Earth and Clay Construction

Total Page:16

File Type:pdf, Size:1020Kb

Earth and Clay Construction Earth and Clay Construction Introduction Clay and bool: A variation of mudwall construction where rounded stones This INFORM provides guidance on of a type unsuitable for other forms recognising common forms of earth and of building are set in courses between clay construction and their repair and the earth material (Fig. 2). maintenance. The use of clay and earth as a bedding mortar for masonry is Claywall: This involves the insertion covered in a separate INFORM Clay of stones into a mudwall mixture Mortars for Masonry Buildings. formed between shuttering. The best stones were used on the outside face The use of clay and earth based materials to present an impression of clay to construct walls was once a common mortared masonry. practice in Scottish traditional building. Whilst the use of stone and brick Turf: Occasionally referred to as sod, generally superseded the use of these turf construction entails using earth materials from the mid 19th century, blocks to form walls either on its own there are significant concentrations or alternating with stone. Turf is of surviving examples in parts of the commonly laid in a herringbone pattern country such as Perthshire, Angus and for added strength (Fig. 3). the South West of Scotland. Vernacular Shuttered clay: A form of construction techniques such as mudwall, claywall and which utilises similar raw materials clay and bool construction can all still to mudwall, clay or earth mixed with be found in surviving structures. straw, but in this case it is formed inside a shuttering of wood. In some cases Types of earth and clay brick was used to make a permanent construction face to hold in the clay or earth infill. There are several types of earth construction Other forms: Clay was widely used found in Scotland, these include: in combination with timber framing to form ‘wattle and daub’ and other Mudwall: Formed of earth mixed with kinds of thin walls. It was also used straw. This type of construction was to make plasters and, mixed with straw, built in “lifts”, or courses, of between was used as deafening in timber floors. 15 and 55 cm depending on the material properties (Fig. 1). Mudwall is commonly known as cob in other parts of Britain. Fig. 1 Mudwall built up in short lifts, Dumfriesshire. Fig. 2 Clay and bool construction. Fig. 3 Turf was commonly laid in a herringbone pattern for added strength. Fig. 4 Earth construction revealed following loss of the cement render. Identifying clay and earth Clay and earth materials construction The composition of clay and earth Most earth construction has been materials varies considerably, largely subsequently rendered, and identification reflecting local subsoil conditions. is not always obvious. In some instances The subsoil composition includes differing the use of such materials will be revealed ratios of clays and aggregates such as where render has failed and become sands, gravels and silts. Clay based detached from a building (Fig. 4). materials will generally be naturally plastic Other features which can indicate the in character when moist, and free of presence of earth construction are a rubble organic matter, unless this is deliberately stone base course at the foot of a wall added. Turf materials will have organic or a pronounced batter (slope) to the wall. matter, as they come from topsoil. Where earth based building materials are Additives normally take the form of found it is important to correctly chopped straw, although depending on identify the construction type and the the area of the country other plant types composition of the wall to properly plan may be used (Fig. 5). Animal hair was repairs. Specialist material analysis and sometimes added to clay and earth mixes consultation may be necessary to for internal plasters. aid this process. Fig. 5 Hand mixing of earth building material containing plant fibres. The addition of vegetable fibre or hair It is possible to analyse samples of clay provides tensile strength to clay rich and earth building materials to gauge the materials and reduces problems of type of material used and anything which shrinkage during drying. Dung and has been added to the mix. a wide range of other additives were also During the original construction earth used to alter the working properties building materials would likely have been of earth materials. Should any material sourced close to the construction site. of this sort be found in an original mix it It may be possible to do this during should be included in the repair material. repair work but all materials proposed There are many regional and local for use should be analysed first to variations in the earth and clays used ensure suitability. Test panels may assist in construction. It is important to in confirming this. With the increase ensure that any repair material used in popularity of sustainable building is compatible with the original fabric techniques, there are a number of of the building. This should include any suppliers who stock earth based building aggregates, fibrous re-enforcement such materials and where no local sources as straw or hair and the clay or earth can be identified replacement materials which binds the whole together. may be sourced from them. It is important to source materials that Lime harling and plaster are appropriate for repairs to any earth To give protection to the finished built structure, and a number of facilities structure, external elevations of clay and offer testing and analysis of original earth masonry were often finished using materials. The specification of repair a thin lime harl or limewash. Where this materials may differ significantly from exists it may be appropriate to reinstate the original material in response to the the lime finish after repairs to the earth technical requirements of individual masonry have taken place (Fig. 6). structures, and specialist advice from Sufficient time should be allowed for consultants and contractors with the earth material to dry before the lime experience of earth materials should be harling is applied. Cement harling sought for anything other than a simple should never be applied to a clay or earth like-for-like repair. building; where it is found it is usually Once an appropriate specification has appropriate during repair work to been established, sourcing new materials remove this and replace it with a lime can be challenging. Commercially based alternative. Cement based renders, available materials can be cost-effective being largely impermeable and inflexible, and appropriate for many projects, are liable to crack and allow moisture but locally sourced, job-specific materials to penetrate behind the render but then will usually be more compatible with prevent this moisture from evaporating. the original fabric and may achieve a The long term effects of this can be a higher quality of conservation repair. loss of cohesion of earth based materials Time should be allowed in a repairs and subsequent decay and damage. programme for sourcing of such materials well in advance of the actual repairs. Fig. 6 This clay building has been lime harled to protect against the weather. Fig. 7 Water ingress through the roof can cause significant damage. Fig. 8 A clay gable with stone base course. Maintaining earth structures Where this is not the case and it is considered that dampness from ground For clay or earth structures, as with any level is causing decay at the base of building, water should be prevented a wall, retrofitting a damp proof course from entering the fabric to avoid should be avoided as it can act as a damage (Fig. 7). It is therefore barrier and concentrate moisture in important that the roof is kept in good the base of the wall. The management condition and all rainwater goods are of excess moisture around the wall, maintained free of blockages. Earth for example using a French drain, is more structures were almost always likely to be effective. Where earth constructed on a plinth of stonework construction has been coated in lime to minimise dampness rising from the harling and/or limewash, such a finish ground and to protect the clay from should be maintained in line with splash back (Fig. 8); this should always guidance for these materials. be maintained when earth structures are being repaired. Likewise, internal finishes should be If decay has occurred to the base course moisture permeable lime or clay plasters. of the wall repairs should be carried out Finally, it is important to ensure that to ensure the earth wall does not deform. the site on which an earth structure Re-bedding masonry with a clay or lime sits is kept well drained. mortar is likely to be the most appropriate method of repairing damaged base courses. Pests such as mice and rats can present A further problem facing stone plinth difficulties to earth structures although courses is the gradual build-up of soil this is usually only the case where decay leading to external ground levels becoming is already present and they are attracted higher than the masonry. This can have by a food source. the effect of moisture penetrating into Vegetation should be removed as it earth based materials by passing above can quickly establish itself and cause the original stone base course. Where this damage. Likewise vegetation should be has occurred ground levels should be kept away from the immediate vicinity lowered to below the level of the original of such buildings as root systems can base course and the base course repaired penetrate walls or destabilise the base or repointed as appropriate. course on which they are built. Where sections of earth walling require to be replaced this should be carried Repairing earth buildings out using materials and methods which Prior to any repairs being executed a match those used originally as far as detailed survey of the building and its possible.
Recommended publications
  • Title of Paper
    Raw earth construction: is there a role for unsaturated soil mechanics ? D. Gallipoli, A.W. Bruno & C. Perlot Université de Pau et des Pays de l'Adour, Laboratoire SIAME, Anglet, France N. Salmon Nobatek, Anglet, France ABSTRACT: “Raw earth” (“terre crue” in French) is an ancient building material consisting of a mixture of moist clay and sand which is compacted to a more or less high density depending on the chosen building tech- nique. A raw earth structure could in fact be described as a “soil fill in the shape of a building”. Despite the very nature of this material, which makes it particularly suitable to a geotechnical analysis, raw earth construc- tion has so far been the almost exclusive domain of structural engineers and still remains a niche market in current building practice. A multitude of manufacturing techniques have already been developed over the cen- turies but, recently, this construction method has attracted fresh interest due to its eco-friendly characteristics and the potential savings of embodied, operational and end-of-life energy that it can offer during the life cycle of a structure. This paper starts by introducing the advantages of raw earth over other conventional building materials followed by a description of modern earthen construction techniques. The largest part of the manu- script is devoted to the presentation of recent studies about the hydro-mechanical properties of earthen materi- als and their dependency on suction, water content, particle size distribution and relative humidity. A raw earth structure therefore consists of com- pacted moist soil and may be described in geotech- 1 DEFINITION OF EARTHEN nical terms as a “soil fill in the shape of a building”.
    [Show full text]
  • Chapter 3. the Crust and Upper Mantle
    Theory of the Earth Don L. Anderson Chapter 3. The Crust and Upper Mantle Boston: Blackwell Scientific Publications, c1989 Copyright transferred to the author September 2, 1998. You are granted permission for individual, educational, research and noncommercial reproduction, distribution, display and performance of this work in any format. Recommended citation: Anderson, Don L. Theory of the Earth. Boston: Blackwell Scientific Publications, 1989. http://resolver.caltech.edu/CaltechBOOK:1989.001 A scanned image of the entire book may be found at the following persistent URL: http://resolver.caltech.edu/CaltechBook:1989.001 Abstract: T he structure of the Earth's interior is fairly well known from seismology, and knowledge of the fine structure is improving continuously. Seismology not only provides the structure, it also provides information about the composition, crystal structure or mineralogy and physical state. In subsequent chapters I will discuss how to combine seismic with other kinds of data to constrain these properties. A recent seismological model of the Earth is shown in Figure 3-1. Earth is conventionally divided into crust, mantle and core, but each of these has subdivisions that are almost as fundamental (Table 3-1). The lower mantle is the largest subdivision, and therefore it dominates any attempt to perform major- element mass balance calculations. The crust is the smallest solid subdivision, but it has an importance far in excess of its relative size because we live on it and extract our resources from it, and, as we shall see, it contains a large fraction of the terrestrial inventory of many elements. In this and the next chapter I discuss each of the major subdivisions, starting with the crust and ending with the inner core.
    [Show full text]
  • Italy and China Sharing Best Practices on the Sustainable Development of Small Underground Settlements
    heritage Article Italy and China Sharing Best Practices on the Sustainable Development of Small Underground Settlements Laura Genovese 1,†, Roberta Varriale 2,†, Loredana Luvidi 3,*,† and Fabio Fratini 4,† 1 CNR—Institute for the Conservation and the Valorization of Cultural Heritage, 20125 Milan, Italy; [email protected] 2 CNR—Institute of Studies on Mediterranean Societies, 80134 Naples, Italy; [email protected] 3 CNR—Institute for the Conservation and the Valorization of Cultural Heritage, 00015 Monterotondo St., Italy 4 CNR—Institute for the Conservation and the Valorization of Cultural Heritage, 50019 Sesto Fiorentino, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-06-90672887 † These authors contributed equally to this work. Received: 28 December 2018; Accepted: 5 March 2019; Published: 8 March 2019 Abstract: Both Southern Italy and Central China feature historic rural settlements characterized by underground constructions with residential and service functions. Many of these areas are currently tackling economic, social and environmental problems, resulting in unemployment, disengagement, depopulation, marginalization or loss of cultural and biological diversity. Both in Europe and in China, policies for rural development address three core areas of intervention: agricultural competitiveness, environmental protection and the promotion of rural amenities through strengthening and diversifying the economic base of rural communities. The challenge is to create innovative pathways for regeneration based on raising awareness to inspire local rural communities to develop alternative actions to reduce poverty while preserving the unique aspects of their local environment and culture. In this view, cultural heritage can be a catalyst for the sustainable growth of the rural community.
    [Show full text]
  • Earth's Structure and Processes 8-3 the Student Will Demonstrate An
    Earth’s Structure and Processes 8-3 The student will demonstrate an understanding of materials that determine the structure of Earth and the processes that have altered this structure. (Earth Science) 8-3.1 Summarize the three layers of Earth – crust, mantle, and core – on the basis of relative position, density, and composition. Taxonomy level: 2.4-B Understand Conceptual Knowledge Previous/future knowledge: Students in 3rd grade (3-3.5, 3-3.6) focused on Earth’s surface features, water, and land. In 5th grade (5-3.2), students illustrated Earth’s ocean floor. The physical property of density was introduced in 7th grade (7-5.9). Students have not been introduced to areas of Earth below the surface. Further study into Earth’s internal structure based on internal heat and gravitational energy is part of the content of high school Earth Science (ES-3.2). It is essential for students to know that Earth has layers that have specific conditions and composition. Layer Relative Position Density Composition Crust Outermost layer; thinnest Least dense layer overall; Solid rock – mostly under the ocean, thickest Oceanic crust (basalt) is silicon and oxygen under continents; crust & more dense than Oceanic crust - basalt; top of mantle called the continental crust (granite) Continental crust - granite lithosphere Mantle Middle layer, thickest Density increases with Hot softened rock; layer; top portion called depth because of contains iron and the asthenosphere increasing pressure magnesium Core Inner layer; consists of Heaviest material; most Mostly iron and nickel; two parts – outer core and dense layer outer core – slow flowing inner core liquid, inner core - solid It is not essential for students to know specific depths or temperatures of the layers.
    [Show full text]
  • Earth Layers Rocks
    Released SOL Test Questions 4. Which of these best describes the relationship between Sorted by Topic Earth’s layers? Compiled by SOLpass – www.solpass.org (2007-12) a. The hottest layers are closest to the core. SOL 5.7 Earth’s Constantly b. The more liquid layers are closest to the crust. Changing Surface c. The lightest layers are closest to the core. The student will investigate and understand how Earth’s d. The more metallic layers are closest to the crust. surface is constantly changing. Key concepts include 5. What layer of Earth is located just below the crust? a) identification of rock types (2007-26) b) the rock cycle and how transformations between rocks a. Inner core occur b. Mantle c) Earth history and fossil evidence c. Continental shelf d) the basic structure of Earth’s interior d. Outer core e) changes in Earth’s crust due to plate tectonics 6. Which of these Earth layers is the thinnest? f) weathering, erosion, and deposition; and (2003-24) g) human impact a. The inner core b. The outer core EARTH LAYERS c. The mantle 1. Which layer of Earth is the thinnest? d. The crust (2011-34) a. Inner core ROCKS b. Crust 7. Pumice is formed when lava from a volcano cools. Which c. Outer core rock type is pumice? d. Mantle (2011-26) a. Gaseous rock 2. Earth is composed of four layers. Many scientists believe that as Earth cooled, the denser materials sank to the b. Igneous rock center and the less dense materials rose to the top.
    [Show full text]
  • Evaluation of Seismic Performance in Mechanically Stabilized Earth Structures
    Evaluation of seismic performance in Mechanically Stabilized Earth structures J.E. Sankey The Reinforced Earth Company, Vienna, Virginia – USA P. Segrestin Freyssinet International, Velizy, France ABSTRACT: Recent earthquake events have brought about renewed interest in the response of a variety of structures to seismic loads. In the case of mechanically stabilized earth structures, such as Reinforced Earth®, current seismic design codes do not appear to fully incorporate their inherent flexibility. A brief catalogue of major earthquakes and corresponding descriptions regarding the condition of local Reinforced Earth structures is provided to demonstrate the realistic flexibility of the structures. A call for better consideration of the ductile response of Reinforced Earth is recommended based on its flexible composition of discrete steel reinforcements and select soil matrix. 1 BACKGROUND subjected to seismic events in the Northridge, Kobe and Izmit Earthquakes. The actual physical In the last decade there have been major earthquake condition will then be compared to the criteria used events in the United States (Northridge, California, in design for the walls. Even in cases where the 1994, 6.7 Richter magnitude), Japan (Great Hanshin, seismic accelerations exceeded the design Kobe, 1995, 7.2 Richter magnitude), and Turkey accelerations, it will be shown that little if any (North Anatolian, Izmit, 1999, 7.4 Richter distress resulted. The rationale shall be presented magnitude). The Northridge Earthquake was that the ductility of the Reinforced Earth may allow responsible for 57 deaths, 11,000 injuries and $20 minor permanent deflections to occur without billion US in damages. The Kobe Earthquake was a distress that would affect service life.
    [Show full text]
  • Lecture Liquefaction of Soils During Earthquakes I.M
    LECTURE LIQUEFACTION OF SOILS DURING EARTHQUAKES I.M. Idriss Woodward-Clyde Consultants San Francisco, California, U.S.A. DEFINITION OF TERMS The following definitions perta1n1ng to cyclic loading conditions are based on slight modifications of those originally proposed by Lee and Seed (1967). FAILURE: When the induced cyclic: strains become excessive. COMPLETE LIQUEFACTION: When a soil exhibits no resistance to de­ formation over a wide strain range. PARTIAL LIQUEFACTION: When a soil exhibits no resistance to de­ formation over a strain range less than that considered to cons­ titute failure. INITIAL LIQUEFACTION: When a soil first exhibits any degree of partial liquefaction during cyclic loading. Ordinarily, the fir@t condition reached is INITIAL LIQUEFACTION, followed by PARTIAL, and COMPLETE liquefaction, with FAILURE being reached at some stage during the partial or complete liquefaction stages. The following definitions are given by Seed, Arango and Chan (1975) : INITIAL LIQUEFACTION: Denotes a condition where ,during the course of cyclic stress applications, the residual pore water pressure on completion of any full stress cycle becomes equal to the applied 507 J. B. MlUtins (ed.), Numerical Methods in GeomechanicB, 507-530. Copyright e 1982 by D. Reidel Publishing Company. 508 1. M.IDRISS confining pressure; the development of initial liquefaction has no implications concerning the magnitude of the deformations which the soil might subsequently undergo; however,it defines a condition which is a useful basis for assessing various possible forms of subsequent soil behavior. INITIAL LIQUEFACTION WITH LIMITED STRAIN POTENTIAL OR CYCLIC MOBI­ LITY: Denotes a condition in which cyclic stress applications develop a condition of initial liquefaction and subsequent cyclic stress applications cause limited strains to develop either be­ cause of the remaining resistance of the soil to deformation or because the soil dilates, the pore pressure drops, and the soil stabilizes under the applied loads.
    [Show full text]
  • Reinforced Earth: Principles and Applications in Engineering Construction
    International Journal of Advanced Academic Research | Sciences, Technology & Engineering | ISSN: 2488-9849 Vol. 2, Issue 6 (June 2016) REINFORCED EARTH: PRINCIPLES AND APPLICATIONS IN ENGINEERING CONSTRUCTION Okechukwu, S.I; Okeke, O. C; Akaolisa, C. C. Z; Jack, L. And Akinola, A. O. Department of Geology, Federal University of Technology, Owerri, Imo State, Nigeria Abstract Reinforced earth is a material formed by combining earth and reinforcement material. The reinforced soil is obtained by placing extensible or inextensible materials such as metallic strips or polymeric reinforcement within the soil to obtain the requisite properties. The reinforcement enables the soil mass to resist tension in a way which the earth alone could not. The source of this resistance to tension is the internal friction of soil, because the stresses that are created within the mass are transferred from soil to the reinforcement strips by friction. Reinforcement of soil is practiced to improve the mechanical properties of the soil being reinforced by the inclusion of structural elements. The reinforcement improves the earth by increasing the bearing capacity of the soil. It also reduces the liquefaction behavior of the soil. Reinforced earth is not complex to achieve. The components of reinforced earth are soil, skin and reinforcing material. The reinforcing material may include steel, concrete, glass, planks etc. Reinforced earth has so many applications in construction work. Some of the applications include its use in stabilization of soil, construction of retaining walls, bridge abutments for highways, industrial and mining structures. Keywords: Reinforcement, Reinforced earth. 1.0 Introduction An internally stabilized system such as reinforced earth involves reinforcements installed within and extending beyond the potential failure mass.
    [Show full text]
  • Grade Separation Methods/Vertical Options Context
    Ref Doc: CSS1_001_GradeSepMethods Date: 3/15/10 TYPICAL GRADE SEPARATION METHODS for the Peninsula Rail Program San Francisco to San Jose on the Caltrain Corridor Characteristics of Typical Methods for Grade Separating Railroad Tracks from Roadways This table summarizes general information for each vertical option for ten areas of interest. TYPE OF ELEVATION (TOP OF COST STRUCTURE RAIL, RELATIVE TO (RELATIVE TO DESCRIPTION FOR AT-GRADE TOP OF AT-GRADE RAILROAD RAIL) CONSTRUCTION) An aerial structure called a "viaduct" supported by AERIAL columns or, sometimes when spanning long ~30 feet above 3 times VIADUCT distances, on beams (i.e. bents) supported by columns. There are three options for berms, or raised earth options. (1) Berm: compacted raised earth with tracks located at the top. BERM 0 to 15 feet above 2 times (2) Mechanically Stabilized Earth: compacted raised earth stabilized by metal "straps" and contained by walls on either side. (3) Retained Fill: compacted raised earth stabilized by retaining walls Tracks at the same level as surrounding ground level. Roads go over or under the tracks. Most of AT-GRADE 01 the trains on the Caltrain right of way are at grade and intersect with roads at grade crossings (i.e. they are not separated from one another). Below ground option where tracks are constructed OPEN 0 to 30 feet below 3.5 times below ground level with the space above tracks TRENCH open to air. CLOSED TRENCH Shallow tunnel constructed by first excavating a (CUT AND 30 to 45 feet below 5 times trench and then roofed over. COVER TUNNEL) Deep tunnel constructed using a tunnel boring DEEP machine (TBM) that starts at one end and bores TUNNEL ~100 feet below 7 times through to the tunnel exit.
    [Show full text]
  • Challenging Students Ideas About Earth's Interior Structure Using a Model-Based, Conceptual Change Approach in a Large Class Setting
    Challenging Students Ideas About Earth's Interior Structure Using a Model-based, Conceptual Change Approach in a Large Class Setting David N. Steer Department of Geology, University of Akron, Akron, OH 44325-4101 [email protected] Catharine C. Knight Educational Foundations & Leadership, College of Education, University of Akron, Akron, OH 44325-4208 [email protected] Katharine D. Owens Department of Curricular and Instructional Studies, University of Akron, Akron, OH 44325-4205 [email protected] David A. McConnell Department of Geology, University of Akron, Akron, OH 44325-4101 [email protected] ABSTRACT the outcome related to a concept. Students then share their views and ideas with peers. This idea sharing is a A model-based, conceptual change approach to teaching scaffolding technique to help students articulate their was found to improve student understanding of earth beliefs about the topic at hand and then resolve conflicts structure in a large (100+ student) inquiry-based, general (Zeidler, 1997). At the university level, professors then education setting. Results from paired pre- and commonly step in to challenge students to resolve post-instruction sketches indicated that 19% (n = 18/97) conflicts that arise when their initial ideas are not of the students began the class with naïve preconceptions supported by actual data, expert models or other of the structure of the interior of the Earth. Many of the information. Students learn how to extend and transfer remaining students (95%; n = 75/79) began the lesson their knowledge through this process of raising and believing that the crust is several hundred kilometers answering questions about the application of concepts to thick.
    [Show full text]
  • Cement-Modified Loess Base for Intercity Railways
    materials Article Cement-Modified Loess Base for Intercity Railways: Mechanical Strength and Influencing Factors Based on the Vertical Vibration Compaction Method Yingjun Jiang, Qilong Li * , Yong Yi * , Kejia Yuan *, Changqing Deng and Tian Tian Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064, China; [email protected] (Y.J.); [email protected] (C.D.); [email protected] (T.T.) * Correspondence: [email protected] (Q.L.); [email protected] (Y.Y.); [email protected] (K.Y.) Received: 21 July 2020; Accepted: 14 August 2020; Published: 17 August 2020 Abstract: Cement-modified loess has been used in the recent construction of an intercity high-speed railway in Xi’an, China. This paper studies the mechanical strength of cement-modified loess (CML) compacted by the vertical vibration compaction method (VVCM). First, the reliability of VVCM in compacting CML is evaluated, and then the effects of cement content, compaction coefficient, and curing time on the mechanical strength of CML are analyzed, establishing a strength prediction model. The results show that the correlation of mechanical strength between the CML specimens prepared by VVCM in the laboratory and the core specimens collected on site is as high as 83.8%. The mechanical strength of CML initially show linear growth with increasing cement content and compaction coefficient. The initial growth in CML mechanical strength is followed by a later period, with mechanical strength growth slowing after 28 days. The mechanical strength growth properties of the CML can be accurately predicted via established strength growth equations.
    [Show full text]
  • November 26, 1984 Reston, Virginia
    ^pf"3 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY PROCEEDINGS OF THE SYMPOSIUM ON "THE NEW MADRID SEISMIC ZONE" NOVEMBER 26, 1984 RESTON, VIRGINIA This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey publication standards and stratigraphic nomenclature. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the United States Government. Any use of trade names and trademarks in this publication is for descriptive purposes only and does not constitute endorsement by the U.S. Geological Survey. Reston, Virginia 1984 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY PROCEEDINGS OF THE SYMPOSIUM ON "THE NEW MADRID SEISMIC ZONE" November 26,1984 Reston, Virginia Convenor and Organizer Otto W. Nuttli St. Louis Univeristy St. Louis, Missouri Editors Paula L. Gori and Walter W. Hays U.S. Geological Survey Reston, Virginia 22092 Open File Report 84-770 Compiled by Carla J. Kitzmiller This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey publication standards and stratigraphic nomenclature. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the United States Government. Any use of trade names and trademarks in this publication is for descriptive purposes only and does not constitute endorsement by the U.S. Geological Survey. Reston, Virginia 1984 Preface The greatest sequence of earthquakes in the history of the United States occurred in the winter of 1811-1812 in New Madrid, Missouri.
    [Show full text]