Biogeography and Phylogeny of the New Zealand Cicada Genera (Hemiptera : Cicadidae) Based on Nuclear and Mitochondrial DNA Data

Total Page:16

File Type:pdf, Size:1020Kb

Biogeography and Phylogeny of the New Zealand Cicada Genera (Hemiptera : Cicadidae) Based on Nuclear and Mitochondrial DNA Data UC Riverside UC Riverside Previously Published Works Title Biogeography and phylogeny of the New Zealand cicada genera (Hemiptera : Cicadidae) based on nuclear and mitochondrial DNA data Permalink https://escholarship.org/uc/item/9bh6k6cm Journal Journal of Biogeography, 31(4) ISSN 0305-0270 Authors Arensburger, P Buckley, T R Simon, C et al. Publication Date 2004-04-01 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Journal of Biogeography (J. Biogeogr.) (2004) 31, 557–569 ORIGINAL Biogeography and phylogeny of the New ARTICLE Zealand cicada genera (Hemiptera: Cicadidae) based on nuclear and mitochondrial DNA data Peter Arensburger1*, Thomas R. Buckley2, Chris Simon3, Max Moulds4 and Kent E. Holsinger3 1Department of Entomology, University of ABSTRACT California at Riverside, Watkins Drive, CA, Aim Determine the geographical and temporal origins of New Zealand cicadas. USA, 2Landcare Research, Mt Albert, Auckland, New Zealand, 3Department of Location New Zealand, eastern Australia and New Caledonia. Ecology and Evolutionary Biology, University of Connecticut, CT, USA, 4Entomology Methods DNA sequences from 14 species of cicadas from New Zealand, Department, Australian Museum, Sydney, Australia, and New Caledonia were examined. A total of 4628 bp were analysed NSW, Australia from whole genome extraction of four mitochondrial genes (cytochrome oxidase subunits I and II, and ribosomal 12S and 16S subunits) and one nuclear gene (elongation factor-1 alpha). These DNA sequences were aligned and analysed using standard phylogenetic methods based primarily on the maximum likelihood optimality criterion. Dates of divergences between clades were determined using several molecular clock methods. Results New Zealand cicadas form two well-defined clades. One clade groups with Australian taxa, the other with New Caledonian taxa. The molecular clock analyses indicate that New Zealand genera diverged from the Australian and New Caledonian genera within the last 11.6 Myr. Main conclusions New Zealand was likely colonized by two or more invasions. One NZ lineage has its closest relatives in Australia and the other in New Caledonia. These invasions occurred well after New Zealand became isolated *Correspondence: Peter Arensburger, from other land masses, therefore cicadas must have crossed large bodies of water Department of Entomology, University of to reach New Zealand. California at Riverside, Watkins Drive, CA 92521-0001, USA. Keywords: E-mail: [email protected] Cicada, New Zealand, phylogeny, molecular clock, dispersal. Australia, New Caledonia, New Zealand, and Africa. They are INTRODUCTION divided into five genera: Kikihia (14 species) Dugdale, While New Zealand contains many ancient ‘Gondwanan’ Maoricicada (14 species) Dugdale, Rhodopsalta (two species) elements, the presumed ancient age and origin of many New Dugdale, Notopsalta (two species) Dugdale, and Amphipsalta Zealand taxa has been challenged in recent years (Raven, 1973; (three species) Fleming. Nearly all New Zealand cicada species Dettman & Jarzen, 1990; Pole, 1994; Christidis et al., 1996; are endemic to the North and South Islands and to small Winkworth et al., 2002). Several studies have looked at the surrounding islands. The only exception is a species of Kikihia, origins of plants and vertebrates (Cooper et al., 1992; Waters & K. convicta (Distant), that is endemic to Norfolk Island Burridge, 1999; Chambers et al., 2001) but few have focused (Australia), located between New Zealand and the Australian on invertebrate taxa (e.g. Gleeson et al., 1998). We examined mainland. Such high levels of endemicity suggest that New the origins, both geographical and temporal, of a well-studied Zealand cicadas have been isolated for some time. New New Zealand insect group, the Cicadidae (order Hemiptera) Zealand separated from Gondwanaland 82 Ma and has (five genera, 36 described species + eight or more undescribed remained isolated ever since (Cooper & Millener, 1993). species). Therefore, present day New Zealand cicadas must be the New Zealand cicadas all belong to the tribe Cicadettini, a descendants of either Gondwanan species (i.e. older than cosmopolitan tribe in the southern hemisphere that is found in 82 Myr) or of species that were able to cross hundreds of ª 2004 Blackwell Publishing Ltd www.blackwellpublishing.com/jbi 557 P. Arensburger et al. kilometres of ocean to settle New Zealand; a remarkable feat literature (Dugdale, 1972) and molecular systematic studies for an insect not generally known for its dispersal abilities of Maoricicada (Buckley et al., 2001a,b) and Kikihia (Williams & Simon, 1995; de Boer & Duffels, 1996). The (P. Arensburger, pers. comm.). geographical origins of New Zealand cicadas have generally All five New Zealand genera were sampled. The single been traced to Australia or New Caledonia. Myers (1929), New Zealand species of the genus Notopsalta, N. sericea based on morphological evidence, hypothesized that all New (Walker, 1850), was sampled to represent the earliest branch Zealand cicadas were derived from a New Caledonian ancestor of the lineage leading both to Notopsalta and Amphipsalta. that invaded both New Zealand and Australia. However, This was suggested by molecular phylogenetic analyses (T.R. Dugdale (1972) believed that New Zealand cicadas were the Buckley et al., unpub. data), which show all three Amphips- result of several, perhaps as many as five (one for each genus) alta species and the one New Zealand Notopsalta species to separate invasions from Australia. Fleming (1975) believed that form a monophyletic polytomy with similar terminal branch these invasions occurred only after angiosperms had exten- lengths. sively radiated throughout New Zealand 65 Ma. To distinguish Australia contains over 100 described species within the between these hypotheses we determined the relationships tribe Cicadettini with many remaining to be described between New Zealand cicadas and potential source popula- (Moulds, 1990, M. Moulds unpub.). From the large number tions and estimated the date of arrival of cicadas into New of cicadettine species in Australia we chose a subset for this Zealand. study. Species in this subset were identified by Dugdale (1972) This study focused on possible source populations in and M.M. as likely relatives to New Zealand cicadas based on Australia and New Caledonia. While cicadas are found morphological features. In a pilot sequencing study, fragments throughout the South Pacific we limited ourselves to these (between 385 and 684 bp) of the cytochrome oxidase II (COII) two countries for a number of reasons. First, populations in gene were sequenced for eleven Australian Cicadettini (Cica- these countries had previously been suggested as possible detta arenaria (Distant), C. celis Moulds, C. denisoni (Distant), ancestors (Myers, 1929; Dugdale, 1972; Fleming, 1975). C. torrida (Erichson), C. puer (Walker, 1850), C. tristrigata Second, these are the two closest large land masses to New (Goding & Froggatt, 1904), C. labeculata (Distant), Urabunana Zealand and they share a recent geological history when all marshalli Distant, Birrima varians (Germar), Pauropsalta three were connected by the supercontinent of Gondwanaland. aktities Ewart, and P. annulata Goding & Froggatt, 1904). Third, the cicadas of New Zealand, Australia, and New As done by other systematists (e.g. Kim et al., 1999), species Caledonia are morphologically distinct from those of New with unusually long branches were eliminated in order to Guinea and other islands north-west of New Zealand (Duffels, minimize problems of long-branch attraction–uniting taxa at 1986). A distinct Australia – New Caledonia – New Zealand the tips of long branches because of parallel or convergent biogeographical region is supported by evidence in other taxa changes rather than homology–one of the most serious (Duffels, 1986). Fourth, all New Zealand cicadas belong to the problems in molecular phylogenetic analysis (Felsenstein, tribe Cicadettini and current taxonomy does not recognize 1978; Hendy & Penny, 1989; Swofford et al., 2001). Even if species of this tribe in South America. other screened Cicadettini had been more closely related to By using selected species from each country we established a New Zealand cicadas in terms of branching pattern, the large well-supported phylogeny containing all five New Zealand number of autapomorphies and shared convergent bases would genera as well as selected Australian and New Caledonian have made phylogenetic analysis difficult. Based on these genera. Furthermore, by using molecular sequence data we also sequencing results, two species (C. celis and C. puer) with short examined the timing of arrival of cicadas into New Zealand. branches (i.e. genetically less distant from the New Zealand cicadas) were chosen to represent the Australian Cicadettini. The relationships of the New Caledonian cicadas are less MATERIALS AND METHODS well understood than those of cicadas found in either New Zealand or Australia. Cicadas collected during a single Taxon sampling sampling trip in 1998 were identified by M. Boulard (Muse´um Cicadas collected in the field were either preserved in 95% d’Histoire Naturelle, Paris) and M. M. Two New Caledonian ethanol, frozen on dry ice, or both; followed by storage at cicadettine species were used in this study, Pauropsalta johanae )70 °C. Voucher specimens of each species were deposited in Boulard and Myersalna depicta (Distant), based on morpho- the entomology collection
Recommended publications
  • A New Cicadetta Species in the Montana Complex (Insecta, Hemiptera, Cicadidae)
    Zootaxa 1442: 55–68 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Similar look but different song: a new Cicadetta species in the montana complex (Insecta, Hemiptera, Cicadidae) JÉRÔME SUEUR1 & STÉPHANE PUISSANT2 1NAMC-CNRS UMR 8620, Université Paris XI, Bât. 446, 91405 Orsay Cedex, France Present address: Institut de Recherche sur la Biologie de l’Insecte - UMR CNRS 6035, Parc Grandmont, 37200 Tours, France. E-mail: [email protected] 2Muséum national d'Histoire naturelle (Paris), Département Systématique et Evolution, Entomologie, 4 square Saint-Marsal, F-66100 Perpignan, France 1Corresponding author Abstract The Cicadetta montana species complex includes six cicada species from the West-Palaearctic region. Based on acoustic diagnostic characters, a seventh species Cicadetta cantilatrix sp. nov. belonging to the complex is described. The type- locality is in France but the species distribution area extends to Poland, Germany, Switzerland, Austria, Slovenia, Mace- donia and Montenegro. The calling song sequence consists of two phrases with different echemes. This calling pattern clearly differs from those produced by all other members of the complex, including C. cerdaniensis, previously mistaken with the new species. This description increases the acoustic diversity observed within a single cicada genus and sup- ports the hypothesis that sound communication may play a central role in speciation. Key words: Cryptic species, bioacoustics, Cicadidae, Cicadetta, geographic distribution, France Introduction Some biodiversity is not obvious when looking at preserved specimens. Various species do not differ in their morphology, but drastically in their behaviour. Such sibling, or cryptic, species are particularly evident in insects that produce sound to communicate: they look similar but sing differently.
    [Show full text]
  • Summary of Native Bat, Reptile, Amphibian and Terrestrial Invertebrate Translocations in New Zealand
    Summary of native bat, reptile, amphibian and terrestrial invertebrate translocations in New Zealand SCIENCE FOR CONSERVATION 303 Summary of native bat, reptile, amphibian and terrestrial invertebrate translocations in New Zealand G.H. Sherley, I.A.N. Stringer and G.R. Parrish SCIENCE FOR CONSERVATION 303 Published by Publishing Team Department of Conservation PO Box 10420, The Terrace Wellington 6143, New Zealand Cover: Male Mercury Islands tusked weta, Motuweta isolata. Originally found on Atiu or Middle Island in the Mercury Islands, these were translocated onto six other nearby islands after being bred in captivity. Photo: Ian Stringer. Science for Conservation is a scientific monograph series presenting research funded by New Zealand Department of Conservation (DOC). Manuscripts are internally and externally peer-reviewed; resulting publications are considered part of the formal international scientific literature. Individual copies are printed, and are also available from the departmental website in pdf form. Titles are listed in our catalogue on the website, refer www.doc.govt.nz under Publications, then Science & technical. © Copyright April 2010, New Zealand Department of Conservation ISSN 1173–2946 (hardcopy) ISSN 1177–9241 (PDF) ISBN 978–0–478–14771–1 (hardcopy) ISBN 978–0–478–14772–8 (PDF) This report was prepared for publication by the Publishing Team; editing by Amanda Todd and layout by Hannah Soult. Publication was approved by the General Manager, Research and Development Group, Department of Conservation, Wellington, New Zealand. In the interest of forest conservation, we support paperless electronic publishing. When printing, recycled paper is used wherever possible. CONTENTS Abstract 5 1. Introduction 6 2. Methods 7 3.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • First Host Plant Record for Pacarina (Hemiptera, Cicadidae)
    Neotropical Biology and Conservation 15(1): 77–88 (2020) doi: 10.3897/neotropical.15.e49013 SHORT COMMUNICATION First host plant record for Pacarina (Hemiptera, Cicadidae) Annette Aiello1, Brian J. Stucky2 1 Smithsonian Tropical Research Institute, Panama 2 Florida Museum of Natural History, University of Florida, Gainesville, FL, USA Corresponding author: Brian J. Stucky ([email protected]) Academic editor: P. Nunes-Silva | Received 4 December 2019 | Accepted 20 February 2020 | Published 19 March 2020 Citation: Aiello A, Stucky BJ (2020) First host plant record for Pacarina (Hemiptera, Cicadidae). Neotropical Biology and Conservation 15(1): 77–88. https://doi.org/10.3897/neotropical.15.e49013 Abstract Twenty-nine Pacarina (Hemiptera: Cicadidae) adults, 12 males and 17 females, emerged from the soil of a potted Dracaena trifasciata (Asparagaceae) in Arraiján, Republic of Panama, providing the first rearing records and the first definitive host plant records for any species of Pacarina. These reared Pacarina appear to be morphologically distinct from all known species of Pacarina and likely repre- sent an undescribed species. In light of this finding, we also discuss the taxonomy, biogeography, and ecology of Pacarina. Keywords cicada, Dracaena, host plant, rearing, taxonomy Introduction As far as is known, all cicadas are herbivores that spend the vast majority of their long life cycles as nymphs, living deep underground and feeding on the xylem sap of plant roots (Beamer 1928; Cheung and Marshall 1973; White and Strehl 1978). Be- cause of their relative inaccessibility to researchers, very little information is availa- ble about the host plant associations of juvenile cicadas. Consequently, even though adult cicadas are among the most conspicuous and familiar of all insects, the host plants of most cicada species’ nymphs remain unknown.
    [Show full text]
  • Host-Associated Microbial Diversity in New Zealand Cicadas Uncovers Elevational Structure And
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.24.457591; this version posted August 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Full Working Title: 2 Host-associated microbial diversity in New Zealand cicadas uncovers elevational structure and 3 replacement of obligate bacterial endosymbionts by Ophiocordyceps fungal pathogens 4 5 Authors: 6 Diler Haji1,2, Jason Vailionis2, Mark Stukel2, Eric Gordon2, Emily Moriarty Lemmon3, Alan R. 7 Lemmon4, John P. McCutcheon5,6, Chris Simon2 8 9 Affiliations: 10 1 Current address: Department of Integrative Biology, University of California, Berkeley, CA, 11 USA 12 2 Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA 13 3 Department of Biological Science, Florida State University, Tallahassee, FL, USA 14 4 Department of Scientific Computing, Florida State University, Tallahassee, FL, USA 15 5 Division of Biological Sciences, University of Montana, Missoula, MT, USA 16 6 Current address: Biodesign Center for Mechanisms of Evolution, Arizona State University, 17 Tempe, AZ, USA 18 19 20 Corresponding Author: 21 Diler Haji, [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.08.24.457591; this version posted August 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • An Appraisal of the Higher Classification of Cicadas (Hemiptera: Cicadoidea) with Special Reference to the Australian Fauna
    © Copyright Australian Museum, 2005 Records of the Australian Museum (2005) Vol. 57: 375–446. ISSN 0067-1975 An Appraisal of the Higher Classification of Cicadas (Hemiptera: Cicadoidea) with Special Reference to the Australian Fauna M.S. MOULDS Australian Museum, 6 College Street, Sydney NSW 2010, Australia [email protected] ABSTRACT. The history of cicada family classification is reviewed and the current status of all previously proposed families and subfamilies summarized. All tribal rankings associated with the Australian fauna are similarly documented. A cladistic analysis of generic relationships has been used to test the validity of currently held views on family and subfamily groupings. The analysis has been based upon an exhaustive study of nymphal and adult morphology, including both external and internal adult structures, and the first comparative study of male and female internal reproductive systems is included. Only two families are justified, the Tettigarctidae and Cicadidae. The latter are here considered to comprise three subfamilies, the Cicadinae, Cicadettinae n.stat. (= Tibicininae auct.) and the Tettigadinae (encompassing the Tibicinini, Platypediidae and Tettigadidae). Of particular note is the transfer of Tibicina Amyot, the type genus of the subfamily Tibicininae, to the subfamily Tettigadinae. The subfamily Plautillinae (containing only the genus Plautilla) is now placed at tribal rank within the Cicadinae. The subtribe Ydiellaria is raised to tribal rank. The American genus Magicicada Davis, previously of the tribe Tibicinini, now falls within the Taphurini. Three new tribes are recognized within the Australian fauna, the Tamasini n.tribe to accommodate Tamasa Distant and Parnkalla Distant, Jassopsaltriini n.tribe to accommodate Jassopsaltria Ashton and Burbungini n.tribe to accommodate Burbunga Distant.
    [Show full text]
  • Phylogeography of Maoricicada Campbelli (Hemiptera: Cicadidae)
    School of Biological Sciences PHYLOGEOGRAPHY OF MAORICICADA CAMPBELLI (HEMIPTERA: CICADIDAE): MTDNA EVIDENCE INTERPRETED USING PHYLOGENETICS AND NESTED CLADE ANALYSIS by Kathy Barbara Rose Hill A thesis submitted to the Victoria University of Wellington in fulfillment of the requirements for the degree of Master of Science in Ecology March 2005 i ABSTRACT New Zealand, because of its wide range of habitats and rapidly changing, well- studied palaeohistory provides an excellent opportunity to investigate the impact of earth processes on the distribution of taxa. There are now a variety of studies on plants that investigate such patterns, and a growing number of studies on animal taxa. Most studies have supported the hypothesis that current patterns of distribution of New Zealand taxa were created by dispersal, mediated by landscape and climatic conditions over time, and have contradicted the panbiogeographic hypothesis that explained distributions via vicariant landscape changes such as lateral displacement along the Alpine Fault. This thesis presents a detailed phylogeographic history of a widespread, endemic New Zealand cicada, Maoricicada campbelli, that is abundant throughout much of the South Island and is also found in the central volcanic plateau of the North Island. Mitochondrial DNA sequences of 223 individuals from 70 populations of M. campbelli were studied using both traditional phylogenetic methods and nested clade analysis (NCA). As found in a previous study of 35 M. campbelli individuals, geographic structuring was strong, with two main clades (North Island+northern South Island versus Otago) representing diverse lineages that may in fact be different species. Population structuring within the northern South Island clade suggested that the central South Island was mostly uninhabitable during glacial periods and demonstrated a sister-group relationship between northern and southern Southern Alps populations to the exclusion of the more central Southern Alps populations.
    [Show full text]
  • A Review of the Genera of Australian Cicadas (Hemiptera: Cicadoidea)
    Zootaxa 3287: 1–262 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) ZOOTAXA 3287 A review of the genera of Australian cicadas (Hemiptera: Cicadoidea) M. S. MOULDS Entomology Dept, Australian Museum, 6 College Street, Sydney N.S.W. 2010 E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by J.P. Duffels: 31 Jan. 2012; published: 30 Apr. 2012 M. S. MOULDS A review of the genera of Australian cicadas (Hemiptera: Cicadoidea) (Zootaxa 3287) 262 pp.; 30 cm. 30 Apr. 2012 ISBN 978-1-86977-889-7 (paperback) ISBN 978-1-86977-890-3 (Online edition) FIRST PUBLISHED IN 2012 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2012 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 3287 © 2012 Magnolia Press MOULDS TABLE OF CONTENTS Abstract . 5 Introduction . 5 Historical review . 6 Terminology . 7 Materials and methods . 13 Justification for new genera . 14 Summary of classification for Australian Cicadoidea . 21 Key to tribes of Australian Cicadinae . 25 Key to the tribes of Australian Cicadettinae .
    [Show full text]
  • Insects of the Dansey Ecological District / by B.H
    SCIENCE & RESEARCH SERIES NO.32 INSECTS OF THE DANSEY ECOLOGICAL DISTRICT by B. H. Patrick Published by Head Office, Department of Conservation, P O Box 10-420, Wellington ISSN 0113-3713 ISBN 0-478-01285-3 © 1991, Department of Conservation National Library of New Zealand Cataloguing-in-Publication Data: Patrick, B. H. (Brian H.) Insects of the Dansey ecological district / by B.H. Patrick. Wellington [N.Z.] : Head Office, Dept. of Conservation, c1991. 1 v. (Science & research series, 0113-3713 ; no. 32) ISBN 0-478-01285-3 1. Insects--New Zealand--Kakanui Mountains. 2. Lepidoptera--New Zealand--Kakanui Mountains. 3. Mountain ecology--New Zealand--Kakanui Mountains. I. New Zealand. Dept of Conservation. II. Title. III. Series: Science & research series ; no. 32. 595.7099382 Keywords: Dansey Ecological District, Lepidoptera, Orthoptera, Trichoptera, Coleoptera, Hemiptera, Dictyoptera, Hymenoptera, key sites for conservation, biology, biogeography, new species, insects, 65.02, 65 CONTENTS ABSTRACT 1 1. INTRODUCTION 1 2. METHODS 2 3. RESULTS AND DISCUSSION 2 3.1 Rock bluffs and tors 3 3.2 Short tussock grasslands and shrubland 3 3.3 Alpine grassland 4 3.4 Wetlands 4 3.5 Snowbanks 7 3.6 Upland shrubland 7 3.7 High alpine fellfield and herbfield 7 4. NEW DISTRIBUTIONAL RECORDS 8 5. FEATURES OF THE FAUNA 11 6. CONCLUSIONS AND LIST OF KEY SITES 11 7. ACKNOWLEDGEMENTS 12 8. REERENCES 13 APPENDIX 1 14 Fig. 1 Map of the Dansey Ecological District of the Kakanui Ecological Region INSECTS OF DANSEY ECOLOGICAL DISTRICT by B. H. Patrick Conservancy Advisory Scientist, Otago Conservancy, Department of Conservation, Box 5244, Dunedin ABSTRACT An insect survey of the Dansey Ecological District in the Kakanui Ecological Region produced 295 species in seven insect orders, with primary attention being paid to Lepidoptera.
    [Show full text]
  • Assessing the Phylogenetic Utility of DNA Barcoding Using the New Zealand Cicada Genus Kikihia Megan Ribak University of Connecticut - Storrs, [email protected]
    University of Connecticut OpenCommons@UConn Honors Scholar Theses Honors Scholar Program Spring 5-9-2010 Assessing the Phylogenetic Utility of DNA Barcoding Using the New Zealand Cicada Genus Kikihia Megan Ribak University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/srhonors_theses Part of the Biology Commons, Developmental Biology Commons, and the Genetics Commons Recommended Citation Ribak, Megan, "Assessing the Phylogenetic Utility of DNA Barcoding Using the New Zealand Cicada Genus Kikihia" (2010). Honors Scholar Theses. 127. https://opencommons.uconn.edu/srhonors_theses/127 1 APPROVAL PAGE HONORS THESIS ASSESSING THE PHYLOGENETIC UTILITY OF DNA BARCODING USING THE NEW ZEALAND CICADA GENUS KIKIHIA Presented by Megan Pierce Ribak Honors Thesis Advisor_____________________________________________________ Chris Simon Honors Academic Advisor__________________________________________________ Janine Caira Associate Honors Advisor__________________________________________________ Elizabeth Jockusch Department of Ecology & Evolutionary Biology The University of Connecticut 2010 2 Abstract DNA Barcoding (Hebert et al. 2003) has the potential to revolutionize the process of identifying and cataloguing biodiversity; however, significant controversy surrounds some of the proposed applications. In the seven years since DNA barcoding was introduced, the Web of Science records more than 600 studies that have weighed the pros and cons of this procedure. Unfortunately, the scientific community has been unable to come to any consensus on what threshold to use to differentiate species or even whether the barcoding region provides enough information to serve as an accurate species identification tool. The purpose of my thesis is to analyze mitochondrial DNA (mtDNA) barcoding’s potential to identify known species and provide a well-resolved phylogeny for the New Zealand cicada genus Kikihia .
    [Show full text]
  • Evolution of Cicadomorpha (Insecta, Hemiptera) 155-170 © Biologiezentrum Linz/Austria; Download Unter
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Denisia Jahr/Year: 2002 Band/Volume: 0004 Autor(en)/Author(s): Dietrich Christian O., Dietrich Christian O. Artikel/Article: Evolution of Cicadomorpha (Insecta, Hemiptera) 155-170 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Evolution of Cicadomorpha (Insecta, Hemiptera) C.H. DIETRICH Abstract Cicadomorpha (Cicadoidea, Cerco- and tribe. The origins of some family- poidea and Membracoidea) are one of the group taxa may also have coincided with dominant groups of plant-feeding insects, shifts in feeding or courtship strategies, or as evidenced by their extraordinary diver- the colonization of novel habitats (e.g., sity and ubiquity in habitats ranging from grasslands, deserts). The origins of genera tropical rainforest to tundra. Improve- and species, in many cases, can be attribu- ments on our knowledge of the phylogeny ted to shifts in habitat and host plant asso- of these insects, based on cladistic analysis ciation, as well as smaller scale biogeogra- of morphological and molecular data and phic vicariance. Many aspects of cicado- study of the fossil record, provide the morphan evolution remain poorly under- opportunity to examine the possible fac- stood. These include phenomena such as tors that led to their diversification. Fac- the coexistence of many closely related tors influencing early divergences among species on the same host plant and the major lineages apparently included shifts diversity of bizarre pronotal modifications in life history strategies, including a tran- found among Membracidae. Such questi- sition from subterranean or cryptic to ons are best addressed by further ecologi- arboreal nymphal stage, shifts in feeding cal and behavioral study, as well as phylo- strategy (xylem to phloem or parenchy- genetic analysis.
    [Show full text]
  • Auchenorrhyncha (Insecta: Hemiptera): Catalogue
    The Copyright notice printed on page 4 applies to the use of this PDF. This PDF is not to be posted on websites. Links should be made to: FNZ.LandcareResearch.co.nz EDITORIAL BOARD Dr R. M. Emberson, c/- Department of Ecology, P.O. Box 84, Lincoln University, New Zealand Dr M. J. Fletcher, Director of the Collections, NSW Agricultural Scientific Collections Unit, Forest Road, Orange, NSW 2800, Australia Dr R. J. B. Hoare, Landcare Research, Private Bag 92170, Auckland, New Zealand Dr M.-C. Larivière, Landcare Research, Private Bag 92170, Auckland, New Zealand Mr R. L. Palma, Natural Environment Department, Museum of New Zealand Te Papa Tongarewa, P.O. Box 467, Wellington, New Zealand SERIES EDITOR Dr T. K. Crosby, Landcare Research, Private Bag 92170, Auckland, New Zealand Fauna of New Zealand Ko te Aitanga Pepeke o Aotearoa Number / Nama 63 Auchenorrhyncha (Insecta: Hemiptera): catalogue M.-C. Larivière1, M. J. Fletcher2, and A. Larochelle3 1, 3 Landcare Research, Private Bag 92170, Auckland, New Zealand 2 Industry & Investment NSW, Orange Agricultural Institute, Orange NSW 2800, Australia 1 [email protected], 2 [email protected], 3 [email protected] with colour photographs by B. E. Rhode Manaaki W h e n u a P R E S S Lincoln, Canterbury, New Zealand 2010 4 Larivière, Fletcher & Larochelle (2010): Auchenorrhyncha (Insecta: Hemiptera) Copyright © Landcare Research New Zealand Ltd 2010 No part of this work covered by copyright may be reproduced or copied in any form or by any means (graphic, electronic, or mechanical, including photocopying, recording, taping information retrieval systems, or otherwise) without the written permission of the publisher.
    [Show full text]