Cloning and Expression of the Rickettsia Prowazekii ADP

Total Page:16

File Type:pdf, Size:1020Kb

Cloning and Expression of the Rickettsia Prowazekii ADP Proc. Natl. Acad. Sci. USA Vol. 82, pp. 3015-3019, May 1985 Microbiology Cloning and expression of the Rickettsia prowazekii ADP/ATP translocator in Escherichia coli (obligate intracellular parasite/carrier-mediated exchange/recombinant DNA) DUNCAN C. KRAUSE, HERBERT H. WINKLER, AND DAVID 0. WOOD* Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL 36688 Communicated by Saul Roseman, December 17, 1984 ABSTRACT Cosmid clone banks of Rickettsia prowazekii terization, have been unsuccessful (unpublished observa- genomic DNA were established in Escherichia coli and tion). The cloning and expression in Escherichia coli of the screened for expression of the rickettsial carrier-mediated gene(s) responsible for ADP/ATP exchange would permit ADP/ATP translocator. Out of 2700 clones screened, a single circumvention of these problems. Purification of the translo- clone, designated MOB286, accumulated radioactivity when cator would be facilitated immensely, modulation of this ac- incubated with [a-32P]ATP in 100 mM sodium phosphate tivity by various effectors could be studied against a well- buffer. This clone carried a plasmid, pMW286, containing a 9- defined E. coli physiological background, membrane vesi- kilobase-pair insert of rickettsial DNA, as established by cles could be formed, and gene organization and regulation DNADNA hybridizations. Transformation studies with puri- could be assessed. We report here the cloning in E. coli of a fied pMW286 established that the ability of E. coli cells to ac- R. prowazekii genetic locus that directs the expression in E. cumulate radioactivity was mediated by the recombinant plas- coli of the rickettsial ADP/ATP translocator. mid. Results from experiments in which [3H]ATP was substi- tuted for [a-32PJATP strongly suggested that the radiolabeled ATP was transported intact. Furthermore, [3H]ATP was in- MATERIALS AND METHODS corporated into 10% (wt/vol) trichloroacetic acid-precipitable Enzymes and Reagents. Ampicillin, Tris, adenine, adeno- material in a time-dependent manner. Uptake of ATP was also sine, AMP (sodium salt, type II), ADP (sodium salt, grade temperature-dependent, insensitive to atractyloside, N-ethyl- IX), ATP (disodium salt), atractyloside (disodium salt), thia- maleimide, and dinitrophenol, and specific for ADP and ATP. mine, EDTA, and boric acid were purchased from Sigma. N- Efflux of radiolabeled nucleotide was observed in the presence ethylmaleimide, 2,4-dinitrophenol, and trichloroacetic acid of extracellular ADP or ATP but not AMP and was not ob- were purchased from Fisher. Agarose, restriction endonu- served in the absence of extracellular adenine nucleotides. The cleases, dithiothreitol, and T4 DNA ligase were obtained successful cloning and expression of the rickettsial ADP/ATP from Bethesda Research Laboratories. Nitrocellulose filters translocator in E. coli will permit better characterization of were purchased from Schleicher & Schuell. Membrane fil- rickettsial bioenergetics and of the metabolic regulation of ob- ters (HAWPO25, 0.45-ptm pore size) were purchased from ligate intracellular parasitism. Millipore. [2,8,5'-3H]ATP was purchased from ICN. [a- 32P]ATP was purchased from ICN and New England Nucle- Rickettsia prowazekii, the etiologic agent of epidemic ty- ar. phus, is an obligate intracellular parasite. Whereas other in- Bacterial Strains and Culture Conditions. R. prowazekii tracellular bacteria are generally found surrounded by a strain Madrid E was cultivated in yolk sacs of antibiotic-free membrane of host origin, rickettsiae escape quickly from embryonated chicken eggs and purified as described else- phagocytic vacuoles and grow directly within the cytoplasm where (1). The purification protocol included Renografin (and occasionally the nucleus) of their host cell. Rickettsiae density gradient centrifugation to remove contaminating are not leaky, as had been postulated, but possess both usual yolk sac mitochondria (6). The E. coli strains used in this and unusual transport systems (1-4), most notably, a carrier- study were DH1 (gyrA96 recAl relAl(?) endAl thi-J hsdRJ7 mediated ADP/ATP translocator (1). This activity, similar to glnV44 X- F-) and HB101 (7) (hsdS20 rB mB recAl3 xyl-5 that present in mitochondria, permits the exchange of ADP mtl-l ara-14 proA2 lacYJ galK2 leuB6 rpsL20 thi-l glnV44 from the rickettsia for ATP present in the host cell's cyto- X- F-). The former was obtained from B. Bachmann (E. coli plasm. The carrier is specific for ADP and ATP, operates Genetic Stock Center, New Haven, CT); the latter strain equally well in either direction, has no energy requirement, was supplied by D. Kopecko (Walter Reed Army Institute of and is of an obligatory exchange type-i.e., for every mole- Research, Washington, D.C.). E. coli strains were cultured cule of ATP transported into a rickettsia, a molecule of ADP at 37°C in L broth or on L agar plates (8), except where indi- must be transported from the rickettsia, or vice versa. ADP/ cated. ATP exchange is regulated at least in part by the concentra- Cosmid Clone Bank Formation. The protocol for formation tion of inorganic phosphate (5). of cosmid clone banks of the R. prowazekii genome has been Characterization of the ADP/ATP translocator is funda- published in detail (9). Briefly, rickettsial DNA was extract- mental to gaining an understanding of rickettsial physiology ed according to Myers and Wisseman (10) and purified by and the regulation thereof. This task is complicated enor- CsCl density gradient equilibrium centrifugation. The cos- mously by the difficulty in obtaining large quantities of high- mid vector pHC79 (11) was purified according to Clewell and ly purified rickettsiae due to the required intracellular propa- Helinski (12). Sau3A-digested rickettsial DNA was inserted gation of these bacteria, usually in embryonated hen eggs. into the BamHI site of pHC79. The ligated DNA was pack- Furthermore, attempts to form membrane vesicles from R. aged into capsids by using packaging extracts prepared from prowazekii, which would be very important in this charac- E. coli strains BHB2688 and BHB2690 (13, 14) as described by Davis et al. (15). E. coli DH1 was cultured in L broth The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" Abbreviation: kb, kilobase pair(s). in accordance with 18 U.S.C. §1734 solely to indicate this fact. *To whom reprint requests should be addressed. 3015 Downloaded by guest on September 25, 2021 3016 Microbiology: Krause et al. Proc. NatL Acad Sci. USA 82 (1985) containing maltose rather than glucose, infected with the R. prowazekii was included as a positive control in well 1A, packaged recombinant cosmids, and cultured on L agar con- while E. coli DH1 was present in 12G. The intensity of 9B in taining ampicillin at 15 ,ug/ml. Ampicillin-resistant colonies this autoradiograph was significantly greater than that of the were stocked individually in 96-well Microtiter dishes in 200 other clones present, the E. coli negative control, and the /.l of L broth containing ampicillin and approximately 10% rickettsial positive control. Variability in the intensity of the glycerol. positive control from experiment to experiment was a func- In Situ Screening of Clone Banks for ATP Transport. Cos- tion of total rickettsial cell number and viability as indicated mid clones were replica plated to 96-well Microtiter dishes by hemolytic activity (16). containing 200 A.l of L broth with ampicillin (15 pug/ml) per Physical Characterization of the Recombinant Plasmid. well and incubated overnight at 370C. The bacterial suspen- Clone 9B has been designated MOB286, and the recombi- sions were transferred to a 96-well vacuum manifold, in nant plasmid associated with this clone, pMW286. Plasmid which the cells were collected on a nitrocellulose filter (pore DNA was extracted from MOB286 according to Hansen and size 0.45 gum). After two washes with 100 mM sodium phos- Olsen (17) and purified by two successive cesium chloride/ phate buffer, pH 7.2 (PB), suction was removed and 200 g4 ethidium bromide density gradient equilibrium centrifuga- of PB containing [a-32P]ATP (1 p.Ci/ml, 5-25 Ci/mmol; 1 Ci tions. Plasmid pMW286 was digested to completion with re- = 37 GBq) was added per well. The cells were incubated in striction endonuclease HindIlI and analyzed by agarose gel the presence of radiolabeled ATP for 20 min at room tem- electrophoresis (Fig. 2A). HindIII restriction fragments to- perature, after which the vacuum was restored and the filters taling approximately 15.4 kilobase pairs (kb) were observed were washed four times with PB, using approximately 0.5 ml (Fig. 2A, lane d). HindIII digestions of R. prowazekii geno- per wash. The filters were then removed from the manifold mic DNA, E. coli DNA, and chicken egg yolk sac DNA were and placed on blotting paper saturated with PB for an addi- included for comparison. The DNA shown in Fig. 2A was tional 15-20 min to permit removal of radioactivity that transferred to nitrocellulose paper according to Southern might have seeped between the wells. After air-drying, the (18) and probed with pMW286 biotinylated by nick-transla- filters were heated to 80'C for 45 min and exposed to x-ray tion (19), using a kit obtained from Bethesda Research Labo- film (Kodak X-Omat RP) overnight. Autoradiography was ratories. Hybridization was carried out under conditions re- enhanced with an intensifier screen. Transport of ATP and quiring greater than 90% DNA sequence homology. No hy- exchange of ADP and ATP by E. coli clones or R. prowazekii bridization was observed to E. coli or yolk sac DNA. Some were assayed in uptake experiments as detailed elsewhere hybridization to bacteriophage X DNA was observed and (1). Briefly, E. coli cells were cultured to late logarithmic probably can be attributed to the X cos site in the cosmid phase (optical density at 600 nm of 0.6-0.7) in L broth with vector pHC79.
Recommended publications
  • Rickettsia Prowazekii Common Human Exposure Routes
    APPENDIX 2 Rickettsia prowazekii Common Human Exposure Routes: Disease Agent: • Exposure to the feces of infected body lice. The lice are infected by a human blood meal. The rickettsiae • Rickettsia prowazekii reproduce in the louse gut epithelium. Infection occurs when louse feces are scratched into the skin, Disease Agent Characteristics: inoculated onto mucous membrane or inhaled. • As a bioweapon, the agent can be aerosolized, with • Rickettsiae are obligate intracellular Gram-negative intent of infection through inhalation. bacteria. • Sporadic cases occur after exposure to flying squir- • Order: Rickettsiales; Family: Rickettsiaceae rels, most likely as a result of exposure to squirrel flea • Size: 0.3 ¥ 1.0 mm intracellular bacteria that take up feces. The organism has also been identified in ticks Gram stain poorly feeding on livestock in Africa. • Nucleic acid: Rickettsial genomes are among the Likelihood of Secondary Transmission: smallest of bacteria at 1000-1600 kb. The R. prowazekii genome is 1100 kb. • No evidence of direct person-to-person transmission • Physicochemical properties: Susceptible to 1% • Under crowded conditions, where bathing and sodium hypochlorite, 70% ethanol, glutaraldehyde, washing clothes are difficult, and where lice are formaldehyde and quaternary ammonium disinfec- present, typhus can spread explosively. tants. Sensitive to moist heat (121°C for at least • Recent outbreaks have occurred in a number of areas 15 min) and dry heat (160-170°C for at least 1 hour). in the world under conditions of war and population The organism is stable in tick tissues or blood under displacement. ambient environmental conditions, surviving up to 1 year; sensitive to drying (feces of infected ticks At-Risk Populations: quickly lose their infectivity on drying).
    [Show full text]
  • Typhus Fever, Organism Inapparently
    Rickettsia Importance Rickettsia prowazekii is a prokaryotic organism that is primarily maintained in prowazekii human populations, and spreads between people via human body lice. Infected people develop an acute, mild to severe illness that is sometimes complicated by neurological Infections signs, shock, gangrene of the fingers and toes, and other serious signs. Approximately 10-30% of untreated clinical cases are fatal, with even higher mortality rates in Epidemic typhus, debilitated populations and the elderly. People who recover can continue to harbor the Typhus fever, organism inapparently. It may re-emerge years later and cause a similar, though Louse–borne typhus fever, generally milder, illness called Brill-Zinsser disease. At one time, R. prowazekii Typhus exanthematicus, regularly caused extensive outbreaks, killing thousands or even millions of people. This gave rise to the most common name for the disease, epidemic typhus. Epidemic typhus Classical typhus fever, no longer occurs in developed countries, except as a sporadic illness in people who Sylvatic typhus, have acquired it while traveling, or who have carried the organism for years without European typhus, clinical signs. In North America, R. prowazekii is also maintained in southern flying Brill–Zinsser disease, Jail fever squirrels (Glaucomys volans), resulting in sporadic zoonotic cases. However, serious outbreaks still occur in some resource-poor countries, especially where people are in close contact under conditions of poor hygiene. Epidemics have the potential to emerge anywhere social conditions disintegrate and human body lice spread unchecked. Last Updated: February 2017 Etiology Rickettsia prowazekii is a pleomorphic, obligate intracellular, Gram negative coccobacillus in the family Rickettsiaceae and order Rickettsiales of the α- Proteobacteria.
    [Show full text]
  • A Streamlined Method for Transposon Mutagenesis of Rickettsia Parkeri
    bioRxiv preprint doi: https://doi.org/10.1101/277160; this version posted March 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 A streamlined method for transposon mutagenesis of 2 Rickettsia parkeri yields numerous mutations that 3 impact infection 4 5 Rebecca L. Lamason1,#a,*, Natasha M. Kafai1,#b, and Matthew D. Welch1* 6 7 8 1 Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, 9 CA 10 #a Current address: Department of Biology, Massachusetts Institute of Technology, 11 Cambridge, MA 12 #b Current address: Medical Scientist Training Program, Washington University in St. 13 Louis School of Medicine, St. Louis, MO 14 15 16 17 18 * Co-corresponding authors 19 E-mail: [email protected], [email protected] 20 1 bioRxiv preprint doi: https://doi.org/10.1101/277160; this version posted March 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 21 Abstract 22 The rickettsiae are obligate intracellular alphaproteobacteria that exhibit a complex 23 infectious life cycle in both arthropod and mammalian hosts. As obligate intracellular 24 bacteria, Rickettsia are highly adapted to living inside a variety of host cells, including 25 vascular endothelial cells during mammalian infection. Although it is assumed that the 26 rickettsiae produce numerous virulence factors that usurp or disrupt various host cell 27 pathways, they have been challenging to genetically manipulate to identify the key 28 bacterial factors that contribute to infection.
    [Show full text]
  • The Vectorial Capacity of Human Lice: Pediculus Humanus and Pthirus Pubis
    Ankara Üniv Vet Fak Derg, 60, 269-273, 2013 Review / Derleme The vectorial capacity of human lice: Pediculus humanus and Pthirus pubis Kosta Y. MUMCUOGLU Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem, Israel. Summary: The body louse (Pediculus humanus humanus) is the vector of Rickettsia prowazekii, the agent of epidemic typhus, Borrelia recurrentis, the agent of louse-borne relapsing fever and Bartonella quintana, and the agent of trench fever. Although Acinobacter baumannii and Serratia marcescens have been detected in body lice, their vectorial capacity for these pathogens is not yet clear. Under experimental conditions, it was shown that body lice become infested and later transmit pathogens such as Yersinia pestis, Rickettsia typhi, Rickettsia conorii and Rickettsia rickettsiae, however in these cases it is not known if this could happen under natural conditions. The vectorial ability of head lice remains quite controversial. Under experimental conditions head lice were infected with R. prowazekii and disseminate this pathogen in their feces, showing that these lice have the potential to be a vector pathogen under optimal epidemiologic conditions, e.g., during outbreaks of epidemic typhus. Head lice and their eggs collected from children and homeless people were tested positive for B. quintana. Pubic lice are not known to be vectors of any human pathogenic microorganisms under field conditions. Key words: Pediculus humanus capitis, Pediculus humanus humanus, Pthirus pubis, vector. İnsan bitleri: Pediculus humanus ve Pthirus pubis’in vektörlük kapasiteleri Özet: İnsan vücut biti (Pediculus humanus humanus); epidemik tifüs (salgın tifüs, bit tifüsü, lekeli humma) etkeni Rickettsia prowazekii’nin, bitle bulaşan dönemeli ateş (louse-borne relapsing fever) ajanı Borrelia recurrentis’in ve siper ateşi (trench fever) etkeni Bartonella quintana’nın vektörüdür.
    [Show full text]
  • The Approved List of Biological Agents Advisory Committee on Dangerous Pathogens Health and Safety Executive
    The Approved List of biological agents Advisory Committee on Dangerous Pathogens Health and Safety Executive © Crown copyright 2021 First published 2000 Second edition 2004 Third edition 2013 Fourth edition 2021 You may reuse this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence. To view the licence visit www.nationalarchives.gov.uk/doc/ open-government-licence/, write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email [email protected]. Some images and illustrations may not be owned by the Crown so cannot be reproduced without permission of the copyright owner. Enquiries should be sent to [email protected]. The Control of Substances Hazardous to Health Regulations 2002 refer to an ‘approved classification of a biological agent’, which means the classification of that agent approved by the Health and Safety Executive (HSE). This list is approved by HSE for that purpose. This edition of the Approved List has effect from 12 July 2021. On that date the previous edition of the list approved by the Health and Safety Executive on the 1 July 2013 will cease to have effect. This list will be reviewed periodically, the next review is due in February 2022. The Advisory Committee on Dangerous Pathogens (ACDP) prepares the Approved List included in this publication. ACDP advises HSE, and Ministers for the Department of Health and Social Care and the Department for the Environment, Food & Rural Affairs and their counterparts under devolution in Scotland, Wales & Northern Ireland, as required, on all aspects of hazards and risks to workers and others from exposure to pathogens.
    [Show full text]
  • Chemosynthetic Symbiont with a Drastically Reduced Genome Serves As Primary Energy Storage in the Marine Flatworm Paracatenula
    Chemosynthetic symbiont with a drastically reduced genome serves as primary energy storage in the marine flatworm Paracatenula Oliver Jäcklea, Brandon K. B. Seaha, Målin Tietjena, Nikolaus Leischa, Manuel Liebekea, Manuel Kleinerb,c, Jasmine S. Berga,d, and Harald R. Gruber-Vodickaa,1 aMax Planck Institute for Marine Microbiology, 28359 Bremen, Germany; bDepartment of Geoscience, University of Calgary, AB T2N 1N4, Canada; cDepartment of Plant & Microbial Biology, North Carolina State University, Raleigh, NC 27695; and dInstitut de Minéralogie, Physique des Matériaux et Cosmochimie, Université Pierre et Marie Curie, 75252 Paris Cedex 05, France Edited by Margaret J. McFall-Ngai, University of Hawaii at Manoa, Honolulu, HI, and approved March 1, 2019 (received for review November 7, 2018) Hosts of chemoautotrophic bacteria typically have much higher thrive in both free-living environmental and symbiotic states, it is biomass than their symbionts and consume symbiont cells for difficult to attribute their genomic features to either functions nutrition. In contrast to this, chemoautotrophic Candidatus Riegeria they provide to their host, or traits that are necessary for envi- symbionts in mouthless Paracatenula flatworms comprise up to ronmental survival or to both. half of the biomass of the consortium. Each species of Paracate- The smallest genomes of chemoautotrophic symbionts have nula harbors a specific Ca. Riegeria, and the endosymbionts have been observed for the gammaproteobacterial symbionts of ves- been vertically transmitted for at least 500 million years. Such icomyid clams that are directly transmitted between host genera- prolonged strict vertical transmission leads to streamlining of sym- tions (13, 14). Such strict vertical transmission leads to substantial biont genomes, and the retained physiological capacities reveal and ongoing genome reduction.
    [Show full text]
  • Analysis of Sequence Variation at Two Helicobacter Pylori Genetic Loci Potentially Involved in Virulence
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2008 Analysis of Sequence Variation at Two Helicobacter pylori Genetic Loci Potentially involved in Virulence George Warren Liechti College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Microbiology Commons, and the Molecular Biology Commons Recommended Citation Liechti, George Warren, "Analysis of Sequence Variation at Two Helicobacter pylori Genetic Loci Potentially involved in Virulence" (2008). Dissertations, Theses, and Masters Projects. Paper 1539626867. https://dx.doi.org/doi:10.21220/s2-zrbg-b193 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Analysis of sequence variation atHelicobacter two pylori genetic loci potentially involved in virulence. George Warren Liechti Springfield, Virginia Bachelors of Science, College of William and Mary, 2003 A Thesis presented to the Graduate Faculty of the College of William and Mary in Candidacy for the Degree of Master of Science Department of Biology The College of William and Mary May, 2008 APPROVAL PAGE This Thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science George Warren Liechti Approved by^the Cq , April, 2008 Committee Chair Associate Professor Mark Forsyth, Biology, The College of William and Mary r Professor Margaret Saha, Biology, The College of William and Mary Associate Professor George Gilchrist, Biology, The College of William and Mary / J / ABSTRACT PAGE Helicobacter pylori colonizes the gastric mucosa of nearly half the world’s population and is a well documented etiologic agent of peptic ulcer disease (PUD) and a significant risk factor for the development of gastric cancer.
    [Show full text]
  • Using Core Genome Alignments to Assign Bacterial Species 2
    bioRxiv preprint doi: https://doi.org/10.1101/328021; this version posted May 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Using Core Genome Alignments to Assign Bacterial Species 2 3 Matthew Chunga,b, James B. Munroa, Julie C. Dunning Hotoppa,b,c,# 4 a Institute for Genome Sciences, University of Maryland Baltimore, Baltimore, MD 21201, USA 5 b Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 6 21201, USA 7 c Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore, Baltimore, MD 21201, 8 USA 9 10 Running Title: Core Genome Alignments to Assign Bacterial Species 11 12 #Address correspondence to Julie C. Dunning Hotopp, [email protected]. 13 14 Word count Abstract: 371 words 15 Word count Text: 4,833 words 16 1 bioRxiv preprint doi: https://doi.org/10.1101/328021; this version posted May 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 17 ABSTRACT 18 With the exponential increase in the number of bacterial taxa with genome sequence data, a new 19 standardized method is needed to assign bacterial species designations using genomic data that is 20 consistent with the classically-obtained taxonomy.
    [Show full text]
  • Single-Cell Genomics of a Rare Environmental Alphaproteobacterium Provides Unique Insights Into Rickettsiaceae Evolution
    The ISME Journal (2015) 9, 2373–2385 © 2015 International Society for Microbial Ecology All rights reserved 1751-7362/15 www.nature.com/ismej ORIGINAL ARTICLE Single-cell genomics of a rare environmental alphaproteobacterium provides unique insights into Rickettsiaceae evolution Joran Martijn1, Frederik Schulz2, Katarzyna Zaremba-Niedzwiedzka1, Johan Viklund1, Ramunas Stepanauskas3, Siv GE Andersson1, Matthias Horn2, Lionel Guy1,4 and Thijs JG Ettema1 1Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; 2Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria; 3Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA and 4Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden The bacterial family Rickettsiaceae includes a group of well-known etiological agents of many human and vertebrate diseases, including epidemic typhus-causing pathogen Rickettsia prowazekii. Owing to their medical relevance, rickettsiae have attracted a great deal of attention and their host-pathogen interactions have been thoroughly investigated. All known members display obligate intracellular lifestyles, and the best-studied genera, Rickettsia and Orientia, include species that are hosted by terrestrial arthropods. Their obligate intracellular lifestyle and host adaptation is reflected in the small size of their genomes, a general feature shared with all other families of the Rickettsiales. Yet, despite that the Rickettsiaceae and other Rickettsiales families have been extensively studied for decades, many details of the origin and evolution of their obligate host-association remain elusive. Here we report the discovery and single-cell sequencing of ‘Candidatus Arcanobacter lacustris’, a rare environmental alphaproteobacterium that was sampled from Damariscotta Lake that represents a deeply rooting sister lineage of the Rickettsiaceae.
    [Show full text]
  • Evolutionary Relationship of Rickettsiae and Mitochondria
    FEBS 25031 FEBS Letters 501 (2001) 11^18 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Hypothesis Evolutionary relationship of Rickettsiae and mitochondria Victor V. Emelyanov* Department of General Microbiology, Gamaleya Institute of Epidemiology and Microbiology, Moscow 123098, Russia Received 7 May 2001; accepted 30 May 2001 First published online 26 June 2001 Edited by Matti Saraste2 genetic methods [8^10]. Comparative studies of mitochondrial Abstract Phylogenetic data support an origin of mitochondria from the K-proteobacterial order Rickettsiales. This high-rank genomes unequivocally pointed to a eubacterial ancestry of taxon comprises exceptionally obligate intracellular endosym- mitochondria [2,8]. Their monophyletic nature and close rela- bionts of eukaryotic cells, and includes family Rickettsiaceae and tionship to the order Rickettsiales of K-Proteobacteria a group of microorganisms termed Rickettsia-like endosymbionts emerged from multiple phylogenetic reconstructions based (RLEs). Most detailed phylogenetic analyses of small subunit on conserved proteins and small subunit (SSU) rRNA rRNA and chaperonin 60 sequences consistently show the RLEs [7,11^16]. Due to the scarcity of relevant molecular informa- to have emerged before Rickettsiaceae and mitochondria sister tion, above phylogenetic studies involved mostly aerobically clades. These data suggest that the origin of mitochondria and respiring mitochondria and a few rickettsial species. It is Rickettsiae has been preceded by the long-term mutualistic known, however, that some primitive eukaryotes have anaer- relationship of an intracellular bacterium with a pro-eukaryote, obic mitochondria [17,18] while others instead possess hydro- in which an invader has lost many dispensable genes, yet evolved carrier proteins to exchange respiration-derived ATP for genosomes ^ energy-generating organelles which are suggested host metabolites as envisaged in classic endosymbiont to be biochemically modi¢ed mitochondria [19,20].
    [Show full text]
  • The Sca2 Autotransporter Protein from Rickettsia Conorii Is Sufficient To
    INFECTION AND IMMUNITY, Dec. 2009, p. 5272–5280 Vol. 77, No. 12 0019-9567/09/$12.00 doi:10.1128/IAI.00201-09 Copyright © 2009, American Society for Microbiology. All Rights Reserved. The Sca2 Autotransporter Protein from Rickettsia conorii Is Sufficient To Mediate Adherence to and Invasion of Cultured Mammalian Cellsᰔ Marissa M. Cardwell and Juan J. Martinez* The University of Chicago, The Department of Microbiology, 920 East 58th Street, Cummings Life Sciences Center 707A, Chicago, Illinois 60637 Received 20 February 2009/Returned for modification 18 March 2009/Accepted 24 September 2009 Obligate intracellular bacteria of the genus Rickettsia must adhere to and invade the host endothelium in order to establish an infection. These processes require the interaction of rickettsial surface proteins with mammalian host cell receptors. A previous bioinformatic analysis of sequenced rickettsial species identified a family of at least 17 predicted “surface cell antigen” (sca) genes whose products resemble autotransporter proteins. Two members of this family, rOmpA and rOmpB of spotted fever group (SFG) rickettsiae have been identified as adhesion and invasion factors, respectively; however, little is known about the putative functions of the other sca gene products. An intact sca2 gene is found in the majority of pathogenic SFG rickettsiae and, due to its sequence conservation among these species, we predict that Sca2 may play an important function at the rickettsial surface. Here we have shown that sca2 is transcribed and expressed in Rickettsia conorii and have used a heterologous gain-of-function assay in E. coli to determine the putative role of Sca2. Using this system, we have demonstrated that expression of Sca2 at the outer membrane of nonadherent, noninvasive E.
    [Show full text]
  • Rickettsia Prowazekii Angela Mcgaugh1, David Wood2, and Aimee Tucker2 1Department of Biomedical Sciences, University of South Alabama, Mobile, AL 36688
    Identification of Putative Secretion Effectors in Rickettsia prowazekii Angela McGaugh1, David Wood2, and Aimee Tucker2 1Department of Biomedical Sciences, University of South Alabama, Mobile, AL 36688. 2Department of Microbiology and Immunology, University of South Alabama, Mobile, AL 36688. Abstract . Fusion Cassette The obligate intracellular, gram-negative bacterium Rickettsia prowazekii, the louse-borne, causative agent of epidemic typhus, is a historically significant pathogen that has caused millions of deaths during periods of war and famine. It is also identified as a potential bioterrorism weapon. Because R. prowazekii only grows within the cytosol of host cells, it has evolved mechanisms that aid its infection, intracellular growth, and ability to evade host cell defense. The rickettsial genome contains several secretion systems that may support the Results delivery of secreted effectors that would interact with its host. To identify Methodology Targets have been successfully amplified and ligated with the putative effectors, a shuttle vector was constructed containing an expression plasmid vector. Currently, E. coli transformants are being cassette that incorporates a tandem FLAG and glycogen synthase kinase (GSK) Selection of Secreted Effectors screened using antibiotic selection and the presence of “pink” tag that can be fused to a protein of interest. The FLAG-GSK tag allows the colonies. Selected transformants are digested with specific proteins to be identified within the eukaryotic cytosol, confirming protein • Signal
    [Show full text]