagliflozin), Ser. No. 14/457,829 filed on Aug. 12, 2014, entitled “Novel heart failure (Metformin and Thiazolidinediones), gas Sugar Alcohol-Based Compositions for Delivering Nucleic trointestinal problems (Metformin and alpha-glucosidase Acid-Based Drugs. In Vivo and In Vitro’. The present appli inhibitors), edema and anemia (Thiazolidinediones). In some cation is a continuation-in-part (CIP) application of the U.S. worst cases, death has been reported. patent application Ser. No. 14/457,829 filed on Aug. 12, 2014, 0005 To prevent the lethal problems of kidney and heart entitled “Novel Sugar Alcohol-Based Compositions for failure, the best way of treating type-II diabetes is to delay and Delivering Nucleic Acid-Based Drugs In Vivo and In Vitro'. reduce Sugar absorption in intestines; yet, without losing the which are hereby all incorporated by reference as if fully set Supply of energy. The current anti-diabetic drugs of this kind forth herein. Such as alpha-glucosidase inhibitors function through inhibi tion of intestinal enzymes that convert carbohydrates into FIELD OF INVENTION monosaccharides and hence can block Sugar uptake in intes 0002 This invention generally relates to a novel sugar-like tines. Nevertheless, the undigested carbohydrates may then chemical composition and its use for diabetes therapy. Par interact with colon bacteria to cause gastrointestinal prob ticularly, the present invention teaches the use of monosac lems, such as flatulence and diarrhea. From the beneficial charide-like modified Sugar alcohol compositions to replace view, this side effect may help to reduce obesity; yet, the Sugars for absorption in patients, so as to treat diabetes mel drawback is that blocking Sugar uptake also means loss of litus. In order to mimic monosaccharides, these novel Sugar energy Supply to the body. As a result, overdose of alpha alcohol compositions are modified by a reaction called gly glucosidase inhibitors can lead to acute hypoglycemia in cylation and turned into glycylated Sugar alcohols. As a result, diabetes patients. the novelty of the present invention is to use these glycylated 0006 Recently, it is further noted that the use of sugars and Sugar alcohols for reducing the Sugar uptake in human intes Sugar Substitutes such as artificial Sweeteners may worsen the tines, Subsequently preventing the hyperglycemia symptoms Sugar intolerance conditions of Diabetes mellitus in patients of diabetes patients after meals. In addition, the present inven (Suez et al., (2014) Nature in press, doi:10.1038/na tion teaches for the first time that chemical compounds like ture13793). Sugar alcohols and Sugars can be modified by glycylation to 0007. In sum, there is currently no safe drug agent or sugar reduce their pathological effects in diabetes. Therefore, the substitute that can treat type-II DM while still maintaining the present invention includes not only a kind of novel Sugar-like Supply of normal body energy. Therefore, it is highly desir chemical compositions and its use for treating diabetes but able to have a novel anti-diabetic composition that is able not also a state-of-the-art protocol and methodology for produc only to reduce Sugar absorption in intestines but also to pro ing Such a novel composition via glycylation. vide an alternative energy source to the body. BACKGROUND SUMMARY OF THE INVENTION 0003 Diabetes mellitus (DM), also known as diabetes, is a group of metabolic diseases that cause long-lasting hyperg 0008 Stem cells are treasure boxes containing various lycemia symptoms in humans as well as Some other mam effective ingredients useful for designing and developing cos mals, such as mice. These hyperglycemia symptoms include medical, pharmaceutical and therapeutic drugs and/or appli high blood Sugar levels (i.e. >140 mg/dL), frequenturination, cations, including, but not limited by, inducing and enhancing increased thirst and hunger, and more severely diabetic body cell/tissue/organ regeneration, repairing/healing dam ketoacidosis and hyperosmolar coma. Long-term hypergly aged tissues and organs, rejuvenating aged cells/tissues?or cemia often leads to heart diseases, stroke, kidney failure, gans, treating degenerative diseases (i.e. cancers, diabetes, ulcers in extremities, eye damages and obesity. There are two osteoporosis, Parkinson's and Alzheimer's diseases ..
Recommended publications
  • Postulated Physiological Roles of the Seven-Carbon Sugars, Mannoheptulose, and Perseitol in Avocado
    J. AMER. SOC. HORT. SCI. 127(1):108–114. 2002. Postulated Physiological Roles of the Seven-carbon Sugars, Mannoheptulose, and Perseitol in Avocado Xuan Liu,1 James Sievert, Mary Lu Arpaia, and Monica A. Madore2 Department of Botany and Plant Sciences, University of California, Riverside, CA 92521 ADDITIONAL INDEX WORDS. ‘Hass’ avocado on ‘Duke 7’ rootstock, phloem transport, ripening, Lauraceae ABSTRACT. Avocado (Persea americana Mill.) tissues contain high levels of the seven-carbon (C7) ketosugar mannoheptulose and its polyol form, perseitol. Radiolabeling of intact leaves of ‘Hass’ avocado on ‘Duke 7’ rootstock indicated that both perseitol and mannoheptulose are not only primary products of photosynthetic CO2 fixation but are also exported in the phloem. In cell-free extracts from mature source leaves, formation of the C7 backbone occurred by condensation of a three-carbon metabolite (dihydroxyacetone-P) with a four-carbon metabolite (erythrose-4-P) to form sedoheptulose-1,7- bis-P, followed by isomerization to a phosphorylated D-mannoheptulose derivative. A transketolase reaction was also observed which converted five-carbon metabolites (ribose-5-P and xylulose-5-P) to form the C7 metabolite, sedoheptu- lose-7-P, but this compound was not metabolized further to mannoheptulose. This suggests that C7 sugars are formed from the Calvin Cycle, not oxidative pentose phosphate pathway, reactions in avocado leaves. In avocado fruit, C7 sugars were present in substantial quantities and the normal ripening processes (fruit softening, ethylene production, and climacteric respiration rise), which occurs several days after the fruit is picked, did not occur until levels of C7 sugars dropped below an apparent threshold concentration of ≈20 mg·g–1 fresh weight.
    [Show full text]
  • United States Patent 1191 Lll] 3,983,266 Bahls [451 Sept
    United States Patent 1191 lll] 3,983,266 Bahls [451 Sept. 28, 1976 [54] METHOD FOR APPLYING METALLIC 3.776.740 [2/1973 Sivcrz ct al. .......................... .. l06/l SILVER TO A SUBSTRATE OTHER PUBLICATIONS [75] Inventor: Harry Bahls, Wayne, Pa. lvanov et al., Chem. Abs. 43:2548c, I949, [73] Assignee: Peacock Laboratories, Inc., Philadelphia, Pa. Primary Examiner-Ralph S. Kendall [22] Filed: Oct. 9, I974 I 57] ABSTRACT [2!] ,Appl. No.: 513,417 High efficiency deposition of silver on the surface of a substrate is obtained by providing a solution contain [52] [1.8. CI ............................... .. 427/164; 427/165; ing reducible dissolved silver in the presence of an al 427/168; 427/424; 427/426; l06/l kali metal hydroxide and ammonia, all of which are [51] Int. CLZ. ......................................... .. C23C 3/02 applied to the substrate in the presence of an aqueous [58] Field of Search .............. .. l06/l; 427/l68. I69, solution of a moderating reducer containing :1 poly 427/165, I64, 426, 304, 125, 425 hydric alcohol of the formula CH2OH(CHOH),,C H,OH, where n is an integer from 1 to 6. Preferably [56] References Cited the polyhydric alcohol is sorbitol, and in a preferred UNITED STATES PATENTS embodiment a moderator is the form of a thio glycerol is present. 2,996,406 8/l96l Weinrich ........... ............ .. 427/168 3,772,078 ll/l973 Polichcttc ct al ................. .. l06/l X l5 Claims, No Drawings 3,983,266 1 Other objects and advantages of this invention, in METHOD FOR APPLYING METALLIC SILVER TO cluding the economy of the same, and the case with A SUBSTRATE which it may be applied to existing silver coating equip ment and apparatus, will further become apparent BRIEF SUMMARY OF THE INVENTION 5 hereinafter.
    [Show full text]
  • Low Molecular Weight Organic Composition of Ethanol Stillage from Sugarcane Molasses, Citrus Waste, and Sweet Whey Michael K
    Chemical and Biological Engineering Publications Chemical and Biological Engineering 2-1994 Low Molecular Weight Organic Composition of Ethanol Stillage from Sugarcane Molasses, Citrus Waste, and Sweet Whey Michael K. Dowd Iowa State University Steven L. Johansen Iowa State University Laura Cantarella Iowa State University See next page for additional authors Follow this and additional works at: http://lib.dr.iastate.edu/cbe_pubs Part of the Biochemical and Biomolecular Engineering Commons, and the Biological Engineering Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ cbe_pubs/12. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Chemical and Biological Engineering at Iowa State University Digital Repository. It has been accepted for inclusion in Chemical and Biological Engineering Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Low Molecular Weight Organic Composition of Ethanol Stillage from Sugarcane Molasses, Citrus Waste, and Sweet Whey Abstract Filtered stillage from the distillation of ethanol made by yeast fermentation of sugarcane molasses, citrus waste, and sweet whey was analyzed by gas chromatography/mass spectroscopy and by high-performance liquid chromatography. Nearly all of the major peaks representing low molecular weight organic components were identified. The am jor components in cane stillage were, in decreasing order of concentration, lactic acid, glycerol, ethanol, and acetic acid. In citrus stillage they were lactic acid, glycerol, myo-inositol, acetic acid, chiro-inositol, and proline.
    [Show full text]
  • Reports of the Scientific Committee for Food
    Commission of the European Communities food - science and techniques Reports of the Scientific Committee for Food (Sixteenth series) Commission of the European Communities food - science and techniques Reports of the Scientific Committee for Food (Sixteenth series) Directorate-General Internal Market and Industrial Affairs 1985 EUR 10210 EN Published by the COMMISSION OF THE EUROPEAN COMMUNITIES Directorate-General Information Market and Innovation Bâtiment Jean Monnet LUXEMBOURG LEGAL NOTICE Neither the Commission of the European Communities nor any person acting on behalf of the Commission is responsible for the use which might be made of the following information This publication is also available in the following languages : DA ISBN 92-825-5770-7 DE ISBN 92-825-5771-5 GR ISBN 92-825-5772-3 FR ISBN 92-825-5774-X IT ISBN 92-825-5775-8 NL ISBN 92-825-5776-6 Cataloguing data can be found at the end of this publication Luxembourg, Office for Official Publications of the European Communities, 1985 ISBN 92-825-5773-1 Catalogue number: © ECSC-EEC-EAEC, Brussels · Luxembourg, 1985 Printed in Luxembourg CONTENTS Page Reports of the Scientific Committee for Food concerning - Sweeteners (Opinion expressed 14 September 1984) III Composition of the Scientific Committee for Food P.S. Elias A.G. Hildebrandt (vice-chairman) F. Hill A. Hubbard A. Lafontaine Mne B.H. MacGibbon A. Mariani-Costantini K.J. Netter E. Poulsen (chairman) J. Rey V. Silano (vice-chairman) Mne A. Trichopoulou R. Truhaut G.J. Van Esch R. Wemig IV REPORT OF THE SCIENTIFIC COMMITTEE FOR FOOD ON SWEETENERS (Opinion expressed 14 September 1984) TERMS OF REFERENCE To review the safety in use of certain sweeteners.
    [Show full text]
  • Sugar Alcohols a Sugar Alcohol Is a Kind of Alcohol Prepared from Sugars
    Sweeteners, Good, Bad, or Something even Worse. (Part 8) These are Low calorie sweeteners - not non-calorie sweeteners Sugar Alcohols A sugar alcohol is a kind of alcohol prepared from sugars. These organic compounds are a class of polyols, also called polyhydric alcohol, polyalcohol, or glycitol. They are white, water-soluble solids that occur naturally and are used widely in the food industry as thickeners and sweeteners. In commercial foodstuffs, sugar alcohols are commonly used in place of table sugar (sucrose), often in combination with high intensity artificial sweeteners to counter the low sweetness of the sugar alcohols. Unlike sugars, sugar alcohols do not contribute to the formation of tooth cavities. Common Sugar Alcohols Arabitol, Erythritol, Ethylene glycol, Fucitol, Galactitol, Glycerol, Hydrogenated Starch – Hydrolysate (HSH), Iditol, Inositol, Isomalt, Lactitol, Maltitol, Maltotetraitol, Maltotriitol, Mannitol, Methanol, Polyglycitol, Polydextrose, Ribitol, Sorbitol, Threitol, Volemitol, Xylitol, Of these, xylitol is perhaps the most popular due to its similarity to sucrose in visual appearance and sweetness. Sugar alcohols do not contribute to tooth decay. However, consumption of sugar alcohols does affect blood sugar levels, although less than that of "regular" sugar (sucrose). Sugar alcohols may also cause bloating and diarrhea when consumed in excessive amounts. Erythritol Also labeled as: Sugar alcohol Zerose ZSweet Erythritol is a sugar alcohol (or polyol) that has been approved for use as a food additive in the United States and throughout much of the world. It was discovered in 1848 by British chemist John Stenhouse. It occurs naturally in some fruits and fermented foods. At the industrial level, it is produced from glucose by fermentation with a yeast, Moniliella pollinis.
    [Show full text]
  • Sialic Acids (Methyl Esters) Obtained by Methanolysis Can Be Determined After N- Acetylation-Trimethylsilylation4-6 Or Trifluoroacetylation’
    Carbohydrate Research, 129 (1984) 149-157 Elsevier Science Publishers B.V.. Amsterdam-Printed in The Netherlands ANHYDROALDITOLS IN THE SUGAR ANALYSIS OF METHANOLY- SATES OF ALDITOLS AND OLIGOSACCHARIDE-ALDITOLS* GEKKITJ. GEKWIG,JCIHANNIS P. KAM~KLIW. AND JUHANNESF. G. VLIEGENTHAKI Department of Bio-Organic Chemistry, State University of Vtrecht, Croesestraat 79, NL-3522 A D Vtrecht (The Netherlands) (Received October 13th, 1983; accepted for publication, December 16th. 1983) ABSTRACT In the context of the methanolysis procedure for sugar analysis, several al- ditols were investigated for their capacity to form anhydro derivatives in M methanolic HCl (24 h, 85’). Xylitol, D-arabinitol, L-fucitol, D-glucitol, galactitol, 2- acetamido-2-deoxy-D-galactitol, and the alditols of N-acetylneuraminic acid were very prone to form anhydrides, whereas 2-amino-2-deoxy-D-galactitol, 2-amino-2- deoxy-D-glucitol, D-mannitol, and 2-acetamido-2-deoxy-D-glucitol formed little anhydride. Anhydride formation was observed for the relevant alditols when pre- sent in reduced oligosaccharides. This finding is of importance in the quantification of sugar residues based on methanolysis, N-(re)acetylation, trimethylsilylation, and subsequent capillary g.1.c. INTRODUCTION Various derivatives are employed for the determination of the sugar compo- sition of complex carbohydrates by g.1.c. Neutral and aminodeoxy sugars, obtained by acid hydrolysis, are usually analysed as alditol acetateslM3. Methyl glycosides of neutral monosaccharides, aminodeoxy sugars, uranic acids (methyl esters), and sialic acids (methyl esters) obtained by methanolysis can be determined after N- acetylation-trimethylsilylation4-6 or trifluoroacetylation’. Each monosaccharide gives rise to a characteristic group of methyl glycosides.
    [Show full text]
  • Identification of Cultured and Natural Astragalus Root Based on Monosaccharide Mapping
    Molecules 2015, 20, 16466-16490; doi:10.3390/molecules200916466 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Identification of Cultured and Natural Astragalus Root Based on Monosaccharide Mapping Ke Li 1, Xia Hao 1,2, Fanrong Gao 1,2, Guizhen Wang 1,2, Zhengzheng Zhang 1, Guanhua Du 1,3 and Xuemei Qin 1,* 1 Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, China; E-Mails: [email protected] (K.L.); [email protected] (X.H.); [email protected] (F.G.); [email protected] (G.W.); [email protected] (Z.Z.); [email protected] (G.D.) 2 College of Chemistry and Chemical Engineering, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, China 3 Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, China * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel./Fax: +86-351-701-1202. Academic Editor: Derek J. McPhee Received: 9 August 2015 / Accepted: 3 September 2015 / Published: 11 September 2015 Abstract: As the main substances responsible for immunomodulatory activity, saccharides can be used as quality indicators for Astragalus root (RA). Saccharide content is commonly determined by ultraviolet spectroscopy, which lacks species specificity and has not been applied in the Chinese Pharmacopoeia. Monosaccharide mapping based on trifluoroacetic acid (TFA) hydrolysis can be used for quantitative analysis of saccharide compositions. In addition, species specificity can be evaluated by analysis of the mapping characteristics. In this study, monosaccharide mapping of soluble saccharides in the cytoplasm and polysaccharides in the cell wall of 24 batches of RA samples with different growth patterns were obtained based on TFA hydrolysis followed by gas chromatography-mass spectrometry.
    [Show full text]
  • TRACE TR-Waxms GC Columns High Polarity Phase Designed for Mass Spectrometry Detectors
    Table Indexof Contents Column Selection 1 SPE Phase Selection ...........................................................2 HPLC and LC/MS Column Selection...................................4 GC Column Selection ........................................................17 SPE 29 HyperSep SPE Products ....................................................30 Finnpipettes.......................................................................46 GC and GC/MS 47 TRACE GC Capillary Columns ...........................................48 Ultra Fast GC Columns......................................................65 HPLC and LC/MS 65 Column Protection.............................................................66 Hypersil GOLD Columns....................................................70 BioBasic Columns..............................................................88 Hypercarb Columns.........................................................101 Hypersil BDS Columns ....................................................106 Hypersil Classical Columns.............................................111 Polymeric HPLC Columns ................................................122 AQUASIL C18 Columns ...................................................128 BetaBasic Columns .........................................................129 BetaMax Columns...........................................................130 BETASIL Columns............................................................130 Other HPLC Columns.......................................................132 Accessories
    [Show full text]
  • List of Spectra /Compound Names
    IS NIR Spectra Complete collection (6049 spectra) This collection includes all NIR spectra collected within this project. Those are organic and inorganic chemicals, pharmaceutical excipients, drugs, polymers, additives, coatings, dyes, pigments, toxic substances, hazardous substances like explosives, agrochemicals and other types of materials. This collection should be chosen by customers with broad range of analytical applications. The near infrared spectral library „IS NIR Spectra“ is a unique collection of 6049 NIR (near infrared) digital spectra. The spectra have been collected in range 4200-10000 cm-1 (=2.4 – 1 micrometers). „IS NIR Spectra“ is the biggest and newest NIR library available on the market. This spectral library has been designed for users who use their NIR spectrometer not only for quantitative and chemometric analysis, but also want to identify unknown samples or just want to use the library as reference spectra database. ra t IS means “Intergrating Sphere” and at the same time “Identify Samplec”. e Technical parameters: p The „IS NIR Spectra“ were collected using the FT-NIR Spectrometer equipped with Integrating Sphere Accessory. Resolution: standard 4cm-1 IR Customized resolution: upon special request the speNctra can be delivered in customized resolution to reach better correspondence with spectr a collected by customer NIR instrument Spectral range in wavenumbers units: 4200-1000I0S cm-1 Spectral range in wavelength units: 2.4 – 1 micr ometers Only one spectrum/compound covering the mentioned spectral range Typical text information about the sample inmcludes (when available): Compound name including synonyms o CAS number .c Chemical formula a Molecular weight tr Additional information about thec sample like manufacturer and comments.
    [Show full text]
  • Organic Chemistry I for Dummies
    Science/Chemistry/Organic Easier!™ Making Everything 2nd ition Ed 2nd Edition The fun and easy way Organic Chemistry I to take the confusion Open the book and find: out of organic chemistry • Tips on deciphering “organic speak” If you’re feeling challenged by organic chemistry, fear not! • How to determine the Organic This easy-to-understand guide explains the basic principles structure of a molecule in simple terms, providing insight into the language of • A complete overview of organic chemists, the major classes of compounds, and more. chemical reactions Complete with new explanations and example equations, this • Strategies for solving organic book will help you ace your organic chemistry class! Chemistry I chemistry problems • Go organic — get an introduction to organic chemistry, • Tricks to prepare for organic from dissecting atoms and the basics of bases and acids, chemistry exams to stereochemistry and drawing structures • Renewed example equations • Hydrocarbons — dive into hydrocarbons, including a full in this new edition explanation of alkanes, alkenes, and alkynes • New explanations and • Functional groups — understand substitution and elimination practical examples reactions, the alcohols, conjugated alkenes, aromatic compounds, and much more • A smashing time — find out about mass spectrometry, IR spectroscopy, NMR spectroscopy, solving problems Cover Image: ©cb34inc/iStockphoto.com in NMR, and more Learn to: • Survive organic chem — get tips on surviving your organic chemistry class, along with information on cool organic • Grasp the principles of organic discoveries, and ten of the greatest organic chemists chemistry at your own pace ® • Score your highest in your Arthur Winter is a graduate of Frostburg State University, where he Go to Dummies.com Organic Chemistry I course for videos, step-by-step examples, received his BS in chemistry.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,900,802 B2 Allen Et Al
    USOO890O802B2 (12) United States Patent (10) Patent No.: US 8,900,802 B2 Allen et al. (45) Date of Patent: Dec. 2, 2014 (54) POSITIVE TONE ORGANIC SOLVENT (56) References Cited DEVELOPED CHEMICALLY AMPLIFIED RESIST U.S. PATENT DOCUMENTS 3,586,504 A 6, 1971 Coates et al. (71) Applicants: International Business Machines 4,833,067 A 5/1989 Tanaka et al. Corporation, Armonk, NY (US); JSR 5,126.230 A 6/1992 Lazarus et al. Corporation, Tokyo (JP) 5,185,235 A 2f1993 Sato et al. 5,266.424 A 1 1/1993 Fujino et al. 5,554.312 A 9, 1996 Ward (72) Inventors: Robert D. Allen, San Jose, CA (US); 5,846,695 A 12/1998 Iwata et al. Ramakrishnan Ayothi, San Jose, CA 6,599,683 B1 7/2003 Torek et al. (US); Luisa D. Bozano, Los Gatos, CA 7,585,609 B2 9, 2009 Larson et al. (US); William D. Hinsberg, Fremont, (Continued) CA (US); Linda K. Sundberg, Los Gatos, CA (US); Sally A. Swanson, San FOREIGN PATENT DOCUMENTS Jose, CA (US); Hoa D. Truong, San Jose, CA (US); Gregory M. Wallraff, JP 54143232 8, 1979 JP 58219549 12/1983 San Jose, CA (US) JP 6325.9560 10, 1988 (73) Assignees: International Business Machines OTHER PUBLICATIONS Corporation, Armonk, NY (US); JSR Corporation, Tokyo (JP) Ito et al., Positive/negative mid UV resists with high thermal stability, SPIE 0771:24-31 (1987). (*) Notice: Subject to any disclaimer, the term of this (Continued) patent is extended or adjusted under 35 U.S.C. 154(b) by 99 days.
    [Show full text]
  • Supplementary File
    Supplementary File Chemical composition, bioactive compounds and antioxidant activity of two wild edible mushrooms Armillaria mellea and Macrolepiota procera from two countries (Morocco and Portugal) El Hadi Erbiai 1,2, Luís Pinto da Silva 2 , Rabah Saidi 1, Zouhaire Lamrani 1, Joaquim C.G. Esteves da Silva 2, Abdelfettah Maouni 1,* 1 Biology, Environment, and Sustainable Development Laboratory, Higher School of Teachers (ENS), Abdelmalek Essaâdi University, Tetouan, Morocco; [email protected] (E.H.E.); [email protected] (F.E.E); [email protected] (R.S.); [email protected] (Z.L), [email protected] (A.M.) 2 Research Centre in Chemistry (CIQUP), DGAOT, Faculty of Sciences, University of Porto, Portugal; [email protected] (L.P.S.); [email protected] (J.C.G.E.S.) SUPPLEMENTAL INFORMATION Supplemental experimental methodology 1.1. Spectrophotometric Determination of Bioactive Compounds Total Phenolic Content (TFC) was determined by Folin-Ciocalteu assay [1]. One ml of extract methanolic solution (5 mg/ml) was mixed with 5 ml of Folin–Ciocalteu reagent (previously diluted with distilled water 1:10, v/v) and 4 ml of sodium carbonate solution (7,5%). The tubes were vortex mixed for 15 s and allowed to stand for 30 min at 40 °C in the dark. Then, the absorbance of the solution was measured at 765 nm against the blank. Gallic acid was used to obtain the standard curve (0-250 µg/ml), and the results were mean values ± standard deviations (SD) and expressed as milligrams of gallic acid equivalents (GAE) per gram of dried methanolic extract (dme).
    [Show full text]