Reinforced Earth: Principles and Applications in Engineering Construction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Title of Paper
Raw earth construction: is there a role for unsaturated soil mechanics ? D. Gallipoli, A.W. Bruno & C. Perlot Université de Pau et des Pays de l'Adour, Laboratoire SIAME, Anglet, France N. Salmon Nobatek, Anglet, France ABSTRACT: “Raw earth” (“terre crue” in French) is an ancient building material consisting of a mixture of moist clay and sand which is compacted to a more or less high density depending on the chosen building tech- nique. A raw earth structure could in fact be described as a “soil fill in the shape of a building”. Despite the very nature of this material, which makes it particularly suitable to a geotechnical analysis, raw earth construc- tion has so far been the almost exclusive domain of structural engineers and still remains a niche market in current building practice. A multitude of manufacturing techniques have already been developed over the cen- turies but, recently, this construction method has attracted fresh interest due to its eco-friendly characteristics and the potential savings of embodied, operational and end-of-life energy that it can offer during the life cycle of a structure. This paper starts by introducing the advantages of raw earth over other conventional building materials followed by a description of modern earthen construction techniques. The largest part of the manu- script is devoted to the presentation of recent studies about the hydro-mechanical properties of earthen materi- als and their dependency on suction, water content, particle size distribution and relative humidity. A raw earth structure therefore consists of com- pacted moist soil and may be described in geotech- 1 DEFINITION OF EARTHEN nical terms as a “soil fill in the shape of a building”. -
Chapter 3. the Crust and Upper Mantle
Theory of the Earth Don L. Anderson Chapter 3. The Crust and Upper Mantle Boston: Blackwell Scientific Publications, c1989 Copyright transferred to the author September 2, 1998. You are granted permission for individual, educational, research and noncommercial reproduction, distribution, display and performance of this work in any format. Recommended citation: Anderson, Don L. Theory of the Earth. Boston: Blackwell Scientific Publications, 1989. http://resolver.caltech.edu/CaltechBOOK:1989.001 A scanned image of the entire book may be found at the following persistent URL: http://resolver.caltech.edu/CaltechBook:1989.001 Abstract: T he structure of the Earth's interior is fairly well known from seismology, and knowledge of the fine structure is improving continuously. Seismology not only provides the structure, it also provides information about the composition, crystal structure or mineralogy and physical state. In subsequent chapters I will discuss how to combine seismic with other kinds of data to constrain these properties. A recent seismological model of the Earth is shown in Figure 3-1. Earth is conventionally divided into crust, mantle and core, but each of these has subdivisions that are almost as fundamental (Table 3-1). The lower mantle is the largest subdivision, and therefore it dominates any attempt to perform major- element mass balance calculations. The crust is the smallest solid subdivision, but it has an importance far in excess of its relative size because we live on it and extract our resources from it, and, as we shall see, it contains a large fraction of the terrestrial inventory of many elements. In this and the next chapter I discuss each of the major subdivisions, starting with the crust and ending with the inner core. -
Soil Stabilization | Lime Treated Soils Save Time & Money
QUALITY LIME & STONE PRODUCTS THAT IMPROVE YOUR WORLD QUALITY LIME & STONE PRODUCTS About Graymont THAT IMPROVE YOUR WORLD Graymont is a family owned company whose management team and employees are dedicated to meeting or exceeding customer needs. The company is focused on high calcium and dolomitic lime, value added lime based products such as specialty hydrates and precipitated calcium carbonates, and the aggre- gate and pulverized stone business. Graymont takes a long term view of its business and the lime industry. Graymont has been in the lime business for over 50 years and operates facilities on sites that have been in operation for up to 200 years. Graymont is among the leaders in the industry in adding new efficient plants and equipment and operates some of the most modern facilities on the continent. Since 1989 Graymont has built close to 2 million tons of new state of the art capacity and will continue to add new capacity to meet market demand. Graymont is the third largest producer of lime in North America. In Canada, Graymont subsidiaries have operations from New Brunswick to British Columbia. In the United States, subsidiary companies operate in Ohio, Pennsylvania, Washington, Oregon, Montana, Utah and Nevada while serving markets in a much wider geographic area. In addition to Graymont's lime interests, Graymont Materials, located in upstate New York and the province of Quebec, provides construction stone, sand and gravel, asphalt products and ready mix concrete for the infrastructure and general construction needs of the area. In 2003, Graymont became a part owner of Grupo Calidra. -
Italy and China Sharing Best Practices on the Sustainable Development of Small Underground Settlements
heritage Article Italy and China Sharing Best Practices on the Sustainable Development of Small Underground Settlements Laura Genovese 1,†, Roberta Varriale 2,†, Loredana Luvidi 3,*,† and Fabio Fratini 4,† 1 CNR—Institute for the Conservation and the Valorization of Cultural Heritage, 20125 Milan, Italy; [email protected] 2 CNR—Institute of Studies on Mediterranean Societies, 80134 Naples, Italy; [email protected] 3 CNR—Institute for the Conservation and the Valorization of Cultural Heritage, 00015 Monterotondo St., Italy 4 CNR—Institute for the Conservation and the Valorization of Cultural Heritage, 50019 Sesto Fiorentino, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-06-90672887 † These authors contributed equally to this work. Received: 28 December 2018; Accepted: 5 March 2019; Published: 8 March 2019 Abstract: Both Southern Italy and Central China feature historic rural settlements characterized by underground constructions with residential and service functions. Many of these areas are currently tackling economic, social and environmental problems, resulting in unemployment, disengagement, depopulation, marginalization or loss of cultural and biological diversity. Both in Europe and in China, policies for rural development address three core areas of intervention: agricultural competitiveness, environmental protection and the promotion of rural amenities through strengthening and diversifying the economic base of rural communities. The challenge is to create innovative pathways for regeneration based on raising awareness to inspire local rural communities to develop alternative actions to reduce poverty while preserving the unique aspects of their local environment and culture. In this view, cultural heritage can be a catalyst for the sustainable growth of the rural community. -
Earth's Structure and Processes 8-3 the Student Will Demonstrate An
Earth’s Structure and Processes 8-3 The student will demonstrate an understanding of materials that determine the structure of Earth and the processes that have altered this structure. (Earth Science) 8-3.1 Summarize the three layers of Earth – crust, mantle, and core – on the basis of relative position, density, and composition. Taxonomy level: 2.4-B Understand Conceptual Knowledge Previous/future knowledge: Students in 3rd grade (3-3.5, 3-3.6) focused on Earth’s surface features, water, and land. In 5th grade (5-3.2), students illustrated Earth’s ocean floor. The physical property of density was introduced in 7th grade (7-5.9). Students have not been introduced to areas of Earth below the surface. Further study into Earth’s internal structure based on internal heat and gravitational energy is part of the content of high school Earth Science (ES-3.2). It is essential for students to know that Earth has layers that have specific conditions and composition. Layer Relative Position Density Composition Crust Outermost layer; thinnest Least dense layer overall; Solid rock – mostly under the ocean, thickest Oceanic crust (basalt) is silicon and oxygen under continents; crust & more dense than Oceanic crust - basalt; top of mantle called the continental crust (granite) Continental crust - granite lithosphere Mantle Middle layer, thickest Density increases with Hot softened rock; layer; top portion called depth because of contains iron and the asthenosphere increasing pressure magnesium Core Inner layer; consists of Heaviest material; most Mostly iron and nickel; two parts – outer core and dense layer outer core – slow flowing inner core liquid, inner core - solid It is not essential for students to know specific depths or temperatures of the layers. -
Guidelines for the Stabilization of Subgrade Soils in California Authors: David Jones, Ashraf Rahim, Shadi Saadeh, and John T
July 2010 Guideline: UCPRC-GL-2010-01 GGGuuuiiidddeeellliiinnneeesss fffooorrr ttthhheee SSStttaaabbbiiillliiizzzaaatttiiiooonnn ooofff SSSuuubbbgggrrraaadddeee SSSoooiiilllsss IIInnn CCCaaallliiifffooorrrnnniiiaaa Authors: D. Jones, A. Rahim, S. Saadeh, and J.T. Harvey Partnered Pavement Research Center (PPRC) Contract Strategic Plan Element 3.14: Subgrade Soil Stabilization Guide PREPARED FOR: PREPARED BY: California Department of Transportation University of California Division of Research and Innovation Pavement Research Center Office of Roadway Research UC Davis, UC Berkeley DOCUMENT RETRIEVAL PAGE Guideline: UCPRC-GL-2010-01 Title: Guidelines for the Stabilization of Subgrade Soils in California Authors: David Jones, Ashraf Rahim, Shadi Saadeh, and John T. Harvey Prepared for: FHWA No: Work submitted: Date: Caltrans CA122201A 05/23/2011 July 2011 Strategic Plan Element No.: Status: Version No.: 3.14 Stage 6, Final 1 Abstract: This document provides guidelines on subgrade soil stabilization and covers mechanical, cementitious, and asphalt methods. The following aspects are discussed: An overview of subgrade stabilization methods Project investigation Mechanical stabilization Cementitious stabilization Asphalt stabilization Construction considerations A list of further reading is provided. Keywords: Subgrade soil stabilization Proposals for implementation: Related documents: None Signatures: D. Jones J.T. Harvey D. Spinner J.T. Harvey T.J. Holland 1st Author Technical Review Editor Principal Investigator Caltrans Contract Manager UCPRC-GL-2010-01 i DISCLAIMER The contents of this guideline reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State of California or the Federal Highway Administration. This guideline does not constitute a standard, specification, or regulation. -
Earth Layers Rocks
Released SOL Test Questions 4. Which of these best describes the relationship between Sorted by Topic Earth’s layers? Compiled by SOLpass – www.solpass.org (2007-12) a. The hottest layers are closest to the core. SOL 5.7 Earth’s Constantly b. The more liquid layers are closest to the crust. Changing Surface c. The lightest layers are closest to the core. The student will investigate and understand how Earth’s d. The more metallic layers are closest to the crust. surface is constantly changing. Key concepts include 5. What layer of Earth is located just below the crust? a) identification of rock types (2007-26) b) the rock cycle and how transformations between rocks a. Inner core occur b. Mantle c) Earth history and fossil evidence c. Continental shelf d) the basic structure of Earth’s interior d. Outer core e) changes in Earth’s crust due to plate tectonics 6. Which of these Earth layers is the thinnest? f) weathering, erosion, and deposition; and (2003-24) g) human impact a. The inner core b. The outer core EARTH LAYERS c. The mantle 1. Which layer of Earth is the thinnest? d. The crust (2011-34) a. Inner core ROCKS b. Crust 7. Pumice is formed when lava from a volcano cools. Which c. Outer core rock type is pumice? d. Mantle (2011-26) a. Gaseous rock 2. Earth is composed of four layers. Many scientists believe that as Earth cooled, the denser materials sank to the b. Igneous rock center and the less dense materials rose to the top. -
Evaluation of Seismic Performance in Mechanically Stabilized Earth Structures
Evaluation of seismic performance in Mechanically Stabilized Earth structures J.E. Sankey The Reinforced Earth Company, Vienna, Virginia – USA P. Segrestin Freyssinet International, Velizy, France ABSTRACT: Recent earthquake events have brought about renewed interest in the response of a variety of structures to seismic loads. In the case of mechanically stabilized earth structures, such as Reinforced Earth®, current seismic design codes do not appear to fully incorporate their inherent flexibility. A brief catalogue of major earthquakes and corresponding descriptions regarding the condition of local Reinforced Earth structures is provided to demonstrate the realistic flexibility of the structures. A call for better consideration of the ductile response of Reinforced Earth is recommended based on its flexible composition of discrete steel reinforcements and select soil matrix. 1 BACKGROUND subjected to seismic events in the Northridge, Kobe and Izmit Earthquakes. The actual physical In the last decade there have been major earthquake condition will then be compared to the criteria used events in the United States (Northridge, California, in design for the walls. Even in cases where the 1994, 6.7 Richter magnitude), Japan (Great Hanshin, seismic accelerations exceeded the design Kobe, 1995, 7.2 Richter magnitude), and Turkey accelerations, it will be shown that little if any (North Anatolian, Izmit, 1999, 7.4 Richter distress resulted. The rationale shall be presented magnitude). The Northridge Earthquake was that the ductility of the Reinforced Earth may allow responsible for 57 deaths, 11,000 injuries and $20 minor permanent deflections to occur without billion US in damages. The Kobe Earthquake was a distress that would affect service life. -
Lecture Liquefaction of Soils During Earthquakes I.M
LECTURE LIQUEFACTION OF SOILS DURING EARTHQUAKES I.M. Idriss Woodward-Clyde Consultants San Francisco, California, U.S.A. DEFINITION OF TERMS The following definitions perta1n1ng to cyclic loading conditions are based on slight modifications of those originally proposed by Lee and Seed (1967). FAILURE: When the induced cyclic: strains become excessive. COMPLETE LIQUEFACTION: When a soil exhibits no resistance to de formation over a wide strain range. PARTIAL LIQUEFACTION: When a soil exhibits no resistance to de formation over a strain range less than that considered to cons titute failure. INITIAL LIQUEFACTION: When a soil first exhibits any degree of partial liquefaction during cyclic loading. Ordinarily, the fir@t condition reached is INITIAL LIQUEFACTION, followed by PARTIAL, and COMPLETE liquefaction, with FAILURE being reached at some stage during the partial or complete liquefaction stages. The following definitions are given by Seed, Arango and Chan (1975) : INITIAL LIQUEFACTION: Denotes a condition where ,during the course of cyclic stress applications, the residual pore water pressure on completion of any full stress cycle becomes equal to the applied 507 J. B. MlUtins (ed.), Numerical Methods in GeomechanicB, 507-530. Copyright e 1982 by D. Reidel Publishing Company. 508 1. M.IDRISS confining pressure; the development of initial liquefaction has no implications concerning the magnitude of the deformations which the soil might subsequently undergo; however,it defines a condition which is a useful basis for assessing various possible forms of subsequent soil behavior. INITIAL LIQUEFACTION WITH LIMITED STRAIN POTENTIAL OR CYCLIC MOBI LITY: Denotes a condition in which cyclic stress applications develop a condition of initial liquefaction and subsequent cyclic stress applications cause limited strains to develop either be cause of the remaining resistance of the soil to deformation or because the soil dilates, the pore pressure drops, and the soil stabilizes under the applied loads. -
Scheduling SS-1
Scheduling SS-1 BMP Objectives ● Soil Stabilization ● Sediment Control ● Tracking Control ● Wind Erosion Control ● Non-Storm Water Management ● Materials and Waste Management Definition and Purpose This BMP involves developing a schedule for every project that includes sequencing of construction activities with the implementation of construction site BMPs such as temporary soil stabilization (erosion control) and temporary sediment controls measures. The purpose is to reduce the amount and duration of soil exposed to erosion by wind, rain, runoff, and vehicle tracking. Appropriate Applications Any construction project where soils will be disturbed will benefit from a BMP sequencing schedule that is generated in conjunction with the construction-sequencing schedule. BMP sequencing can help minimize land disturbance during construction. Limitations The BMP sequencing schedule must be agreed upon between MDT and the construction contractor. BMP scheduling is only effective if the scheduled is followed closely and modified as required throughout the construction project. Design Guidelines and Considerations n Plan the project and develop an implementation schedule of construction site BMPs. The schedule is designed to clearly show how the BMPs relate to soil-disturbing and re- stabilization activities. The construction schedule is typically incorporated into the SWPPP. n A BMP schedule includes details on the implementation and deployment of: - temporary soil stabilization BMPs, - temporary sediment control BMPs, 10 - tracking control BMPs, - wind erosion control BMPs, - non-storm water BMPs, and - waste management and materials pollution control BMPs. n Also included in the BMP schedule are dates for significant long-term operations or activities that may have planned non-storm water discharges such as dewatering, saw cutting, grinding, drilling, boring, crushing, blasting, painting, hydro-demolition, mortar mixing, bridge cleaning, etc. -
Use of Class C Fly Ash for Stabilization of Soft Subgrade
SFUND RECORDS CTR 2065253 Fifth International Congress on Advances in Civil Engineering. 25-27 September 2002 Istanbul Technical University. Istanbul, Turkey Use of Class C Fly Ash For Stabilization of Soft Subgrade §ENOL, A., PhD Istanbul Technical University, Civil Engineering Faculty Geotechnical Engineering Department Istanbul, TURKEY BIN-SHAFIQUE, Md. S., PhD Candidate, EDiL, T.B., Prof BENSON, C.H., Prof Department of Civil and Environmental Engineering University of Wisconsin-Madison, USA Abstract i1 ii This paper represents the results of a study aimed at using self-cementing Class C fly ash for the stabilization of soft subgrade of a city street in Cross Plains, [Wisconsin, U.S.A. Both strength and modulus-based approaches were applied to [estimate the optimum mix design and to determine the thickness of the stabilized layer.J Stabilized soil samples were prepared mixing fly ash at three different contents at varying water contents. The samples were subjected to unconfined compression test after seven days of curing to develop 'water content-strength relationship. To evaluate the' impact of compaction delay that commonly occurs in field construction, one set of the samples was compacted just after mixing with water, while the other set after two hours. CBR and resilient modulus tests were conducted and used to determine the thickness of the stabilized layer in pavement design. Some field tests were also performed after the construction, which showed that the fly ash stabilization improved the 'engineering properties significantly. !' Introduction Fly Ash is one of the most plentiful and versatile of the industrial by-products (Collins and Ciesielski 1992). -
Grade Separation Methods/Vertical Options Context
Ref Doc: CSS1_001_GradeSepMethods Date: 3/15/10 TYPICAL GRADE SEPARATION METHODS for the Peninsula Rail Program San Francisco to San Jose on the Caltrain Corridor Characteristics of Typical Methods for Grade Separating Railroad Tracks from Roadways This table summarizes general information for each vertical option for ten areas of interest. TYPE OF ELEVATION (TOP OF COST STRUCTURE RAIL, RELATIVE TO (RELATIVE TO DESCRIPTION FOR AT-GRADE TOP OF AT-GRADE RAILROAD RAIL) CONSTRUCTION) An aerial structure called a "viaduct" supported by AERIAL columns or, sometimes when spanning long ~30 feet above 3 times VIADUCT distances, on beams (i.e. bents) supported by columns. There are three options for berms, or raised earth options. (1) Berm: compacted raised earth with tracks located at the top. BERM 0 to 15 feet above 2 times (2) Mechanically Stabilized Earth: compacted raised earth stabilized by metal "straps" and contained by walls on either side. (3) Retained Fill: compacted raised earth stabilized by retaining walls Tracks at the same level as surrounding ground level. Roads go over or under the tracks. Most of AT-GRADE 01 the trains on the Caltrain right of way are at grade and intersect with roads at grade crossings (i.e. they are not separated from one another). Below ground option where tracks are constructed OPEN 0 to 30 feet below 3.5 times below ground level with the space above tracks TRENCH open to air. CLOSED TRENCH Shallow tunnel constructed by first excavating a (CUT AND 30 to 45 feet below 5 times trench and then roofed over. COVER TUNNEL) Deep tunnel constructed using a tunnel boring DEEP machine (TBM) that starts at one end and bores TUNNEL ~100 feet below 7 times through to the tunnel exit.