Deep Coral and Associated Species Taxonomy and Ecology Deepcast II Expedition Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Habitat-Forming Deep-Sea Corals in the Northeast Pacific Ocean
Habitat-forming deep-sea corals in the Northeast Pacific Ocean Peter Etnoyer1, Lance E. Morgan2 1 Aquanautix Consulting, 3777 Griffith View Drive, Los Angeles, CA 90039, USA ([email protected]) 2 Marine Conservation Biology Institute, 4878 Warm Springs Rd., Glen Ellen, CA 95442, USA Abstract. We define habitat-forming deep-sea corals as those families of octocorals, hexacorals, and stylasterids with species that live deeper than 200 m, with a majority of species exhibiting complex branching morphology and a sufficient size to provide substrata or refugia to associated species. We present 2,649 records (name, geoposition, depth, and data quality) from eleven institutions on eight habitat- forming deep-sea coral families, including octocorals in the families Coralliidae, Isididae, Paragorgiidae and Primnoidae, hexacorals in the families Antipathidae, Oculinidae and Caryophylliidae, and stylasterids in the family Stylasteridae. The data are ranked according to record quality. We compare family range and distribution as predicted by historical records to the family extent as informed by recent collections aboard the National Oceanic of Atmospheric Administration (NOAA) Office of Ocean Exploration 2002 Gulf of Alaska Seamount Expedition (GOASEX). We present a map of one of these families, the Primnoidae. We find that these habitat-forming families are widespread throughout the Northeast Pacific, save Caryophylliidae (Lophelia sp.) and Oculinidae (Madrepora sp.), which are limited in occurrence. Most coral records fall on the continental shelves, in Alaska, or Hawaii, likely reflecting research effort. The vertical range of these families, based on large samples (N >200), is impressive. Four families have maximum-recorded depths deeper than 1500 m, and minimum depths shallower than 40 m. -
Pseudosiderastrea Formosa Sp. Nov. (Cnidaria: Anthozoa: Scleractinia)
Zoological Studies 51(1): 93-98 (2012) Pseudosiderastrea formosa sp. nov. (Cnidaria: Anthozoa: Scleractinia) a New Coral Species Endemic to Taiwan Michel Pichon1, Yao-Yang Chuang2,3, and Chaolun Allen Chen2,3,4,* 1Museum of Tropical Queensland, 70-102 Flinders Street, Townsville 4810, Australia 2Biodiversity Research Center, Academia Sinica, Nangang, Taipei 115, Taiwan 3Institute of Oceanography, National Taiwan Univ., Taipei 106, Taiwan 4Institute of Life Science, National Taitung Univ., Taitung 904, Taiwan (Accepted September 1, 2011) Michel Pichon, Yao-Yang Chuang, and Chaolun Allen Chen (2012) Pseudosiderastrea formosa sp. nov. (Cnidaria: Anthozoa: Scleractinia) a new coral species endemic to Taiwan. Zoological Studies 51(1): 93-98. Pseudosiderastrea formosa sp. nov. is a new siderastreid scleractinian coral collected in several localities in Taiwan. It lives on rocky substrates where it forms encrusting colonies. Results of morphological observations and molecular genetic analyses are presented. The new species is described and compared to P. tayamai and Siderastrea savignyana, and its morphological and phylogenic affinities are discussed. http://zoolstud.sinica.edu.tw/Journals/51.1/93.pdf Key words: Pseudosiderastrea formosa sp. nov., New species, Scleractinia, Siderastreid, Western Pacific Ocean. A siderastreid scleractinian coral was Pseudosiderastrea, described as P. formosa sp. collected from several localities around Taiwan nov. and nearby islands, where it is relatively rare. The specimens present some morphological similarities with Pseudosiderastrea tayamai Yabe MATERIAL AND METHODS and Sugiyama, 1935, the only species hitherto known from that genus, and with Siderastrea Specimens were collected by scuba diving at savignyana Milne Edwards and Haime, 1849, Wanlitung (21°59'48"N, 120°42'10"E) and the outlet which is the sole representative in the Indian of the 3rd nuclear power plant (21°55'51.38"N, Ocean of the genus Siderastrea de Blainville, 120°44'46.82"E) on the southeastern coast 1830. -
DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1. -
Deep‐Sea Coral Taxa in the U.S. Gulf of Mexico: Depth and Geographical Distribution
Deep‐Sea Coral Taxa in the U.S. Gulf of Mexico: Depth and Geographical Distribution by Peter J. Etnoyer1 and Stephen D. Cairns2 1. NOAA Center for Coastal Monitoring and Assessment, National Centers for Coastal Ocean Science, Charleston, SC 2. National Museum of Natural History, Smithsonian Institution, Washington, DC This annex to the U.S. Gulf of Mexico chapter in “The State of Deep‐Sea Coral Ecosystems of the United States” provides a list of deep‐sea coral taxa in the Phylum Cnidaria, Classes Anthozoa and Hydrozoa, known to occur in the waters of the Gulf of Mexico (Figure 1). Deep‐sea corals are defined as azooxanthellate, heterotrophic coral species occurring in waters 50 m deep or more. Details are provided on the vertical and geographic extent of each species (Table 1). This list is adapted from species lists presented in ʺBiodiversity of the Gulf of Mexicoʺ (Felder & Camp 2009), which inventoried species found throughout the entire Gulf of Mexico including areas outside U.S. waters. Taxonomic names are generally those currently accepted in the World Register of Marine Species (WoRMS), and are arranged by order, and alphabetically within order by suborder (if applicable), family, genus, and species. Data sources (references) listed are those principally used to establish geographic and depth distribution. Only those species found within the U.S. Gulf of Mexico Exclusive Economic Zone are presented here. Information from recent studies that have expanded the known range of species into the U.S. Gulf of Mexico have been included. The total number of species of deep‐sea corals documented for the U.S. -
Sexual Reproduction of the Solitary Sunset Cup Coral Leptopsammia Pruvoti (Scleractinia: Dendrophylliidae) in the Mediterranean
Marine Biology (2005) 147: 485–495 DOI 10.1007/s00227-005-1567-z RESEARCH ARTICLE S. Goffredo Æ J. Radetic´Æ V. Airi Æ F. Zaccanti Sexual reproduction of the solitary sunset cup coral Leptopsammia pruvoti (Scleractinia: Dendrophylliidae) in the Mediterranean. 1. Morphological aspects of gametogenesis and ontogenesis Received: 16 July 2004 / Accepted: 18 December 2004 / Published online: 3 March 2005 Ó Springer-Verlag 2005 Abstract Information on the reproduction in scleractin- came indented, assuming a sickle or dome shape. We can ian solitary corals and in those living in temperate zones hypothesize that the nucleus’ migration and change of is notably scant. Leptopsammia pruvoti is a solitary coral shape may have to do with facilitating fertilization and living in the Mediterranean Sea and along Atlantic determining the future embryonic axis. During oogene- coasts from Portugal to southern England. This coral sis, oocyte diameter increased from a minimum of 20 lm lives in shaded habitats, from the surface to 70 m in during the immature stage to a maximum of 680 lm depth, reaching population densities of >17,000 indi- when mature. Embryogenesis took place in the coelen- viduals mÀ2. In this paper, we discuss the morphological teron. We did not see any evidence that even hinted at aspects of sexual reproduction in this species. In a sep- the formation of a blastocoel; embryonic development arate paper, we report the quantitative data on the an- proceeded via stereoblastulae with superficial cleavage. nual reproductive cycle and make an interspecific Gastrulation took place by delamination. Early and late comparison of reproductive traits among Dend- embryos had diameters of 204–724 lm and 290–736 lm, rophylliidae aimed at defining different reproductive respectively. -
(Approx) Mixed Micro Shells (22G Bags) Philippines € 10,00 £8,64 $11,69 Each 22G Bag Provides Hours of Fun; Some Interesting Foraminifera Also Included
Special Price £ US$ Family Genus, species Country Quality Size Remarks w/o Photo Date added Category characteristic (€) (approx) (approx) Mixed micro shells (22g bags) Philippines € 10,00 £8,64 $11,69 Each 22g bag provides hours of fun; some interesting Foraminifera also included. 17/06/21 Mixed micro shells Ischnochitonidae Callistochiton pulchrior Panama F+++ 89mm € 1,80 £1,55 $2,10 21/12/16 Polyplacophora Ischnochitonidae Chaetopleura lurida Panama F+++ 2022mm € 3,00 £2,59 $3,51 Hairy girdles, beautifully preserved. Web 24/12/16 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 30mm+ € 4,00 £3,45 $4,68 30/04/21 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 27.9mm € 2,80 £2,42 $3,27 30/04/21 Polyplacophora Ischnochitonidae Stenoplax limaciformis Panama F+++ 16mm+ € 6,50 £5,61 $7,60 Uncommon. 24/12/16 Polyplacophora Chitonidae Acanthopleura gemmata Philippines F+++ 25mm+ € 2,50 £2,16 $2,92 Hairy margins, beautifully preserved. 04/08/17 Polyplacophora Chitonidae Acanthopleura gemmata Australia F+++ 25mm+ € 2,60 £2,25 $3,04 02/06/18 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 41mm+ € 4,00 £3,45 $4,68 West Indian 'fuzzy' chiton. Web 24/12/16 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 32mm+ € 3,00 £2,59 $3,51 West Indian 'fuzzy' chiton. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 44mm+ € 5,00 £4,32 $5,85 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F++ 35mm € 2,50 £2,16 $2,92 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 29mm+ € 3,00 £2,59 $3,51 Caribbean. -
ABSTRACT Title of Dissertation: PATTERNS IN
ABSTRACT Title of Dissertation: PATTERNS IN DIVERSITY AND DISTRIBUTION OF BENTHIC MOLLUSCS ALONG A DEPTH GRADIENT IN THE BAHAMAS Michael Joseph Dowgiallo, Doctor of Philosophy, 2004 Dissertation directed by: Professor Marjorie L. Reaka-Kudla Department of Biology, UMCP Species richness and abundance of benthic bivalve and gastropod molluscs was determined over a depth gradient of 5 - 244 m at Lee Stocking Island, Bahamas by deploying replicate benthic collectors at five sites at 5 m, 14 m, 46 m, 153 m, and 244 m for six months beginning in December 1993. A total of 773 individual molluscs comprising at least 72 taxa were retrieved from the collectors. Analysis of the molluscan fauna that colonized the collectors showed overwhelmingly higher abundance and diversity at the 5 m, 14 m, and 46 m sites as compared to the deeper sites at 153 m and 244 m. Irradiance, temperature, and habitat heterogeneity all declined with depth, coincident with declines in the abundance and diversity of the molluscs. Herbivorous modes of feeding predominated (52%) and carnivorous modes of feeding were common (44%) over the range of depths studied at Lee Stocking Island, but mode of feeding did not change significantly over depth. One bivalve and one gastropod species showed a significant decline in body size with increasing depth. Analysis of data for 960 species of gastropod molluscs from the Western Atlantic Gastropod Database of the Academy of Natural Sciences (ANS) that have ranges including the Bahamas showed a positive correlation between body size of species of gastropods and their geographic ranges. There was also a positive correlation between depth range and the size of the geographic range. -
Influence of Frederick (Ted) M. Bayer on Deep-Water Octocoral Research
Vol. 397: 7–10, 2009 MARINE ECOLOGY PROGRESS SERIES Published December 17 doi: 10.3354/meps08066 Mar Ecol Prog Ser Contribution to the Theme Section ‘Conservation and management of deep-sea corals and coral reefs’ OPENPEN ACCESSCCESS Influence of Frederick (Ted) M. Bayer on deep-water octocoral research Stephen D. Cairns* Department of Invertebrate Zoology, Smithsonian Institution, PO Box 37012, Washington, DC 20560, USA ABSTRACT: The impact of Ted Bayer’s research on octocorals was extraordinary and his studies will long be used by any student of the group Octocorallia. He leaves behind a legacy of 107 published papers on octocorals, in which he newly described 4 families, 1 subfamily, 48 genera, 2 subgenera, 186 species, and 10 subspecies. An annotated list of his new taxa and all of his manuscripts (including 9 unpublished) are given in an electronic supplement. Although he published on most octocoral families, his favorite groups were the deep-water calcaxonian families from the western Atlantic, central Pacific, and Antarctic; he was also an expert on the precious coral family Coralliidae. He facilitated the study of the subclass by publishing classifications of the higher taxa, an illustrated trilingual glossary of morpho- logical terms, a key to all genera (exclusive of the Pennatulacea), and an annotated bibliography of the literature of the group. He was the first to use scanning electron microscope (SEM) images of sclerites to describe species, and perfected that technique in the use of SEM stereo pairs. He also made a sig- nificant contribution to advances in the knowledge of octocoral axial microstructure, proving that all gorgoniids have a diagnostic type of axial mineralogy. -
Deep Sea Coral Collection Protocols4.Pmd
FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©2006 Office of Habitat Conservation, NOAA National Marine Fisheries Service, Silver Spring, MD. This publication is available at http://purl.access.gpo.gov/GPO/LPS120470 and may be cited as: Etnoyer, P., Cairns, S. D., Sanchez, J. A., Reed, J. K., Lopez, J. V., Schroeder, W. W., Brooke, S. D., Watling, L., Baco‐Taylor, A., Williams, G. C., Lindner, A., France, S. C., & Bruckner, A. W. (2006). Deep‐ sea coral collection protocols: a synthesis of field experience from deep‐sea coral researchers, designed to build our national capacity to document deep‐sea coral diversity. In P. J. Etnoyer, NOAA Technical Memorandum NMFS‐OPR‐28. (pp. 1‐49). DEEP-SEA CORAL COLLECTION PROTOCOLS A synthesis of field experience from deep-sea coral researchers, designed to build our national capacity to document deep-sea coral diversity Etnoyer, P., S. D. Cairns, J. A. Sanchez, J. K. Reed, J.V. Lopez, W.W. Schroeder, S. D. Brooke, L. Watling, A. Baco-Taylor, G. C. Williams, A. Lindner, S. C. France, and A.W. Bruckner U.S. Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service NOAA Technical Memorandum NMFS-OPR-28 August 2006 Citation for the document: Etnoyer, P., S. D. Cairns, J. A. Sanchez, J. K. Reed, J.V. Lopez, W.W. Schroeder, S. D. Brooke, L. Watling, A. Baco-Taylor, G. C. Williams, A. Lindner, S. C. France, and A.W. Bruckner. 2006. Deep-Sea Coral Collection Protocols. -
Resolving the Evolutionary Relationships of Molluscs with Phylogenomic Tools
LETTER doi:10.1038/nature10526 Resolving the evolutionary relationships of molluscs with phylogenomic tools Stephen A. Smith1,2, Nerida G. Wilson3,4, Freya E. Goetz1, Caitlin Feehery1,4,So´nia C. S. Andrade5, Greg W. Rouse4, Gonzalo Giribet5 & Casey W. Dunn1 Molluscs (snails, octopuses, clams and their relatives) have a great Mollusca (which dates back to the Cambrian), combined with the disparity of body plans and, among the animals, only arthropods numerous Palaeozoic forms that are considered stem-group molluscs surpass them in species number. This diversity has made Mollusca and the lack of resolution in targeted-gene approaches to molluscan one of the best-studied groups of animals, yet their evolutionary phylogenetics, pointed towards a possible rapid radiation with little relationships remain poorly resolved1. Open questions have phylogenetic signal left in the genomes of molluscs. However, the same important implications for the origin of Mollusca and for morpho- has been argued for the radiation of Metazoa in the Cambrian or logical evolution within the group. These questions include earlier15, but large increases in gene representation using phyloge- whether the shell-less, vermiform aplacophoran molluscs diverged nomic analyses have clearly ameliorated this problem and identified before the origin of the shelled molluscs (Conchifera)2–4 or lost relationships that seemed impossible to resolve with target-gene their shells secondarily. Monoplacophorans were not included in 5,6 molecular studies until recently , when it was proposed that they a Polyplacophora constitute a clade named Serialia together with Polyplacophora (chitons), reflecting the serial repetition of body organs in both Neomeniomorpha Aculifera groups5. Attempts to understand the early evolution of molluscs Chaetodermomorpha become even more complex when considering the large diversity of Monoplacophora Cambrian fossils. -
The Nautilus
THE NAUTILUS Volume 120, Numberl May 30, 2006 ISSN 0028-1344 A quarterly devoted to malacology. EDITOR-IN-CHIEF Dr. Douglas S. Jones Dr. Angel Valdes Florida Museum of Natural History Department of Malacology Dr. Jose H. Leal University of Florida Natural Histoiy Museum The Bailey-Matthews Shell Museum Gainesville, FL 32611-2035 of Los Angeles County 3075 Sanibel-Captiva Road 900 Exposition Boulevard Sanibel, FL 33957 Dr. Harry G. Lee Los Angeles, CA 90007 MANAGING EDITOR 1801 Barrs Street, Suite 500 Dr. Geerat Vermeij Jacksonville, FL 32204 J. Linda Kramer Department of Geology Shell Museum The Bailey-Matthews Dr. Charles Lydeard University of California at Davis 3075 Sanibel-Captiva Road Biodiversity and Systematics Davis, CA 95616 Sanibel, FL 33957 Department of Biological Sciences Dr. G. Thomas Watters University of Alabama EDITOR EMERITUS Aquatic Ecology Laboratory Tuscaloosa, AL 35487 Dr. M. G. Harasewych 1314 Kinnear Road Department of Invertebrate Zoology Bruce A. Marshall Columbus, OH 43212-1194 National Museum of Museum of New Zealand Dr. John B. Wise Natural History Te Papa Tongarewa Department oi Biology Smithsonian Institution P.O. Box 467 College of Charleston Washington, DC 20560 Wellington, NEW ZEALAND Charleston, SC 29424 CONSULTING EDITORS Dr. James H. McLean SUBSCRIPTION INFORMATION Dr. Riidiger Bieler Department of Malacology Department of Invertebrates Natural History Museum The subscription rate per volume is Field Museum of of Los Angeles County US $43.00 for individuals, US $72.00 Natural History 900 Exposition Boulevard for institutions. Postage outside the Chicago, IL 60605 Los Angeles, CA 90007 United States is an additional US $5.00 for surface and US $15.00 for Dr. -
Describing Species
DESCRIBING SPECIES Practical Taxonomic Procedure for Biologists Judith E. Winston COLUMBIA UNIVERSITY PRESS NEW YORK Columbia University Press Publishers Since 1893 New York Chichester, West Sussex Copyright © 1999 Columbia University Press All rights reserved Library of Congress Cataloging-in-Publication Data © Winston, Judith E. Describing species : practical taxonomic procedure for biologists / Judith E. Winston, p. cm. Includes bibliographical references and index. ISBN 0-231-06824-7 (alk. paper)—0-231-06825-5 (pbk.: alk. paper) 1. Biology—Classification. 2. Species. I. Title. QH83.W57 1999 570'.1'2—dc21 99-14019 Casebound editions of Columbia University Press books are printed on permanent and durable acid-free paper. Printed in the United States of America c 10 98765432 p 10 98765432 The Far Side by Gary Larson "I'm one of those species they describe as 'awkward on land." Gary Larson cartoon celebrates species description, an important and still unfinished aspect of taxonomy. THE FAR SIDE © 1988 FARWORKS, INC. Used by permission. All rights reserved. Universal Press Syndicate DESCRIBING SPECIES For my daughter, Eliza, who has grown up (andput up) with this book Contents List of Illustrations xiii List of Tables xvii Preface xix Part One: Introduction 1 CHAPTER 1. INTRODUCTION 3 Describing the Living World 3 Why Is Species Description Necessary? 4 How New Species Are Described 8 Scope and Organization of This Book 12 The Pleasures of Systematics 14 Sources CHAPTER 2. BIOLOGICAL NOMENCLATURE 19 Humans as Taxonomists 19 Biological Nomenclature 21 Folk Taxonomy 23 Binomial Nomenclature 25 Development of Codes of Nomenclature 26 The Current Codes of Nomenclature 50 Future of the Codes 36 Sources 39 Part Two: Recognizing Species 41 CHAPTER 3.