Phenotypic and Genotypic Characterisation of Noonan-Like
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Another Family with the 'Habsburg Jaw'
J Med Genet: first published as 10.1136/jmg.25.12.838 on 1 December 1988. Downloaded from Journal of Medical Genetics 1988, 25, 838-842 Another family with the 'Habsburg jaw' E M THOMPSON* AND R M WINTERt From *the Department of Paediatric Genetics, Institute of Child Health, 30 Guilford Street, London WCIN IEH; and tthe Kennedy-Galton Centre, Clinical Research Centre, Northwick Park Hospital, Watford Road, Harrow, Middlesex HAI 3HJ. SUMMARY We report a three generation family with similar facial characteristics to those of the Royal Habsburgs, including mandibular prognathism, thickened lower lip, prominent, often misshapen nose, flat malar areas, and mildly everted lower eyelids. One child had craniosyn- ostosis which may be part of the syndrome. The Habsburgs, one of Europe's foremost royal nine successive generations of the family' (fig 1). families, are famous not only for the duration of Although it was transmitted as an autosomal their reign and brilliance of their leadership, but also dominant trait, males were more severely affected because they represent one of the few examples of than females. Examination of the abundant portraits Mendelian inheritance of facial characteristics. This of the family shows, in addition to prognathism, a has been referred to as the 'Habsburg jaw' to thick, everted lower lip, a large, often misshar -n describe the prognathic mandible which was seen in nose with a prominent dorsal hump, a tendenc) to flattening of the malar areas, and mild eversior of Received for publication 9 December 1987. copyright. Revised version accepted for publication 2 March 1988. http://jmg.bmj.com/ on October 3, 2021 by guest. -
Benign Fibro-Osseous Lesions Plus…
“Vision is the art of seeing things invisible.” Jonathan Swift 1667 - 1745 Benign Fibro-osseous Lesions Plus… Steven R. Singer, DDS [email protected] 212.305.5674 Benign Fibro-osseous Lesions Fibrous Dysplasia A group of lesions in which normal bone is Localized change in bone metabolism replaced initially by fibrous connective tissue Normal cancellous bone is replaced by Over time, the lesion is infiltrated by osteoid fibrous connective tissue and cementoid tissue The connective tissue contains varying amounts of abnormal bone with irregular This is a benign and idiopathic process trabeculae Trabeculae are randomly oriented. (Remember that normal trabeculae are aligned to respond to stress) Fibrous Dysplasia Fibrous Dysplasia Lesions may be solitary (monostotic) or Fibrous dysplasia is non-hereditary involve more than one bone (polyostotic) Caused by a mutation in a somatic cell. Monostotic form accounts for 70% of all Extent of lesions depends on the timing of cases the mutation. Polyostotic form is more common in the first If the mutation occurs earlier, the disease decade will be more widespread throughout the M=F except in McCune-Albright syndrome, body. An example is McCune-Albright which is almost exclusively found in females Syndrome 1 Fibrous Dysplasia Fibrous Dysplasia McCune-Albright Syndrome • Monostotic and polyostotic forms usually -Almost exclusively begins in the second decade of life females -Polyostotic fibrous • Slow, painless expansion of the jaws dysplasia • Patients may complain of swelling or have -
Segmental Overvekst Og Vaskulærmalformasjoner V02
2/1/2021 Segmental overvekst og vaskulærmalformasjoner v02 Avdeling for medisinsk genetikk Segmental overvekst og vaskulærmalformasjoner Genpanel, versjon v02 * Enkelte genomiske regioner har lav eller ingen sekvensdekning ved eksomsekvensering. Dette skyldes at de har stor likhet med andre områder i genomet, slik at spesifikk gjenkjennelse av disse områdene og påvisning av varianter i disse områdene, blir vanskelig og upålitelig. Disse genetiske regionene har vi identifisert ved å benytte USCS segmental duplication hvor områder større enn 1 kb og ≥90% likhet med andre regioner i genomet, gjenkjennes (https://genome.ucsc.edu). Vi gjør oppmerksom på at ved identifiseringav ekson oppstrøms for startkodon kan eksonnummereringen endres uten at transkript ID endres. Avdelingens websider har en full oversikt over områder som er affisert av segmentale duplikasjoner. ** Transkriptets kodende ekson. Ekson Gen Gen affisert (HGNC (HGNC Transkript Ekson** Fenotype av symbol) ID) segdup* ACVRL1 175 NM_000020.3 2-10 Telangiectasia, hereditary hemorrhagic, type 2 OMIM ADAMTS3 219 NM_014243.3 1-22 Hennekam lymphangiectasia- lymphedema syndrome 3 OMIM AKT1 391 NM_005163.2 2-14 Cowden syndrome 6 OMIM Proteus syndrome, somatic OMIM AKT2 392 NM_001626.6 2-14 Diabetes mellitus, type II OMIM Hypoinsulinemic hypoglycemia with hemihypertrophy OMIM AKT3 393 NM_005465.7 2-14 Megalencephaly-polymicrogyria- polydactyly-hydrocephalus syndrome 2 OMIM file:///data/SegOv_v02-web.html 1/7 2/1/2021 Segmental overvekst og vaskulærmalformasjoner v02 Ekson Gen Gen affisert (HGNC (HGNC -
Tutankhamun's Dentition: the Pharaoh and His Teeth
Brazilian Dental Journal (2015) 26(6): 701-704 ISSN 0103-6440 http://dx.doi.org/10.1590/0103-6440201300431 1Department of Oral and Maxillofacial Tutankhamun’s Dentition: Surgery, University Hospital of Leipzig, Leipzig, Germany The Pharaoh and his Teeth 2Institute of Egyptology/Egyptian Museum Georg Steindorff, University of Leipzig, Leipzig, Germany 3Department of Orthodontics, University Hospital of Greifswald, Greifswald, Germany Niels Christian Pausch1, Franziska Naether2, Karl Friedrich Krey3 Correspondence: Dr. Niels Christian Pausch, Liebigstraße 12, 04103 Leipzig, Germany. Tel: +49- 341-97-21160. e-mail: niels. [email protected] Tutankhamun was a Pharaoh of the 18th Dynasty (New Kingdom) in ancient Egypt. Medical and radiological investigations of his skull revealed details about the jaw and teeth status of the mummy. Regarding the jaw relation, a maxillary prognathism, a mandibular retrognathism and micrognathism have been discussed previously. A cephalometric analysis was performed using a lateral skull X-ray and a review of the literature regarding Key Words: Tutankhamun’s King Tutankhamun´s mummy. The results imply diagnosis of mandibular retrognathism. dentition, cephalometric analysis, Furthermore, third molar retention and an incomplete, single cleft palate are present. mandibular retrognathism Introduction also been discussed (11). In 1922, the British Egyptologist Howard Carter found the undisturbed mummy of King Tutankhamun. The Case Report spectacular discovery enabled scientists of the following In the evaluation of Tutankhamun’s dentition and jaw decades to analyze the Pharaoh's remains. The mummy alignment, contemporary face reconstructions and coeval underwent multiple autopsies. Until now, little was artistic images can be of further use. However, the ancient published about the jaw and dentition of the King. -
Mandibular Prognathism with Unilateral Crossbite—Treatment
message board Mandibular Prognathism with Unilateral Crossbite—Treatment Not Going Well Townie “3MOrtho” wonders how to treat a young boy with a slew of problems such as mandibular prognathism and a mild protrusion of the mandibular incisors 3Mortho Member Since: 11/18/07 Introduction: Post: 1 of 11 The patient is a 10-year-old boy with mandibular prognathism, unilateral crossbite, spacing in the lower arch, minimal crowding in the upper arch, skeletal Class III, and mild protrusion of mandibular incisors. The treatment was started with Delaire mask and RPE. At the end of this treatment (9 months) he had a tete-a-tete bite in the front and the upper arch was successfully expanded. Treatment was continued with Class III and open bite elastics, but the patient is not compliant in wearing the elastics. His second year in treatment, there is deviation of the mandible to the right and the bite cannot be closed with elastics. How would you proceed with the treatment? Would you extract in this case? n 14 DECEMBER 2017 // orthotown.com message board 10/4/2017 Fenrisúlfr Member Since: 02/25/09 What was the rationale for the early intervention/Phase 1? Any discussion re: surgery? Given his Post: 2 of 11 age, and pending a shift, the Class III is likely to significantly worsen with continued mand. growth. A prudent option may be to correct the transverse completely, alleviate any slides and then remove appliances. Once there has been cessation of growth, he can then be evaluated for surgical correction. n 10/4/2017 Shwan Member Since: 08/02/10 There is skeletal mandibular asymmetry that will worsen with time. -
Restriction in Infants
Introduction Ankyloglossia is a congenital anomaly characterized by presence of a hypertrophic lingual frenulum which is short and attached to the very tip of the tongue, limiting its normal movements. Clinically the patient cannot protrude the tongue past the incisal edge of the gingiva and the tongue becomes heart shaped when attempted to protrude. The restricted movements of the tongue can result in problems with breast feeding, lactation, speech disorders and other oral motor disorders like problems with swallowing and licking.1,2 The clinical significance of this anomaly and symptoms produced and the best method of management have been the subject of debate for some time. A review of the relation between the above problems and ankyloglossia is presented. Review Tongue is an accessory organ of importance in mastication, deglutition and speech; many authors describe its stimulatory influence on the development of the dental arches.3 At birth, the tongue unconfined by the teeth, extends outward between the maxillary and mandibular occlusal gum pads. The “infantile swallow” with jaws parted and tongue placed between the jaws is replaced by the adult swallow at the age of two and half years of age. At the start of the normal adult swallow, the lips are closed, the teeth are brought into full occlusion, and the tip is raised and placed against the anterior portion of the palate. The respiratory opening, the nasal cavity, and the anterior portion of the mouth are all sealed off as the tongue, in a sweeping and undulating motion, sweeps backward the mass of chewed food.3,4 The tongue is always short at birth and the tip of the tongue is yet incompletely developed. -
Koolen-De Vries Syndrome: Clinical Report of an Adult and Literature Review
Case Report Cytogenet Genome Res 2016;150:40–45 Accepted: July 25, 2016 DOI: 10.1159/000452724 by M. Schmid Published online: November 17, 2016 Koolen-de Vries Syndrome: Clinical Report of an Adult and Literature Review Claudia Ciaccio Chiara Dordoni Marco Ritelli Marina Colombi Division of Biology and Genetics, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia , Italy Key Words Koolen-de Vries syndrome (KdS, also known as 17q21.31 · Deletion · Joint hypermobility · KANSL1 17q21.31 microdeletion syndrome, OMIM #610443) is a rare genetic disorder (prevalence 1/16,000) characterized by typical facial dysmorphisms, cardiac and renal defects, Abstract developmental delay, and intellectual disability of vari- Koolen-de Vries syndrome (KdS) is a rare genetic condition able level [Tan et al., 2009]. The disorder was initially de- characterized by typical facial dysmorphisms, cardiac and re- scribed as a form of mental retardation caused by a 440– nal defects, skeletal anomalies, developmental delay, and in- 680-kb deletion in the 17q21.31 region, typically encom- tellectual disability of variable level. It is caused by a 440– passing 5 genes: CRHR1 (OMIM 122561), MAPT 680-kb deletion in the 17q21.31 region, encompassing (OMIM 157140), IMP5 (OMIM 608284), STH (OMIM CRHR1 , MAPT , IMP5 , STH , and KANSL1 , or by an intragenic 607067), and KANSL1 (OMIM 612452)* [Koolen et al., KANSL1 mutation. The majority of the patients reported are 2006]. Recently,* it has been shown* that haploinsufficien- pediatric or young adults, and long-term studies able to de- cy* of KANSL1 by itself, due to single* nucleotide variants fine the prognosis of the disease are lacking. -
Megalencephaly and Macrocephaly
277 Megalencephaly and Macrocephaly KellenD.Winden,MD,PhD1 Christopher J. Yuskaitis, MD, PhD1 Annapurna Poduri, MD, MPH2 1 Department of Neurology, Boston Children’s Hospital, Boston, Address for correspondence Annapurna Poduri, Epilepsy Genetics Massachusetts Program, Division of Epilepsy and Clinical Electrophysiology, 2 Epilepsy Genetics Program, Division of Epilepsy and Clinical Department of Neurology, Fegan 9, Boston Children’s Hospital, 300 Electrophysiology, Department of Neurology, Boston Children’s Longwood Avenue, Boston, MA 02115 Hospital, Boston, Massachusetts (e-mail: [email protected]). Semin Neurol 2015;35:277–287. Abstract Megalencephaly is a developmental disorder characterized by brain overgrowth secondary to increased size and/or numbers of neurons and glia. These disorders can be divided into metabolic and developmental categories based on their molecular etiologies. Metabolic megalencephalies are mostly caused by genetic defects in cellular metabolism, whereas developmental megalencephalies have recently been shown to be caused by alterations in signaling pathways that regulate neuronal replication, growth, and migration. These disorders often lead to epilepsy, developmental disabilities, and Keywords behavioral problems; specific disorders have associations with overgrowth or abnor- ► megalencephaly malities in other tissues. The molecular underpinnings of many of these disorders are ► hemimegalencephaly now understood, providing insight into how dysregulation of critical pathways leads to ► -
Cardiomyopathy Precision Panel Overview Indications
Cardiomyopathy Precision Panel Overview Cardiomyopathies are a group of conditions with a strong genetic background that structurally hinder the heart to pump out blood to the rest of the body due to weakness in the heart muscles. These diseases affect individuals of all ages and can lead to heart failure and sudden cardiac death. If there is a family history of cardiomyopathy it is strongly recommended to undergo genetic testing to be aware of the family risk, personal risk, and treatment options. Most types of cardiomyopathies are inherited in a dominant manner, which means that one altered copy of the gene is enough for the disease to present in an individual. The symptoms of cardiomyopathy are variable, and these diseases can present in different ways. There are 5 types of cardiomyopathies, the most common being hypertrophic cardiomyopathy: 1. Hypertrophic cardiomyopathy (HCM) 2. Dilated cardiomyopathy (DCM) 3. Restrictive cardiomyopathy (RCM) 4. Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) 5. Isolated Left Ventricular Non-Compaction Cardiomyopathy (LVNC). The Igenomix Cardiomyopathy Precision Panel serves as a diagnostic and tool ultimately leading to a better management and prognosis of the disease. It provides a comprehensive analysis of the genes involved in this disease using next-generation sequencing (NGS) to fully understand the spectrum of relevant genes. Indications The Igenomix Cardiomyopathy Precision Panel is indicated in those cases where there is a clinical suspicion of cardiomyopathy with or without the following manifestations: - Shortness of breath - Fatigue - Arrythmia (abnormal heart rhythm) - Family history of arrhythmia - Abnormal scans - Ventricular tachycardia - Ventricular fibrillation - Chest Pain - Dizziness - Sudden cardiac death in the family 1 Clinical Utility The clinical utility of this panel is: - The genetic and molecular diagnosis for an accurate clinical diagnosis of a patient with personal or family history of cardiomyopathy, channelopathy or sudden cardiac death. -
Therapeutic Management of Patients with Class III Skeletal Malocclusion
Szpyt Justyna, Gębska Magdalena. Therapeutic management of patients with class III skeletal malocclusion. Mandibular prognathism, maxillary retrognathism – a case report. Journal of Education, Health and Sport. 2019;9(5):20-31. eISSN 2391-8306. DOI http://dx.doi.org/10.5281/zenodo.2656446 http://ojs.ukw.edu.pl/index.php/johs/article/view/6872 https://pbn.nauka.gov.pl/sedno-webapp/works/912455 The journal has had 7 points in Ministry of Science and Higher Education parametric evaluation. Part B item 1223 (26/01/2017). 1223 Journal of Education, Health and Sport eISSN 2391-8306 7 © The Authors 2019; This article is published with open access at Licensee Open Journal Systems of Kazimierz Wielki University in Bydgoszcz, Poland Open Access. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author (s) and source are credited. This is an open access article licensed under the terms of the Creative Commons Attribution Non commercial license Share alike. (http://creativecommons.org/licenses/by-nc-sa/4.0/) which permits unrestricted, non commercial use, distribution and reproduction in any medium, provided the work is properly cited. The authors declare that there is no conflict of interests regarding the publication of this paper. Received: 15.04.2019. Revised: 25.04.2019. Accepted: 01.05.2019. Therapeutic management of patients with class III skeletal malocclusion. Mandibular prognathism, maxillary retrognathism – a case report Justyna Szpyt1, Magdalena Gębska2 1. Physiotherapy student, Faculty of Health Sciences, Pomeranian Medical University in Szczecin. -
Cherubism As a Systemic Skeletal Disease
Morice et al. BMC Musculoskeletal Disorders (2020) 21:564 https://doi.org/10.1186/s12891-020-03580-z CASE REPORT Open Access Cherubism as a systemic skeletal disease: evidence from an aggressive case Anne Morice1,2,3,4*, Aline Joly3,4, Manon Ricquebourg5,6, Gérard Maruani2,7,8, Emmanuel Durand9, Louise Galmiche2,10, Jeanne Amiel2,11, Yoann Vial12,13, Hélène Cavé12,13, Kahina Belhous14, Marie Piketty15, Martine Cohen-Solal6, Ariane Berdal1,16, Corinne Collet5,6, Arnaud Picard1,2,3,4, Amelie E. Coudert1,6,16† and Natacha Kadlub1,2,3,4† Abstract Background: Cherubism is a rare autosomal dominant genetic condition caused by mutations in the SH3BP2 gene. This disease is characterized by osteolysis of the jaws, with the bone replaced by soft tissue rich in fibroblasts and multinuclear giant cells. SH3BP2 is a ubiquitous adaptor protein yet the consequences of SH3BP2 mutation have so far been described as impacting only face. Cherubism mouse models have been generated and unlike human patients, the knock-in mice exhibit systemic bone loss together with a systemic inflammation. Case presentation: In light of these observations, we decided to search for a systemic cherubism phenotype in a 6-year-old girl with an aggressive cherubism. We report here the first case of cherubism with systemic manifestations. Bone densitometry showed low overall bone density (total body Z-score = − 4.6 SD). Several markers of bone remodelling (CTx,BALP,P1NP)aswellasinflammation(TNFα and IL-1) were elevated. A causative second-site mutation in other genes known to influence bone density was ruled out by sequencing a panel of such genes. -
Prevalence and Incidence of Rare Diseases: Bibliographic Data
Number 1 | January 2019 Prevalence and incidence of rare diseases: Bibliographic data Prevalence, incidence or number of published cases listed by diseases (in alphabetical order) www.orpha.net www.orphadata.org If a range of national data is available, the average is Methodology calculated to estimate the worldwide or European prevalence or incidence. When a range of data sources is available, the most Orphanet carries out a systematic survey of literature in recent data source that meets a certain number of quality order to estimate the prevalence and incidence of rare criteria is favoured (registries, meta-analyses, diseases. This study aims to collect new data regarding population-based studies, large cohorts studies). point prevalence, birth prevalence and incidence, and to update already published data according to new For congenital diseases, the prevalence is estimated, so scientific studies or other available data. that: Prevalence = birth prevalence x (patient life This data is presented in the following reports published expectancy/general population life expectancy). biannually: When only incidence data is documented, the prevalence is estimated when possible, so that : • Prevalence, incidence or number of published cases listed by diseases (in alphabetical order); Prevalence = incidence x disease mean duration. • Diseases listed by decreasing prevalence, incidence When neither prevalence nor incidence data is available, or number of published cases; which is the case for very rare diseases, the number of cases or families documented in the medical literature is Data collection provided. A number of different sources are used : Limitations of the study • Registries (RARECARE, EUROCAT, etc) ; The prevalence and incidence data presented in this report are only estimations and cannot be considered to • National/international health institutes and agencies be absolutely correct.