The Rickettsia Late Motility Factor Sca2 Exhibits Species Differences in Its Actin Assembly Mechanism by Julie Eunkyoung Choe

Total Page:16

File Type:pdf, Size:1020Kb

The Rickettsia Late Motility Factor Sca2 Exhibits Species Differences in Its Actin Assembly Mechanism by Julie Eunkyoung Choe The Rickettsia Late Motility Factor Sca2 Exhibits Species Differences in its Actin Assembly Mechanism by Julie Eunkyoung Choe A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Molecular and Cell Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Matthew D. Welch, Chair Professor Eva Nogales Professor David Drubin Professor Kathleen Ryan Fall 2015 The Rickettsia Late Motility Factor Sca2 Exhibits Species Differences in its Actin Assembly Mechanism © 2015 by Julie Eunkyoung Choe Abstract The Rickettsia Late Motility Factor Sca2 Exhibits Species Differences in its Actin Assembly Mechanism by Julie Eunkyoung Choe Doctor of Philosophy in Molecular and Cell Biology University of California, Berkeley Professor Matthew D. Welch, Chair Intracellular pathogens commonly subvert the host cell actin cytoskeleton during various points of their infection cycles. My work has focused on the exploitation of actin by pathogens that grow within the cytosol. Many such pathogens assemble actin filaments at their surface to power motility within the cytoplasm, facilitating cell-cell spread during infection. Diverse bacterial species have independently evolved this strategy, and each uses a distinct mechanisms to intercept or mimic different host proteins involved in actin polymerization. Rickettsia are one genus of bacterial pathogens that exploit actin for intracellular motility. These are Gram-negative, obligate intracellular pathogens that include the causative agents of various types of spotted fever disease and typhus. Species within the genus Rickettsia can express up to two bacterial factors that power motility at either early or late times during infection. My work has focused on orthologs of the Rickettsia late motility factor Sca2 (surface cell antigen 2). Interestingly, I have found that these exhibit significant sequence differences between species. I participated in the discovery that Sca2 from the spotted fever group (SFG) Rickettsia species R. parkeri mimics eukaryotic formins in its ability to nucleate and processively elongate actin filaments, resulting in the assembly of an actin comet tail consisting of long and bundled filaments. Furthermore, for R. parkeri Sca2, I identified a minimal truncation that retains nucleation function, and showed that it can bind to three molecules of profilin, also similar to the behavior of formins. In contrast, Sca2 from typhus group (TG) and ancestral group (AG) Rickettsia species lack the formin-mimicking domain, and the organization of the actin filaments in their comet tails is poorly defined. I found that Sca2 from the TG species R. typhi nucleates actin, though its specific actin assembly mechanism remains undetermined. I further found that Sca2 from the AG species R. bellii nucleates actin efficiently when dimerized, and binds to a single actin monomer through a WASP-homology 2 (WH2) motif. These results suggest that R. bellii Sca2 may assemble actin via a mechanism that mimics eukaryotic tandem- WH2 nucleators, and its activity may be enhanced by dimerization or oligomerization of Sca2 on the bacterial surface. Additionally, I found that during infection, R. bellii move more slowly, in more curved paths, and more frequently than R. parkeri, and generate narrower actin tails consisting of bundled actin filaments. Nevertheless, R. bellii and R. parkeri use a similar set of host actin cytoskeletal proteins for efficient motility. Together, these data support the conclusion that R. bellii Sca2 utilizes a distinct mechanism to assemble actin filaments, and yet harness a similar set of host proteins to promote a motility that occurs with distinct parameters when compared with other Rickettsia species. This work reveals that even related bacterial species exhibit a surprising diversity of actin assembly mechanisms to subvert host actin for intracellular movement. 1 Table of Contents Abstract ........................................................................................................................................... 1 Table of Contents .............................................................................................................................. i List of Figures ................................................................................................................................... ii List of Abbreviations ....................................................................................................................... iii Acknowledgments........................................................................................................................... iv Chapter 1 – Introduction: An evolutionary perspective on the role of actin-based motility in virulence of intracellular bacterial pathogens ................................................................................ 1 Roles of actin-based motility in survival and virulence ...................................................... 4 Bacterial motility factors mimic eukaryotic host actin nucleators ..................................... 6 Actin motility proteins – orthologs comparison and evolution .......................................... 7 Conclusion and future directions ...................................................................................... 11 References ........................................................................................................................ 13 Chapter 2 – Actin assembly by the late actin-based motility factor Sca2 in spotted fever group and typhus group Rickettsia species ............................................................................................. 18 Introduction ...................................................................................................................... 19 Results ............................................................................................................................... 21 Discussion.......................................................................................................................... 27 Materials & Methods ........................................................................................................ 31 References ........................................................................................................................ 34 Chapter 3 – The Sca2 protein from the ancestral group Rickettsia species Rickettsia bellii employs a distinctive mechanism of actin assembly .................................................................... 37 Introduction ...................................................................................................................... 38 Results ............................................................................................................................... 40 Discussion.......................................................................................................................... 50 Materials & Methods ........................................................................................................ 55 References ........................................................................................................................ 59 Chapter 4 – Future Directions & Remaining Questions ................................................................ 63 Sca2 Ortholog Mechanisms .............................................................................................. 64 Host Factor Requirements ................................................................................................ 65 Expression Patterns and Regulation of Sca2 Orthologs.................................................... 66 Genetic Manipulation of Rickettsia .................................................................................. 67 References ........................................................................................................................ 69 i List of Figures Figure 1.1 – Bacteria intercept actin pathways for several purposes during infection ................. 3 Figure 1.2 – Eukaryotic actin nucleators and their bacterial mimics.............................................. 5 Figure 1.3 – Mechanisms of ABM of select bacterial species ......................................................... 8 Figure 2.1 – R. parkeri Sca2 domain organization and biochemical characterization of a minimal active fragment ........................................................................................... 20 Figure 2.2 – The proline-rich region of RpSca2 binds profilin ...................................................... 23 Figure 2.3 – RtSca2 passenger is largely insoluble and prone to aggregation. RtSca2-785 conditionally enhances actin assembly .................................................................... 25 Figure 3.1 – Rickettsia phylogeny and domain organization of Sca2 orthologs ........................... 39 Figure 3.2 – R. bellii actin-based motility parameters differ from those of R. parkeri ................. 41 Figure 3.3 – A similar set of host cytoskeleton proteins is important for R. bellii and R. parkeri motility ...................................................................................................... 43 Figure 3.4 – Sca2 has a polar localization more often in R. bellii than in R. parkeri .................... 45 Figure 3.5 – The R. bellii Sca2 passenger domain nucleates actin when dimerized .................... 46 Figure 3.6 – R.
Recommended publications
  • Community Analysis of Microbial Sharing and Specialization in A
    Downloaded from http://rspb.royalsocietypublishing.org/ on March 15, 2017 Community analysis of microbial sharing rspb.royalsocietypublishing.org and specialization in a Costa Rican ant–plant–hemipteran symbiosis Elizabeth G. Pringle1,2 and Corrie S. Moreau3 Research 1Department of Biology, Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Cite this article: Pringle EG, Moreau CS. 2017 Reno, NV 89557, USA 2Michigan Society of Fellows, University of Michigan, Ann Arbor, MI 48109, USA Community analysis of microbial sharing and 3Department of Science and Education, Field Museum of Natural History, 1400 South Lake Shore Drive, specialization in a Costa Rican ant–plant– Chicago, IL 60605, USA hemipteran symbiosis. Proc. R. Soc. B 284: EGP, 0000-0002-4398-9272 20162770. http://dx.doi.org/10.1098/rspb.2016.2770 Ants have long been renowned for their intimate mutualisms with tropho- bionts and plants and more recently appreciated for their widespread and diverse interactions with microbes. An open question in symbiosis research is the extent to which environmental influence, including the exchange of Received: 14 December 2016 microbes between interacting macroorganisms, affects the composition and Accepted: 17 January 2017 function of symbiotic microbial communities. Here we approached this ques- tion by investigating symbiosis within symbiosis. Ant–plant–hemipteran symbioses are hallmarks of tropical ecosystems that produce persistent close contact among the macroorganism partners, which then have substantial opportunity to exchange symbiotic microbes. We used metabarcoding and Subject Category: quantitative PCR to examine community structure of both bacteria and Ecology fungi in a Neotropical ant–plant–scale-insect symbiosis. Both phloem-feed- ing scale insects and honeydew-feeding ants make use of microbial Subject Areas: symbionts to subsist on phloem-derived diets of suboptimal nutritional qual- ecology, evolution, microbiology ity.
    [Show full text]
  • Characterization of the Interaction Between R. Conorii and Human
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 4-5-2018 Characterization of the Interaction Between R. Conorii and Human Host Vitronectin in Rickettsial Pathogenesis Abigail Inez Fish Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Bacteria Commons, Bacteriology Commons, Biology Commons, Immunology of Infectious Disease Commons, and the Pathogenic Microbiology Commons Recommended Citation Fish, Abigail Inez, "Characterization of the Interaction Between R. Conorii and Human Host Vitronectin in Rickettsial Pathogenesis" (2018). LSU Doctoral Dissertations. 4566. https://digitalcommons.lsu.edu/gradschool_dissertations/4566 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. CHARACTERIZATION OF THE INTERACTION BETWEEN R. CONORII AND HUMAN HOST VITRONECTIN IN RICKETTSIAL PATHOGENESIS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Interdepartmental Program in Biomedical and Veterinary Medical Sciences Through the Department of Pathobiological Sciences by Abigail Inez
    [Show full text]
  • Phenotypic and Genomic Analyses of Burkholderia Stabilis Clinical Contamination, Switzerland Helena M.B
    RESEARCH Phenotypic and Genomic Analyses of Burkholderia stabilis Clinical Contamination, Switzerland Helena M.B. Seth-Smith, Carlo Casanova, Rami Sommerstein, Dominik M. Meinel,1 Mohamed M.H. Abdelbary,2 Dominique S. Blanc, Sara Droz, Urs Führer, Reto Lienhard, Claudia Lang, Olivier Dubuis, Matthias Schlegel, Andreas Widmer, Peter M. Keller,3 Jonas Marschall, Adrian Egli A recent hospital outbreak related to premoistened gloves pathogens that generally fall within the B. cepacia com- used to wash patients exposed the difficulties of defining plex (Bcc) (1). Burkholderia bacteria have large, flexible, Burkholderia species in clinical settings. The outbreak strain multi-replicon genomes, a large metabolic repertoire, vari- displayed key B. stabilis phenotypes, including the inabil- ous virulence factors, and inherent resistance to many anti- ity to grow at 42°C; we used whole-genome sequencing to microbial drugs (2,3). confirm the pathogen was B. stabilis. The outbreak strain An outbreak of B. stabilis was identified among hos- genome comprises 3 chromosomes and a plasmid, shar- ing an average nucleotide identity of 98.4% with B. stabilis pitalized patients across several cantons in Switzerland ATCC27515 BAA-67, but with 13% novel coding sequenc- during 2015–2016 (4). The bacterium caused bloodstream es. The genome lacks identifiable virulence factors and has infections, noninvasive infections, and wound contamina- no apparent increase in encoded antimicrobial drug resis- tions. The source of the infection was traced to contaminat- tance, few insertion sequences, and few pseudogenes, ed commercially available, premoistened washing gloves suggesting this outbreak was an opportunistic infection by used for bedridden patients. After hospitals discontinued an environmental strain not adapted to human pathogenic- use of these gloves, the outbreak resolved.
    [Show full text]
  • “Candidatus Deianiraea Vastatrix” with the Ciliate Paramecium Suggests
    bioRxiv preprint doi: https://doi.org/10.1101/479196; this version posted November 27, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The extracellular association of the bacterium “Candidatus Deianiraea vastatrix” with the ciliate Paramecium suggests an alternative scenario for the evolution of Rickettsiales 5 Castelli M.1, Sabaneyeva E.2, Lanzoni O.3, Lebedeva N.4, Floriano A.M.5, Gaiarsa S.5,6, Benken K.7, Modeo L. 3, Bandi C.1, Potekhin A.8, Sassera D.5*, Petroni G.3* 1. Centro Romeo ed Enrica Invernizzi Ricerca Pediatrica, Dipartimento di Bioscienze, Università 10 degli studi di Milano, Milan, Italy 2. Department of Cytology and Histology, Faculty of Biology, Saint Petersburg State University, Saint-Petersburg, Russia 3. Dipartimento di Biologia, Università di Pisa, Pisa, Italy 4 Centre of Core Facilities “Culture Collections of Microorganisms”, Saint Petersburg State 15 University, Saint Petersburg, Russia 5. Dipartimento di Biologia e Biotecnologie, Università degli studi di Pavia, Pavia, Italy 6. UOC Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy 7. Core Facility Center for Microscopy and Microanalysis, Saint Petersburg State University, Saint- Petersburg, Russia 20 8. Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint- Petersburg, Russia * Corresponding authors, contacts: [email protected] ; [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/479196; this version posted November 27, 2018.
    [Show full text]
  • Rickettsia Prowazekii Common Human Exposure Routes
    APPENDIX 2 Rickettsia prowazekii Common Human Exposure Routes: Disease Agent: • Exposure to the feces of infected body lice. The lice are infected by a human blood meal. The rickettsiae • Rickettsia prowazekii reproduce in the louse gut epithelium. Infection occurs when louse feces are scratched into the skin, Disease Agent Characteristics: inoculated onto mucous membrane or inhaled. • As a bioweapon, the agent can be aerosolized, with • Rickettsiae are obligate intracellular Gram-negative intent of infection through inhalation. bacteria. • Sporadic cases occur after exposure to flying squir- • Order: Rickettsiales; Family: Rickettsiaceae rels, most likely as a result of exposure to squirrel flea • Size: 0.3 ¥ 1.0 mm intracellular bacteria that take up feces. The organism has also been identified in ticks Gram stain poorly feeding on livestock in Africa. • Nucleic acid: Rickettsial genomes are among the Likelihood of Secondary Transmission: smallest of bacteria at 1000-1600 kb. The R. prowazekii genome is 1100 kb. • No evidence of direct person-to-person transmission • Physicochemical properties: Susceptible to 1% • Under crowded conditions, where bathing and sodium hypochlorite, 70% ethanol, glutaraldehyde, washing clothes are difficult, and where lice are formaldehyde and quaternary ammonium disinfec- present, typhus can spread explosively. tants. Sensitive to moist heat (121°C for at least • Recent outbreaks have occurred in a number of areas 15 min) and dry heat (160-170°C for at least 1 hour). in the world under conditions of war and population The organism is stable in tick tissues or blood under displacement. ambient environmental conditions, surviving up to 1 year; sensitive to drying (feces of infected ticks At-Risk Populations: quickly lose their infectivity on drying).
    [Show full text]
  • Article/25/5/18-0438-App1.Pdf)
    RESEARCH LETTERS Pathology. 2011;43:58–63. http://dx.doi.org/10.1097/ variabilis ticks can transmit the causative agent of Rocky PAT.0b013e328340e431 Mountain spotted fever, and Ixodes scapularis ticks can 8. Rodriguez-Lozano J, Pérez-Llantada E, Agüero J, Rodríguez-Fernández A, Ruiz de Alegria C, Martinez-Martinez L, transmit the causative agents of Lyme disease, babesiosis, et al. Sternal wound infection caused by Gordonia bronchialis: and human granulocytic anaplasmosis (1). Although less identification by MALDI-TOF MS. JMM Case Rep. 2016;3: common in the region, A. maculatum ticks are dominant e005067. in specific habitats and can transmit the causative agent of Rickettsia parkeri rickettsiosis (1). Address for correspondence: Rene Choi, Department of Ophthalmology, Persons who have occupations that require them to be Casey Eye Institute, Oregon Health and Science University, 3375 SW outside on a regular basis might have a greater risk for ac- Terwilliger Blvd, Portland, OR 97239, USA; email: [email protected] quiring a tickborne disease (2). Although numerous stud- ies have been conducted regarding risks for tickborne dis- eases among forestry workers in Europe, few studies have been performed in the United States (2,3). The studies that have been conducted in the United States have focused on forestry workers in the northeastern region (2). However, because of variable phenology and densities of ticks, it is useful to evaluate tick activity and pathogen prevalence in Rickettsiales in Ticks various regions and ecosystems. Burn-tolerant and burn-dependent ecosystems, such as Removed from Outdoor pine (Pinus spp.) and mixed pine forests commonly found Workers, Southwest Georgia in the southeastern United States, have unique tick dynam- and Northwest Florida, USA ics compared with those of other habitats (4).
    [Show full text]
  • Fleas and Flea-Borne Diseases
    International Journal of Infectious Diseases 14 (2010) e667–e676 Contents lists available at ScienceDirect International Journal of Infectious Diseases journal homepage: www.elsevier.com/locate/ijid Review Fleas and flea-borne diseases Idir Bitam a, Katharina Dittmar b, Philippe Parola a, Michael F. Whiting c, Didier Raoult a,* a Unite´ de Recherche en Maladies Infectieuses Tropicales Emergentes, CNRS-IRD UMR 6236, Faculte´ de Me´decine, Universite´ de la Me´diterrane´e, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France b Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY, USA c Department of Biology, Brigham Young University, Provo, Utah, USA ARTICLE INFO SUMMARY Article history: Flea-borne infections are emerging or re-emerging throughout the world, and their incidence is on the Received 3 February 2009 rise. Furthermore, their distribution and that of their vectors is shifting and expanding. This publication Received in revised form 2 June 2009 reviews general flea biology and the distribution of the flea-borne diseases of public health importance Accepted 4 November 2009 throughout the world, their principal flea vectors, and the extent of their public health burden. Such an Corresponding Editor: William Cameron, overall review is necessary to understand the importance of this group of infections and the resources Ottawa, Canada that must be allocated to their control by public health authorities to ensure their timely diagnosis and treatment. Keywords: ß 2010 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved. Flea Siphonaptera Plague Yersinia pestis Rickettsia Bartonella Introduction to 16 families and 238 genera have been described, but only a minority is synanthropic, that is they live in close association with The past decades have seen a dramatic change in the geographic humans (Table 1).4,5 and host ranges of many vector-borne pathogens, and their diseases.
    [Show full text]
  • Rickettsia Felis: Molecular Characterization of a New Member of the Spotted Fever Group
    International Journal of Systematic and Evolutionary Microbiology (2001), 51, 339–347 Printed in Great Britain Rickettsia felis: molecular characterization of a new member of the spotted fever group Donald H. Bouyer,1 John Stenos,2 Patricia Crocquet-Valdes,1 Cecilia G. Moron,1 Vsevolod L. Popov,1 Jorge E. Zavala-Velazquez,3 Lane D. Foil,4 Diane R. Stothard,5 Abdu F. Azad6 and David H. Walker1 Author for correspondence: David H. Walker. Tel: j1 409 772 2856. Fax: j1 409 772 2500. e-mail: dwalker!utmb.edu 1 Department of Pathology, In this report, placement of Rickettsia felis in the spotted fever group (SFG) WHO Collaborating Center rather than the typhus group (TG) of Rickettsia is proposed. The organism, for Tropical Diseases, University of Texas Medical which was first observed in cat fleas (Ctenocephalides felis) by electron Branch, 301 University microscopy, has not yet been reported to have been cultivated reproducibly, Blvd, Galveston, TX thereby limiting the standard rickettsial typing by serological means. To 77555-0609, USA overcome this challenge, several genes were selected as targets to be utilized 2 Australian Rickettsial for the classification of R. felis. DNA from cat fleas naturally infected with R. Reference Laboratory, Douglas Hocking Medical felis was amplified by PCR utilizing primer sets specific for the 190 kDa surface Institute, Geelong antigen (rOmpA) and 17 kDa antigen genes. The entire 5513 bp rompA gene Hospital, Geelong, was sequenced, characterized and found to have several unique features when Australia compared to the rompA genes of other Rickettsia. Phylogenetic analysis of the 3 Department of Tropical partial sequence of the 17 kDa antigen gene indicated that R.
    [Show full text]
  • Yersinia Enterocolitica
    Li et al. BMC Genomics 2014, 15:201 http://www.biomedcentral.com/1471-2164/15/201 RESEARCH ARTICLE Open Access Gene polymorphism analysis of Yersinia enterocolitica outer membrane protein A and putative outer membrane protein A family protein Kewei Li1†, Wenpeng Gu2†, Junrong Liang1†, Yuchun Xiao1, Haiyan Qiu1, Haoshu Yang1, Xin Wang1 and Huaiqi Jing1* Abstract Background: Yersinia enterocolitica outer membrane protein A (OmpA) is one of the major outer membrane proteins with high immunogenicity. We performed the polymorphism analysis for the outer membrane protein A and putative outer membrane protein A (p-ompA) family protein gene of 318 Y. enterocolitica strains. Results: The data showed all the pathogenic strains and biotype 1A strains harboring ystB gene carried both ompA and p-ompA genes; parts of the biotype 1A strains not harboring ystB gene carried either ompA or p-ompA gene. In non-pathogenic strains (biotype 1A), distribution of the two genes and ystB were highly correlated, showing genetic polymorphism. The pathogenic and non-pathogenic, highly and weakly pathogenic strains were divided into different groups based on sequence analysis of two genes. Although the variations of the sequences, the translated proteins and predicted secondary or tertiary structures of OmpA and P-OmpA were similar. Conclusions: OmpA and p-ompA gene were highly conserved for pathogenic Y. enterocolitica. The distributions of two genes were correlated with ystB for biotype 1A strains. The polymorphism analysis results of the two genes probably due to different bio-serotypes of the strains, and reflected the dissemination of different bio-serotype clones of Y. enterocolitica. Keywords: Yersinia enterocolitica, ompA, p-ompA, ystB Background are mainly referred to type III secretion system (TTSS) Y.
    [Show full text]
  • (Chiroptera: Vespertilionidae) and the Bat Soft Tick Argas Vespe
    Zhao et al. Parasites Vectors (2020) 13:10 https://doi.org/10.1186/s13071-020-3885-x Parasites & Vectors SHORT REPORT Open Access Rickettsiae in the common pipistrelle Pipistrellus pipistrellus (Chiroptera: Vespertilionidae) and the bat soft tick Argas vespertilionis (Ixodida: Argasidae) Shuo Zhao1†, Meihua Yang2†, Gang Liu1†, Sándor Hornok3, Shanshan Zhao1, Chunli Sang1, Wenbo Tan1 and Yuanzhi Wang1* Abstract Background: Increasing molecular evidence supports that bats and/or their ectoparasites may harbor vector-borne bacteria, such as bartonellae and borreliae. However, the simultaneous occurrence of rickettsiae in bats and bat ticks has been poorly studied. Methods: In this study, 54 bat carcasses and their infesting soft ticks (n 67) were collected in Shihezi City, north- western China. The heart, liver, spleen, lung, kidney, small intestine and large= intestine of bats were dissected, followed by DNA extraction. Soft ticks were identifed both morphologically and molecularly. All samples were examined for the presence of rickettsiae by amplifying four genetic markers (17-kDa, gltA, ompA and ompB). Results: All bats were identifed as Pipistrellus pipistrellus, and their ticks as Argas vespertilionis. Molecular analyses showed that DNA of Rickettsia parkeri, R. lusitaniae, R. slovaca and R. raoultii was present in bat organs/tissues. In addition, nine of the 67 bat soft ticks (13.43%) were positive for R. raoultii (n 5) and R. rickettsii (n 4). In the phylo- genetic analysis, these bat-associated rickettsiae clustered together with conspecifc= sequences reported= from other host and tick species, confrming the above results. Conclusions: To the best of our knowledge, DNA of R. parkeri, R. slovaca and R.
    [Show full text]
  • Health: Epidemiology Subchapter 41A
    CHAPTER 41 – HEALTH: EPIDEMIOLOGY SUBCHAPTER 41A – COMMUNICABLE DISEASE CONTROL SECTION .0100 – REPORTING OF COMMUNICABLE DISEASES 10A NCAC 41A .0101 REPORTABLE DISEASES AND CONDITIONS (a) The following named diseases and conditions are declared to be dangerous to the public health and are hereby made reportable within the time period specified after the disease or condition is reasonably suspected to exist: (1) acquired immune deficiency syndrome (AIDS) - 24 hours; (2) anthrax - immediately; (3) botulism - immediately; (4) brucellosis - 7 days; (5) campylobacter infection - 24 hours; (6) chancroid - 24 hours; (7) chikungunya virus infection - 24 hours; (8) chlamydial infection (laboratory confirmed) - 7 days; (9) cholera - 24 hours; (10) Creutzfeldt-Jakob disease - 7 days; (11) cryptosporidiosis - 24 hours; (12) cyclosporiasis - 24 hours; (13) dengue - 7 days; (14) diphtheria - 24 hours; (15) Escherichia coli, shiga toxin-producing - 24 hours; (16) ehrlichiosis - 7 days; (17) encephalitis, arboviral - 7 days; (18) foodborne disease, including Clostridium perfringens, staphylococcal, Bacillus cereus, and other and unknown causes - 24 hours; (19) gonorrhea - 24 hours; (20) granuloma inguinale - 24 hours; (21) Haemophilus influenzae, invasive disease - 24 hours; (22) Hantavirus infection - 7 days; (23) Hemolytic-uremic syndrome – 24 hours; (24) Hemorrhagic fever virus infection - immediately; (25) hepatitis A - 24 hours; (26) hepatitis B - 24 hours; (27) hepatitis B carriage - 7 days; (28) hepatitis C, acute - 7 days; (29) human immunodeficiency
    [Show full text]
  • Pdfs/ Ommended That Initial Cultures Focus on Common Pathogens, Pscmanual/9Pscssicurrent.Pdf)
    Clinical Infectious Diseases IDSA GUIDELINE A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2018 Update by the Infectious Diseases Society of America and the American Society for Microbiologya J. Michael Miller,1 Matthew J. Binnicker,2 Sheldon Campbell,3 Karen C. Carroll,4 Kimberle C. Chapin,5 Peter H. Gilligan,6 Mark D. Gonzalez,7 Robert C. Jerris,7 Sue C. Kehl,8 Robin Patel,2 Bobbi S. Pritt,2 Sandra S. Richter,9 Barbara Robinson-Dunn,10 Joseph D. Schwartzman,11 James W. Snyder,12 Sam Telford III,13 Elitza S. Theel,2 Richard B. Thomson Jr,14 Melvin P. Weinstein,15 and Joseph D. Yao2 1Microbiology Technical Services, LLC, Dunwoody, Georgia; 2Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota; 3Yale University School of Medicine, New Haven, Connecticut; 4Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland; 5Department of Pathology, Rhode Island Hospital, Providence; 6Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill; 7Department of Pathology, Children’s Healthcare of Atlanta, Georgia; 8Medical College of Wisconsin, Milwaukee; 9Department of Laboratory Medicine, Cleveland Clinic, Ohio; 10Department of Pathology and Laboratory Medicine, Beaumont Health, Royal Oak, Michigan; 11Dartmouth- Hitchcock Medical Center, Lebanon, New Hampshire; 12Department of Pathology and Laboratory Medicine, University of Louisville, Kentucky; 13Department of Infectious Disease and Global Health, Tufts University, North Grafton, Massachusetts; 14Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, Illinois; and 15Departments of Medicine and Pathology & Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey Contents Introduction and Executive Summary I.
    [Show full text]