2 Fundamentals of Soil Liquefaction

Total Page:16

File Type:pdf, Size:1020Kb

2 Fundamentals of Soil Liquefaction Pacific Earthquake Engineering PacificPacificPacificPacificPacific EarthquakeEarthquakeEarthquakeEarthquake Earthquake EngineeringEngineeringEngineeringEngineering Engineering Research Center ResearchResearchResearchResearchResearch CenterCenterCenterCenter Center Modeling Soil Liquefaction Hazards for Performance-Based Earthquake Engineering Steven L. Kramer University of Washington Ahmed-W. Elgamal University of California, San Diego A report on research conducted under grant no. EEC-9701568 from the National Science Foundation PEER 2001/12 PEERPEER 2001/06 2001/13 PEERSEPTEMBER PEER2001/062002/03 2001/07 2001 februaryAPRIL 1999 2001 aUGUSTPEERAPRILPEER 2001/09AUG. 2001/10 1999 2002 2001 Septemberdec. 2001 2001 Modeling Soil Liquefaction Hazards for Performance-Based Earthquake Engineering Steven L. Kramer Professor Department of Civil and Environmental Engineering University of Washington and Ahmed-W. Elgamal Professor Department of Structural Engineering University of California, San Diego A report on research conducted under grant no. EEC-9701568 from the National Science Foundation PEER Report 2001/13 Pacific Earthquake Engineering Research Center College of Engineering University of California, Berkeley February 2001 EXECUTIVE SUMMARY Introduction The performance of structures such as buildings and bridges during earthquakes is strongly influenced by the performance of the soils that support them. Local soil conditions can influence structural performance in two primary ways — by influencing the ground motions that excite the structure and by imposing additional deformations on the structure through ground failure. The first widespread observations of damage attributed to liquefaction were made in the 1964 Niigata, Japan, and 1964 Alaska earthquakes. In numerous earthquakes since, liquefaction has been deemed responsible for significant damage to buildings and bridges. Liquefaction has been studied extensively over the past 35 years, and substantial advances have been made in understanding the development and effects of this phenomenon. These advances have led to a series of practical procedures for evaluating the potential for occurrence and for estimating its effects. These procedures, however, are almost entirely empirical in nature and, as such, are difficult to apply to the problem of performance prediction for individual structures. The Pacific Earthquake Engineering Research (PEER) Center is committed to the development of methods and procedures for performance-based earthquake engineering (PBEE). The use of PBEE requires the ability to predict a nearly continuous spectrum of performance states for individual structures. This requirement implies the need for tools and procedures for evaluation of the entire process of liquefaction, from initiation to effects. Recent advances in the understanding of liquefaction-related phenomena offer the promise of improved analytical predictions of the initiation and effects of soil liquefaction. Background Soil liquefaction is a complicated phenomenon that can manifest itself in several different ways in the field. When high porewater pressures are generated in a substantially thick soil layer that is relatively near the ground surface, the upward flowing porewater may carry sand particles up to the ground surface where they are deposited in a generally conical pile called a sand boil. While sand boils represent the most common evidence of subsurface soil liquefaction, they are not damaging by themselves. Liquefaction can, however, produce significant soil deformations, both horizontal and vertical, that can cause significant damage to a variety of structures. iii Soil liquefaction has attracted considerable attention from geotechnical engineering researchers over the past 35 years. Liquefaction research has been undertaken from several different perspectives, which has led to some ambiguity and inconsistency in the terminology used to describe various liquefaction-related phenomena. For example, liquefaction was viewed by one group of researchers to correspond to the condition at which the effective stress reaches (temporarily) a value of zero, while another group considered liquefaction to have occurred when the soil deforms to large strains under constant shearing resistance. The first phenomenon is now referred to as cyclic mobility and the second as flow liquefaction. In the field, significant lateral deformations can be caused by either of these phenomena. The deformations produced by flow liquefaction are usually referred to as flow slides, and those produced by cyclic mobility as lateral spreads, but it is frequently impossible to distinguish between the two in the field. Further complicating matters is the fact that some flow slides begin as lateral spreads, so that the final deformations reflect both phenomena. To date, most research into liquefaction hazards has concentrated on the question of liquefaction potential, i.e., whether or not liquefaction will occur. The influence of liquefaction on the performance of structures, however, depends on the effects of liquefaction. While estimation of liquefaction effects has been improved by development of empirical procedures, the uncertainty involved in predicting these effects is still extremely high. More reliable prediction of structural performance requires more accurate prediction of liquefaction effects. A significant portion of current and planned PEER research, in both the core and lifelines programs, is directed toward improved prediction of the effects of soil liquefaction. This research includes, and will eventually rely upon, the development of accurate, reliable, and practical models for soil liquefaction. Contemporary Issues in Liquefaction Modeling The geotechnical engineering profession’s understanding of the mechanics of soil liquefaction has improved greatly in recent years. The process by which excess porewater pressure increases and stiffness decreases at both low and high strain levels is well understood conceptually, although the experimental database for high strain behavior is quite limited. This improved understanding has allowed the development of constitutive models that capture important aspects of soil behavior that were not included in previous liquefaction models. Several PEER iv researchers have made significant advances in this area, and continue to address contemporary issues in liquefaction modeling. The development of models capable of predicting the effects of liquefaction requires that several issues be addressed. First, the model should be capable of accounting for phase transformation behavior. Second, the model should consider the effects of pore-pressure (and void-ratio) redistribution. Third, the model should account for the residual strength of the soil. Fluctuations in the porewater pressure generated during laboratory tests on liquefiable soils have been observed for many years, but the phenomenon responsible for their occurrence has become well understood only relatively recently. In the early stages of cyclic loading, whether in the laboratory or in the field, liquefiable soils exhibit contractive behavior that causes porewater pressure to increase and effective stress to decrease. At high stress ratios (ratio of shear stress to effective normal stress), however, the soil can exhibit dilative behavior. Dilative behavior leads to reduced porewater pressure and increased effective stress. The condition at which the behavior changes from contractive to dilative, i.e., the phase transformation state, occurs at a particular stress ratio; when plotted graphically in stress path space, this stress ratio is referred to as the “phase transformation line.” The dilation associated with phase transformation behavior leads to stiffening and strengthening of a liquefied soil with increasing strain level. Therefore, phase transformation behavior plays a key role in determining the level of deformations, both cyclic and permanent, that can develop in a liquefied soil deposit. Because performance is so closely related to deformations, consideration of phase transformation behavior is a crucial part of liquefaction modeling for performance-based earthquake engineering. As excess porewater pressures develop in a liquefiable soil deposit, the resulting hydraulic gradients cause the porewater to flow from regions of high hydraulic head to regions of low hydraulic head both during and after earthquake shaking. Frequently, this flow occurs in an upward direction and can, when a sufficient volume of water moves upward fast enough, lead to the ejection of sand and formation of sand boils at the ground surface. At some sites, however, the presence of low-permeability layers of soil impedes the flow of water. In such cases, porewater pressures increase in the vicinity of these layers, often for some period of time following the end of earthquake shaking. As the porewater pressure increases, the effective stress decreases, and the soil rebounds to a higher void ratio. At the higher void ratio, the v residual strength of the soil decreases (often significantly because residual strength is sensitive to void ratio), which can lead to the type of flow sliding that has frequently been observed following earthquakes in the past. Reliable prediction of the performance of structures in areas underlain by liquefiable soil requires that this important mechanism be considered in liquefaction hazard analysis; hence, liquefaction models should be capable of accounting for this type of behavior. When a soil
Recommended publications
  • Title of Paper
    Raw earth construction: is there a role for unsaturated soil mechanics ? D. Gallipoli, A.W. Bruno & C. Perlot Université de Pau et des Pays de l'Adour, Laboratoire SIAME, Anglet, France N. Salmon Nobatek, Anglet, France ABSTRACT: “Raw earth” (“terre crue” in French) is an ancient building material consisting of a mixture of moist clay and sand which is compacted to a more or less high density depending on the chosen building tech- nique. A raw earth structure could in fact be described as a “soil fill in the shape of a building”. Despite the very nature of this material, which makes it particularly suitable to a geotechnical analysis, raw earth construc- tion has so far been the almost exclusive domain of structural engineers and still remains a niche market in current building practice. A multitude of manufacturing techniques have already been developed over the cen- turies but, recently, this construction method has attracted fresh interest due to its eco-friendly characteristics and the potential savings of embodied, operational and end-of-life energy that it can offer during the life cycle of a structure. This paper starts by introducing the advantages of raw earth over other conventional building materials followed by a description of modern earthen construction techniques. The largest part of the manu- script is devoted to the presentation of recent studies about the hydro-mechanical properties of earthen materi- als and their dependency on suction, water content, particle size distribution and relative humidity. A raw earth structure therefore consists of com- pacted moist soil and may be described in geotech- 1 DEFINITION OF EARTHEN nical terms as a “soil fill in the shape of a building”.
    [Show full text]
  • Chapter 3. the Crust and Upper Mantle
    Theory of the Earth Don L. Anderson Chapter 3. The Crust and Upper Mantle Boston: Blackwell Scientific Publications, c1989 Copyright transferred to the author September 2, 1998. You are granted permission for individual, educational, research and noncommercial reproduction, distribution, display and performance of this work in any format. Recommended citation: Anderson, Don L. Theory of the Earth. Boston: Blackwell Scientific Publications, 1989. http://resolver.caltech.edu/CaltechBOOK:1989.001 A scanned image of the entire book may be found at the following persistent URL: http://resolver.caltech.edu/CaltechBook:1989.001 Abstract: T he structure of the Earth's interior is fairly well known from seismology, and knowledge of the fine structure is improving continuously. Seismology not only provides the structure, it also provides information about the composition, crystal structure or mineralogy and physical state. In subsequent chapters I will discuss how to combine seismic with other kinds of data to constrain these properties. A recent seismological model of the Earth is shown in Figure 3-1. Earth is conventionally divided into crust, mantle and core, but each of these has subdivisions that are almost as fundamental (Table 3-1). The lower mantle is the largest subdivision, and therefore it dominates any attempt to perform major- element mass balance calculations. The crust is the smallest solid subdivision, but it has an importance far in excess of its relative size because we live on it and extract our resources from it, and, as we shall see, it contains a large fraction of the terrestrial inventory of many elements. In this and the next chapter I discuss each of the major subdivisions, starting with the crust and ending with the inner core.
    [Show full text]
  • Italy and China Sharing Best Practices on the Sustainable Development of Small Underground Settlements
    heritage Article Italy and China Sharing Best Practices on the Sustainable Development of Small Underground Settlements Laura Genovese 1,†, Roberta Varriale 2,†, Loredana Luvidi 3,*,† and Fabio Fratini 4,† 1 CNR—Institute for the Conservation and the Valorization of Cultural Heritage, 20125 Milan, Italy; [email protected] 2 CNR—Institute of Studies on Mediterranean Societies, 80134 Naples, Italy; [email protected] 3 CNR—Institute for the Conservation and the Valorization of Cultural Heritage, 00015 Monterotondo St., Italy 4 CNR—Institute for the Conservation and the Valorization of Cultural Heritage, 50019 Sesto Fiorentino, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-06-90672887 † These authors contributed equally to this work. Received: 28 December 2018; Accepted: 5 March 2019; Published: 8 March 2019 Abstract: Both Southern Italy and Central China feature historic rural settlements characterized by underground constructions with residential and service functions. Many of these areas are currently tackling economic, social and environmental problems, resulting in unemployment, disengagement, depopulation, marginalization or loss of cultural and biological diversity. Both in Europe and in China, policies for rural development address three core areas of intervention: agricultural competitiveness, environmental protection and the promotion of rural amenities through strengthening and diversifying the economic base of rural communities. The challenge is to create innovative pathways for regeneration based on raising awareness to inspire local rural communities to develop alternative actions to reduce poverty while preserving the unique aspects of their local environment and culture. In this view, cultural heritage can be a catalyst for the sustainable growth of the rural community.
    [Show full text]
  • Earth's Structure and Processes 8-3 the Student Will Demonstrate An
    Earth’s Structure and Processes 8-3 The student will demonstrate an understanding of materials that determine the structure of Earth and the processes that have altered this structure. (Earth Science) 8-3.1 Summarize the three layers of Earth – crust, mantle, and core – on the basis of relative position, density, and composition. Taxonomy level: 2.4-B Understand Conceptual Knowledge Previous/future knowledge: Students in 3rd grade (3-3.5, 3-3.6) focused on Earth’s surface features, water, and land. In 5th grade (5-3.2), students illustrated Earth’s ocean floor. The physical property of density was introduced in 7th grade (7-5.9). Students have not been introduced to areas of Earth below the surface. Further study into Earth’s internal structure based on internal heat and gravitational energy is part of the content of high school Earth Science (ES-3.2). It is essential for students to know that Earth has layers that have specific conditions and composition. Layer Relative Position Density Composition Crust Outermost layer; thinnest Least dense layer overall; Solid rock – mostly under the ocean, thickest Oceanic crust (basalt) is silicon and oxygen under continents; crust & more dense than Oceanic crust - basalt; top of mantle called the continental crust (granite) Continental crust - granite lithosphere Mantle Middle layer, thickest Density increases with Hot softened rock; layer; top portion called depth because of contains iron and the asthenosphere increasing pressure magnesium Core Inner layer; consists of Heaviest material; most Mostly iron and nickel; two parts – outer core and dense layer outer core – slow flowing inner core liquid, inner core - solid It is not essential for students to know specific depths or temperatures of the layers.
    [Show full text]
  • Earth Layers Rocks
    Released SOL Test Questions 4. Which of these best describes the relationship between Sorted by Topic Earth’s layers? Compiled by SOLpass – www.solpass.org (2007-12) a. The hottest layers are closest to the core. SOL 5.7 Earth’s Constantly b. The more liquid layers are closest to the crust. Changing Surface c. The lightest layers are closest to the core. The student will investigate and understand how Earth’s d. The more metallic layers are closest to the crust. surface is constantly changing. Key concepts include 5. What layer of Earth is located just below the crust? a) identification of rock types (2007-26) b) the rock cycle and how transformations between rocks a. Inner core occur b. Mantle c) Earth history and fossil evidence c. Continental shelf d) the basic structure of Earth’s interior d. Outer core e) changes in Earth’s crust due to plate tectonics 6. Which of these Earth layers is the thinnest? f) weathering, erosion, and deposition; and (2003-24) g) human impact a. The inner core b. The outer core EARTH LAYERS c. The mantle 1. Which layer of Earth is the thinnest? d. The crust (2011-34) a. Inner core ROCKS b. Crust 7. Pumice is formed when lava from a volcano cools. Which c. Outer core rock type is pumice? d. Mantle (2011-26) a. Gaseous rock 2. Earth is composed of four layers. Many scientists believe that as Earth cooled, the denser materials sank to the b. Igneous rock center and the less dense materials rose to the top.
    [Show full text]
  • Evaluation of Seismic Performance in Mechanically Stabilized Earth Structures
    Evaluation of seismic performance in Mechanically Stabilized Earth structures J.E. Sankey The Reinforced Earth Company, Vienna, Virginia – USA P. Segrestin Freyssinet International, Velizy, France ABSTRACT: Recent earthquake events have brought about renewed interest in the response of a variety of structures to seismic loads. In the case of mechanically stabilized earth structures, such as Reinforced Earth®, current seismic design codes do not appear to fully incorporate their inherent flexibility. A brief catalogue of major earthquakes and corresponding descriptions regarding the condition of local Reinforced Earth structures is provided to demonstrate the realistic flexibility of the structures. A call for better consideration of the ductile response of Reinforced Earth is recommended based on its flexible composition of discrete steel reinforcements and select soil matrix. 1 BACKGROUND subjected to seismic events in the Northridge, Kobe and Izmit Earthquakes. The actual physical In the last decade there have been major earthquake condition will then be compared to the criteria used events in the United States (Northridge, California, in design for the walls. Even in cases where the 1994, 6.7 Richter magnitude), Japan (Great Hanshin, seismic accelerations exceeded the design Kobe, 1995, 7.2 Richter magnitude), and Turkey accelerations, it will be shown that little if any (North Anatolian, Izmit, 1999, 7.4 Richter distress resulted. The rationale shall be presented magnitude). The Northridge Earthquake was that the ductility of the Reinforced Earth may allow responsible for 57 deaths, 11,000 injuries and $20 minor permanent deflections to occur without billion US in damages. The Kobe Earthquake was a distress that would affect service life.
    [Show full text]
  • Lecture Liquefaction of Soils During Earthquakes I.M
    LECTURE LIQUEFACTION OF SOILS DURING EARTHQUAKES I.M. Idriss Woodward-Clyde Consultants San Francisco, California, U.S.A. DEFINITION OF TERMS The following definitions perta1n1ng to cyclic loading conditions are based on slight modifications of those originally proposed by Lee and Seed (1967). FAILURE: When the induced cyclic: strains become excessive. COMPLETE LIQUEFACTION: When a soil exhibits no resistance to de­ formation over a wide strain range. PARTIAL LIQUEFACTION: When a soil exhibits no resistance to de­ formation over a strain range less than that considered to cons­ titute failure. INITIAL LIQUEFACTION: When a soil first exhibits any degree of partial liquefaction during cyclic loading. Ordinarily, the fir@t condition reached is INITIAL LIQUEFACTION, followed by PARTIAL, and COMPLETE liquefaction, with FAILURE being reached at some stage during the partial or complete liquefaction stages. The following definitions are given by Seed, Arango and Chan (1975) : INITIAL LIQUEFACTION: Denotes a condition where ,during the course of cyclic stress applications, the residual pore water pressure on completion of any full stress cycle becomes equal to the applied 507 J. B. MlUtins (ed.), Numerical Methods in GeomechanicB, 507-530. Copyright e 1982 by D. Reidel Publishing Company. 508 1. M.IDRISS confining pressure; the development of initial liquefaction has no implications concerning the magnitude of the deformations which the soil might subsequently undergo; however,it defines a condition which is a useful basis for assessing various possible forms of subsequent soil behavior. INITIAL LIQUEFACTION WITH LIMITED STRAIN POTENTIAL OR CYCLIC MOBI­ LITY: Denotes a condition in which cyclic stress applications develop a condition of initial liquefaction and subsequent cyclic stress applications cause limited strains to develop either be­ cause of the remaining resistance of the soil to deformation or because the soil dilates, the pore pressure drops, and the soil stabilizes under the applied loads.
    [Show full text]
  • Determination of Local Magnitude, Ml, from Strong- Motion Accelerograms
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors - Main Bulletin of the Seismological Society of America, Vol. 68, No. 2, pp. 471-485, April, 1978 DETERMINATION OF LOCAL MAGNITUDE, ML, FROM STRONG- MOTION ACCELEROGRAMS BY HIROO KANAMORI AND PAUL C. JENNINGS ABSTRACT A technique is presented for determination of local magnitude, ML, from strong-motion accelerograms. The accelerograph records are used as an accel- eration input to the equation of motion of the Wood-Anderson torsion seismo- graph to produce a synthetic seismogram which is then read in the standard manner. When applied to 14 records from the San Fernando earthquake, the resulting ML is 6.35, with a standard deviation of 0.26. This is in good agreement with the previously reported value of 6.3. The technique is also applied to other earthquakes in the western United States for which strong-motion records are available. An average value of M, -- 7.2 is obtained for the 1952 Kern County earthquake; this number is significantly smaller than the commonly used value of 7.7, which is more nearly a surface-wave magnitude. The method presented broadens the base from which ML can be found and allows ML to be determined in large earthquakes for which no standard assess- ment of local magnitude is possible. In addition, in instances where a large number of accelerograms are available, reliable values of ML can be determined by averaging. INTRODUCTION The strong ground motion resulting from a major earthquake is the result of a very complex process, depending on the fault geometry, fault dimensions, and the rupture mechanism.
    [Show full text]
  • Reinforced Earth: Principles and Applications in Engineering Construction
    International Journal of Advanced Academic Research | Sciences, Technology & Engineering | ISSN: 2488-9849 Vol. 2, Issue 6 (June 2016) REINFORCED EARTH: PRINCIPLES AND APPLICATIONS IN ENGINEERING CONSTRUCTION Okechukwu, S.I; Okeke, O. C; Akaolisa, C. C. Z; Jack, L. And Akinola, A. O. Department of Geology, Federal University of Technology, Owerri, Imo State, Nigeria Abstract Reinforced earth is a material formed by combining earth and reinforcement material. The reinforced soil is obtained by placing extensible or inextensible materials such as metallic strips or polymeric reinforcement within the soil to obtain the requisite properties. The reinforcement enables the soil mass to resist tension in a way which the earth alone could not. The source of this resistance to tension is the internal friction of soil, because the stresses that are created within the mass are transferred from soil to the reinforcement strips by friction. Reinforcement of soil is practiced to improve the mechanical properties of the soil being reinforced by the inclusion of structural elements. The reinforcement improves the earth by increasing the bearing capacity of the soil. It also reduces the liquefaction behavior of the soil. Reinforced earth is not complex to achieve. The components of reinforced earth are soil, skin and reinforcing material. The reinforcing material may include steel, concrete, glass, planks etc. Reinforced earth has so many applications in construction work. Some of the applications include its use in stabilization of soil, construction of retaining walls, bridge abutments for highways, industrial and mining structures. Keywords: Reinforcement, Reinforced earth. 1.0 Introduction An internally stabilized system such as reinforced earth involves reinforcements installed within and extending beyond the potential failure mass.
    [Show full text]
  • Grade Separation Methods/Vertical Options Context
    Ref Doc: CSS1_001_GradeSepMethods Date: 3/15/10 TYPICAL GRADE SEPARATION METHODS for the Peninsula Rail Program San Francisco to San Jose on the Caltrain Corridor Characteristics of Typical Methods for Grade Separating Railroad Tracks from Roadways This table summarizes general information for each vertical option for ten areas of interest. TYPE OF ELEVATION (TOP OF COST STRUCTURE RAIL, RELATIVE TO (RELATIVE TO DESCRIPTION FOR AT-GRADE TOP OF AT-GRADE RAILROAD RAIL) CONSTRUCTION) An aerial structure called a "viaduct" supported by AERIAL columns or, sometimes when spanning long ~30 feet above 3 times VIADUCT distances, on beams (i.e. bents) supported by columns. There are three options for berms, or raised earth options. (1) Berm: compacted raised earth with tracks located at the top. BERM 0 to 15 feet above 2 times (2) Mechanically Stabilized Earth: compacted raised earth stabilized by metal "straps" and contained by walls on either side. (3) Retained Fill: compacted raised earth stabilized by retaining walls Tracks at the same level as surrounding ground level. Roads go over or under the tracks. Most of AT-GRADE 01 the trains on the Caltrain right of way are at grade and intersect with roads at grade crossings (i.e. they are not separated from one another). Below ground option where tracks are constructed OPEN 0 to 30 feet below 3.5 times below ground level with the space above tracks TRENCH open to air. CLOSED TRENCH Shallow tunnel constructed by first excavating a (CUT AND 30 to 45 feet below 5 times trench and then roofed over. COVER TUNNEL) Deep tunnel constructed using a tunnel boring DEEP machine (TBM) that starts at one end and bores TUNNEL ~100 feet below 7 times through to the tunnel exit.
    [Show full text]
  • Challenging Students Ideas About Earth's Interior Structure Using a Model-Based, Conceptual Change Approach in a Large Class Setting
    Challenging Students Ideas About Earth's Interior Structure Using a Model-based, Conceptual Change Approach in a Large Class Setting David N. Steer Department of Geology, University of Akron, Akron, OH 44325-4101 [email protected] Catharine C. Knight Educational Foundations & Leadership, College of Education, University of Akron, Akron, OH 44325-4208 [email protected] Katharine D. Owens Department of Curricular and Instructional Studies, University of Akron, Akron, OH 44325-4205 [email protected] David A. McConnell Department of Geology, University of Akron, Akron, OH 44325-4101 [email protected] ABSTRACT the outcome related to a concept. Students then share their views and ideas with peers. This idea sharing is a A model-based, conceptual change approach to teaching scaffolding technique to help students articulate their was found to improve student understanding of earth beliefs about the topic at hand and then resolve conflicts structure in a large (100+ student) inquiry-based, general (Zeidler, 1997). At the university level, professors then education setting. Results from paired pre- and commonly step in to challenge students to resolve post-instruction sketches indicated that 19% (n = 18/97) conflicts that arise when their initial ideas are not of the students began the class with naïve preconceptions supported by actual data, expert models or other of the structure of the interior of the Earth. Many of the information. Students learn how to extend and transfer remaining students (95%; n = 75/79) began the lesson their knowledge through this process of raising and believing that the crust is several hundred kilometers answering questions about the application of concepts to thick.
    [Show full text]
  • Cement-Modified Loess Base for Intercity Railways
    materials Article Cement-Modified Loess Base for Intercity Railways: Mechanical Strength and Influencing Factors Based on the Vertical Vibration Compaction Method Yingjun Jiang, Qilong Li * , Yong Yi * , Kejia Yuan *, Changqing Deng and Tian Tian Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064, China; [email protected] (Y.J.); [email protected] (C.D.); [email protected] (T.T.) * Correspondence: [email protected] (Q.L.); [email protected] (Y.Y.); [email protected] (K.Y.) Received: 21 July 2020; Accepted: 14 August 2020; Published: 17 August 2020 Abstract: Cement-modified loess has been used in the recent construction of an intercity high-speed railway in Xi’an, China. This paper studies the mechanical strength of cement-modified loess (CML) compacted by the vertical vibration compaction method (VVCM). First, the reliability of VVCM in compacting CML is evaluated, and then the effects of cement content, compaction coefficient, and curing time on the mechanical strength of CML are analyzed, establishing a strength prediction model. The results show that the correlation of mechanical strength between the CML specimens prepared by VVCM in the laboratory and the core specimens collected on site is as high as 83.8%. The mechanical strength of CML initially show linear growth with increasing cement content and compaction coefficient. The initial growth in CML mechanical strength is followed by a later period, with mechanical strength growth slowing after 28 days. The mechanical strength growth properties of the CML can be accurately predicted via established strength growth equations.
    [Show full text]