(12) Patent Application Publication (10) Pub. No.: US 2015/0209377 A1 Lin Et Al
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Postulated Physiological Roles of the Seven-Carbon Sugars, Mannoheptulose, and Perseitol in Avocado
J. AMER. SOC. HORT. SCI. 127(1):108–114. 2002. Postulated Physiological Roles of the Seven-carbon Sugars, Mannoheptulose, and Perseitol in Avocado Xuan Liu,1 James Sievert, Mary Lu Arpaia, and Monica A. Madore2 Department of Botany and Plant Sciences, University of California, Riverside, CA 92521 ADDITIONAL INDEX WORDS. ‘Hass’ avocado on ‘Duke 7’ rootstock, phloem transport, ripening, Lauraceae ABSTRACT. Avocado (Persea americana Mill.) tissues contain high levels of the seven-carbon (C7) ketosugar mannoheptulose and its polyol form, perseitol. Radiolabeling of intact leaves of ‘Hass’ avocado on ‘Duke 7’ rootstock indicated that both perseitol and mannoheptulose are not only primary products of photosynthetic CO2 fixation but are also exported in the phloem. In cell-free extracts from mature source leaves, formation of the C7 backbone occurred by condensation of a three-carbon metabolite (dihydroxyacetone-P) with a four-carbon metabolite (erythrose-4-P) to form sedoheptulose-1,7- bis-P, followed by isomerization to a phosphorylated D-mannoheptulose derivative. A transketolase reaction was also observed which converted five-carbon metabolites (ribose-5-P and xylulose-5-P) to form the C7 metabolite, sedoheptu- lose-7-P, but this compound was not metabolized further to mannoheptulose. This suggests that C7 sugars are formed from the Calvin Cycle, not oxidative pentose phosphate pathway, reactions in avocado leaves. In avocado fruit, C7 sugars were present in substantial quantities and the normal ripening processes (fruit softening, ethylene production, and climacteric respiration rise), which occurs several days after the fruit is picked, did not occur until levels of C7 sugars dropped below an apparent threshold concentration of ≈20 mg·g–1 fresh weight. -
United States Patent 1191 Lll] 3,983,266 Bahls [451 Sept
United States Patent 1191 lll] 3,983,266 Bahls [451 Sept. 28, 1976 [54] METHOD FOR APPLYING METALLIC 3.776.740 [2/1973 Sivcrz ct al. .......................... .. l06/l SILVER TO A SUBSTRATE OTHER PUBLICATIONS [75] Inventor: Harry Bahls, Wayne, Pa. lvanov et al., Chem. Abs. 43:2548c, I949, [73] Assignee: Peacock Laboratories, Inc., Philadelphia, Pa. Primary Examiner-Ralph S. Kendall [22] Filed: Oct. 9, I974 I 57] ABSTRACT [2!] ,Appl. No.: 513,417 High efficiency deposition of silver on the surface of a substrate is obtained by providing a solution contain [52] [1.8. CI ............................... .. 427/164; 427/165; ing reducible dissolved silver in the presence of an al 427/168; 427/424; 427/426; l06/l kali metal hydroxide and ammonia, all of which are [51] Int. CLZ. ......................................... .. C23C 3/02 applied to the substrate in the presence of an aqueous [58] Field of Search .............. .. l06/l; 427/l68. I69, solution of a moderating reducer containing :1 poly 427/165, I64, 426, 304, 125, 425 hydric alcohol of the formula CH2OH(CHOH),,C H,OH, where n is an integer from 1 to 6. Preferably [56] References Cited the polyhydric alcohol is sorbitol, and in a preferred UNITED STATES PATENTS embodiment a moderator is the form of a thio glycerol is present. 2,996,406 8/l96l Weinrich ........... ............ .. 427/168 3,772,078 ll/l973 Polichcttc ct al ................. .. l06/l X l5 Claims, No Drawings 3,983,266 1 Other objects and advantages of this invention, in METHOD FOR APPLYING METALLIC SILVER TO cluding the economy of the same, and the case with A SUBSTRATE which it may be applied to existing silver coating equip ment and apparatus, will further become apparent BRIEF SUMMARY OF THE INVENTION 5 hereinafter. -
Low Molecular Weight Organic Composition of Ethanol Stillage from Sugarcane Molasses, Citrus Waste, and Sweet Whey Michael K
Chemical and Biological Engineering Publications Chemical and Biological Engineering 2-1994 Low Molecular Weight Organic Composition of Ethanol Stillage from Sugarcane Molasses, Citrus Waste, and Sweet Whey Michael K. Dowd Iowa State University Steven L. Johansen Iowa State University Laura Cantarella Iowa State University See next page for additional authors Follow this and additional works at: http://lib.dr.iastate.edu/cbe_pubs Part of the Biochemical and Biomolecular Engineering Commons, and the Biological Engineering Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ cbe_pubs/12. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Chemical and Biological Engineering at Iowa State University Digital Repository. It has been accepted for inclusion in Chemical and Biological Engineering Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Low Molecular Weight Organic Composition of Ethanol Stillage from Sugarcane Molasses, Citrus Waste, and Sweet Whey Abstract Filtered stillage from the distillation of ethanol made by yeast fermentation of sugarcane molasses, citrus waste, and sweet whey was analyzed by gas chromatography/mass spectroscopy and by high-performance liquid chromatography. Nearly all of the major peaks representing low molecular weight organic components were identified. The am jor components in cane stillage were, in decreasing order of concentration, lactic acid, glycerol, ethanol, and acetic acid. In citrus stillage they were lactic acid, glycerol, myo-inositol, acetic acid, chiro-inositol, and proline. -
Reports of the Scientific Committee for Food
Commission of the European Communities food - science and techniques Reports of the Scientific Committee for Food (Sixteenth series) Commission of the European Communities food - science and techniques Reports of the Scientific Committee for Food (Sixteenth series) Directorate-General Internal Market and Industrial Affairs 1985 EUR 10210 EN Published by the COMMISSION OF THE EUROPEAN COMMUNITIES Directorate-General Information Market and Innovation Bâtiment Jean Monnet LUXEMBOURG LEGAL NOTICE Neither the Commission of the European Communities nor any person acting on behalf of the Commission is responsible for the use which might be made of the following information This publication is also available in the following languages : DA ISBN 92-825-5770-7 DE ISBN 92-825-5771-5 GR ISBN 92-825-5772-3 FR ISBN 92-825-5774-X IT ISBN 92-825-5775-8 NL ISBN 92-825-5776-6 Cataloguing data can be found at the end of this publication Luxembourg, Office for Official Publications of the European Communities, 1985 ISBN 92-825-5773-1 Catalogue number: © ECSC-EEC-EAEC, Brussels · Luxembourg, 1985 Printed in Luxembourg CONTENTS Page Reports of the Scientific Committee for Food concerning - Sweeteners (Opinion expressed 14 September 1984) III Composition of the Scientific Committee for Food P.S. Elias A.G. Hildebrandt (vice-chairman) F. Hill A. Hubbard A. Lafontaine Mne B.H. MacGibbon A. Mariani-Costantini K.J. Netter E. Poulsen (chairman) J. Rey V. Silano (vice-chairman) Mne A. Trichopoulou R. Truhaut G.J. Van Esch R. Wemig IV REPORT OF THE SCIENTIFIC COMMITTEE FOR FOOD ON SWEETENERS (Opinion expressed 14 September 1984) TERMS OF REFERENCE To review the safety in use of certain sweeteners. -
Sugar Alcohols a Sugar Alcohol Is a Kind of Alcohol Prepared from Sugars
Sweeteners, Good, Bad, or Something even Worse. (Part 8) These are Low calorie sweeteners - not non-calorie sweeteners Sugar Alcohols A sugar alcohol is a kind of alcohol prepared from sugars. These organic compounds are a class of polyols, also called polyhydric alcohol, polyalcohol, or glycitol. They are white, water-soluble solids that occur naturally and are used widely in the food industry as thickeners and sweeteners. In commercial foodstuffs, sugar alcohols are commonly used in place of table sugar (sucrose), often in combination with high intensity artificial sweeteners to counter the low sweetness of the sugar alcohols. Unlike sugars, sugar alcohols do not contribute to the formation of tooth cavities. Common Sugar Alcohols Arabitol, Erythritol, Ethylene glycol, Fucitol, Galactitol, Glycerol, Hydrogenated Starch – Hydrolysate (HSH), Iditol, Inositol, Isomalt, Lactitol, Maltitol, Maltotetraitol, Maltotriitol, Mannitol, Methanol, Polyglycitol, Polydextrose, Ribitol, Sorbitol, Threitol, Volemitol, Xylitol, Of these, xylitol is perhaps the most popular due to its similarity to sucrose in visual appearance and sweetness. Sugar alcohols do not contribute to tooth decay. However, consumption of sugar alcohols does affect blood sugar levels, although less than that of "regular" sugar (sucrose). Sugar alcohols may also cause bloating and diarrhea when consumed in excessive amounts. Erythritol Also labeled as: Sugar alcohol Zerose ZSweet Erythritol is a sugar alcohol (or polyol) that has been approved for use as a food additive in the United States and throughout much of the world. It was discovered in 1848 by British chemist John Stenhouse. It occurs naturally in some fruits and fermented foods. At the industrial level, it is produced from glucose by fermentation with a yeast, Moniliella pollinis. -
Sialic Acids (Methyl Esters) Obtained by Methanolysis Can Be Determined After N- Acetylation-Trimethylsilylation4-6 Or Trifluoroacetylation’
Carbohydrate Research, 129 (1984) 149-157 Elsevier Science Publishers B.V.. Amsterdam-Printed in The Netherlands ANHYDROALDITOLS IN THE SUGAR ANALYSIS OF METHANOLY- SATES OF ALDITOLS AND OLIGOSACCHARIDE-ALDITOLS* GEKKITJ. GEKWIG,JCIHANNIS P. KAM~KLIW. AND JUHANNESF. G. VLIEGENTHAKI Department of Bio-Organic Chemistry, State University of Vtrecht, Croesestraat 79, NL-3522 A D Vtrecht (The Netherlands) (Received October 13th, 1983; accepted for publication, December 16th. 1983) ABSTRACT In the context of the methanolysis procedure for sugar analysis, several al- ditols were investigated for their capacity to form anhydro derivatives in M methanolic HCl (24 h, 85’). Xylitol, D-arabinitol, L-fucitol, D-glucitol, galactitol, 2- acetamido-2-deoxy-D-galactitol, and the alditols of N-acetylneuraminic acid were very prone to form anhydrides, whereas 2-amino-2-deoxy-D-galactitol, 2-amino-2- deoxy-D-glucitol, D-mannitol, and 2-acetamido-2-deoxy-D-glucitol formed little anhydride. Anhydride formation was observed for the relevant alditols when pre- sent in reduced oligosaccharides. This finding is of importance in the quantification of sugar residues based on methanolysis, N-(re)acetylation, trimethylsilylation, and subsequent capillary g.1.c. INTRODUCTION Various derivatives are employed for the determination of the sugar compo- sition of complex carbohydrates by g.1.c. Neutral and aminodeoxy sugars, obtained by acid hydrolysis, are usually analysed as alditol acetateslM3. Methyl glycosides of neutral monosaccharides, aminodeoxy sugars, uranic acids (methyl esters), and sialic acids (methyl esters) obtained by methanolysis can be determined after N- acetylation-trimethylsilylation4-6 or trifluoroacetylation’. Each monosaccharide gives rise to a characteristic group of methyl glycosides. -
Identification of Cultured and Natural Astragalus Root Based on Monosaccharide Mapping
Molecules 2015, 20, 16466-16490; doi:10.3390/molecules200916466 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Identification of Cultured and Natural Astragalus Root Based on Monosaccharide Mapping Ke Li 1, Xia Hao 1,2, Fanrong Gao 1,2, Guizhen Wang 1,2, Zhengzheng Zhang 1, Guanhua Du 1,3 and Xuemei Qin 1,* 1 Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, China; E-Mails: [email protected] (K.L.); [email protected] (X.H.); [email protected] (F.G.); [email protected] (G.W.); [email protected] (Z.Z.); [email protected] (G.D.) 2 College of Chemistry and Chemical Engineering, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, China 3 Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, China * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel./Fax: +86-351-701-1202. Academic Editor: Derek J. McPhee Received: 9 August 2015 / Accepted: 3 September 2015 / Published: 11 September 2015 Abstract: As the main substances responsible for immunomodulatory activity, saccharides can be used as quality indicators for Astragalus root (RA). Saccharide content is commonly determined by ultraviolet spectroscopy, which lacks species specificity and has not been applied in the Chinese Pharmacopoeia. Monosaccharide mapping based on trifluoroacetic acid (TFA) hydrolysis can be used for quantitative analysis of saccharide compositions. In addition, species specificity can be evaluated by analysis of the mapping characteristics. In this study, monosaccharide mapping of soluble saccharides in the cytoplasm and polysaccharides in the cell wall of 24 batches of RA samples with different growth patterns were obtained based on TFA hydrolysis followed by gas chromatography-mass spectrometry. -
TRACE TR-Waxms GC Columns High Polarity Phase Designed for Mass Spectrometry Detectors
Table Indexof Contents Column Selection 1 SPE Phase Selection ...........................................................2 HPLC and LC/MS Column Selection...................................4 GC Column Selection ........................................................17 SPE 29 HyperSep SPE Products ....................................................30 Finnpipettes.......................................................................46 GC and GC/MS 47 TRACE GC Capillary Columns ...........................................48 Ultra Fast GC Columns......................................................65 HPLC and LC/MS 65 Column Protection.............................................................66 Hypersil GOLD Columns....................................................70 BioBasic Columns..............................................................88 Hypercarb Columns.........................................................101 Hypersil BDS Columns ....................................................106 Hypersil Classical Columns.............................................111 Polymeric HPLC Columns ................................................122 AQUASIL C18 Columns ...................................................128 BetaBasic Columns .........................................................129 BetaMax Columns...........................................................130 BETASIL Columns............................................................130 Other HPLC Columns.......................................................132 Accessories -
List of Spectra /Compound Names
IS NIR Spectra Complete collection (6049 spectra) This collection includes all NIR spectra collected within this project. Those are organic and inorganic chemicals, pharmaceutical excipients, drugs, polymers, additives, coatings, dyes, pigments, toxic substances, hazardous substances like explosives, agrochemicals and other types of materials. This collection should be chosen by customers with broad range of analytical applications. The near infrared spectral library „IS NIR Spectra“ is a unique collection of 6049 NIR (near infrared) digital spectra. The spectra have been collected in range 4200-10000 cm-1 (=2.4 – 1 micrometers). „IS NIR Spectra“ is the biggest and newest NIR library available on the market. This spectral library has been designed for users who use their NIR spectrometer not only for quantitative and chemometric analysis, but also want to identify unknown samples or just want to use the library as reference spectra database. ra t IS means “Intergrating Sphere” and at the same time “Identify Samplec”. e Technical parameters: p The „IS NIR Spectra“ were collected using the FT-NIR Spectrometer equipped with Integrating Sphere Accessory. Resolution: standard 4cm-1 IR Customized resolution: upon special request the speNctra can be delivered in customized resolution to reach better correspondence with spectr a collected by customer NIR instrument Spectral range in wavenumbers units: 4200-1000I0S cm-1 Spectral range in wavelength units: 2.4 – 1 micr ometers Only one spectrum/compound covering the mentioned spectral range Typical text information about the sample inmcludes (when available): Compound name including synonyms o CAS number .c Chemical formula a Molecular weight tr Additional information about thec sample like manufacturer and comments. -
Organic Chemistry I for Dummies
Science/Chemistry/Organic Easier!™ Making Everything 2nd ition Ed 2nd Edition The fun and easy way Organic Chemistry I to take the confusion Open the book and find: out of organic chemistry • Tips on deciphering “organic speak” If you’re feeling challenged by organic chemistry, fear not! • How to determine the Organic This easy-to-understand guide explains the basic principles structure of a molecule in simple terms, providing insight into the language of • A complete overview of organic chemists, the major classes of compounds, and more. chemical reactions Complete with new explanations and example equations, this • Strategies for solving organic book will help you ace your organic chemistry class! Chemistry I chemistry problems • Go organic — get an introduction to organic chemistry, • Tricks to prepare for organic from dissecting atoms and the basics of bases and acids, chemistry exams to stereochemistry and drawing structures • Renewed example equations • Hydrocarbons — dive into hydrocarbons, including a full in this new edition explanation of alkanes, alkenes, and alkynes • New explanations and • Functional groups — understand substitution and elimination practical examples reactions, the alcohols, conjugated alkenes, aromatic compounds, and much more • A smashing time — find out about mass spectrometry, IR spectroscopy, NMR spectroscopy, solving problems Cover Image: ©cb34inc/iStockphoto.com in NMR, and more Learn to: • Survive organic chem — get tips on surviving your organic chemistry class, along with information on cool organic • Grasp the principles of organic discoveries, and ten of the greatest organic chemists chemistry at your own pace ® • Score your highest in your Arthur Winter is a graduate of Frostburg State University, where he Go to Dummies.com Organic Chemistry I course for videos, step-by-step examples, received his BS in chemistry. -
(12) United States Patent (10) Patent No.: US 8,900,802 B2 Allen Et Al
USOO890O802B2 (12) United States Patent (10) Patent No.: US 8,900,802 B2 Allen et al. (45) Date of Patent: Dec. 2, 2014 (54) POSITIVE TONE ORGANIC SOLVENT (56) References Cited DEVELOPED CHEMICALLY AMPLIFIED RESIST U.S. PATENT DOCUMENTS 3,586,504 A 6, 1971 Coates et al. (71) Applicants: International Business Machines 4,833,067 A 5/1989 Tanaka et al. Corporation, Armonk, NY (US); JSR 5,126.230 A 6/1992 Lazarus et al. Corporation, Tokyo (JP) 5,185,235 A 2f1993 Sato et al. 5,266.424 A 1 1/1993 Fujino et al. 5,554.312 A 9, 1996 Ward (72) Inventors: Robert D. Allen, San Jose, CA (US); 5,846,695 A 12/1998 Iwata et al. Ramakrishnan Ayothi, San Jose, CA 6,599,683 B1 7/2003 Torek et al. (US); Luisa D. Bozano, Los Gatos, CA 7,585,609 B2 9, 2009 Larson et al. (US); William D. Hinsberg, Fremont, (Continued) CA (US); Linda K. Sundberg, Los Gatos, CA (US); Sally A. Swanson, San FOREIGN PATENT DOCUMENTS Jose, CA (US); Hoa D. Truong, San Jose, CA (US); Gregory M. Wallraff, JP 54143232 8, 1979 JP 58219549 12/1983 San Jose, CA (US) JP 6325.9560 10, 1988 (73) Assignees: International Business Machines OTHER PUBLICATIONS Corporation, Armonk, NY (US); JSR Corporation, Tokyo (JP) Ito et al., Positive/negative mid UV resists with high thermal stability, SPIE 0771:24-31 (1987). (*) Notice: Subject to any disclaimer, the term of this (Continued) patent is extended or adjusted under 35 U.S.C. 154(b) by 99 days. -
Supplementary File
Supplementary File Chemical composition, bioactive compounds and antioxidant activity of two wild edible mushrooms Armillaria mellea and Macrolepiota procera from two countries (Morocco and Portugal) El Hadi Erbiai 1,2, Luís Pinto da Silva 2 , Rabah Saidi 1, Zouhaire Lamrani 1, Joaquim C.G. Esteves da Silva 2, Abdelfettah Maouni 1,* 1 Biology, Environment, and Sustainable Development Laboratory, Higher School of Teachers (ENS), Abdelmalek Essaâdi University, Tetouan, Morocco; [email protected] (E.H.E.); [email protected] (F.E.E); [email protected] (R.S.); [email protected] (Z.L), [email protected] (A.M.) 2 Research Centre in Chemistry (CIQUP), DGAOT, Faculty of Sciences, University of Porto, Portugal; [email protected] (L.P.S.); [email protected] (J.C.G.E.S.) SUPPLEMENTAL INFORMATION Supplemental experimental methodology 1.1. Spectrophotometric Determination of Bioactive Compounds Total Phenolic Content (TFC) was determined by Folin-Ciocalteu assay [1]. One ml of extract methanolic solution (5 mg/ml) was mixed with 5 ml of Folin–Ciocalteu reagent (previously diluted with distilled water 1:10, v/v) and 4 ml of sodium carbonate solution (7,5%). The tubes were vortex mixed for 15 s and allowed to stand for 30 min at 40 °C in the dark. Then, the absorbance of the solution was measured at 765 nm against the blank. Gallic acid was used to obtain the standard curve (0-250 µg/ml), and the results were mean values ± standard deviations (SD) and expressed as milligrams of gallic acid equivalents (GAE) per gram of dried methanolic extract (dme).