CLASE GASTERÓPODOS A. Suclase Prosobranquios  Orden Arqueogastrópodos  Orden Mesogastrópodos  Orden Neogastropodos B

Total Page:16

File Type:pdf, Size:1020Kb

CLASE GASTERÓPODOS A. Suclase Prosobranquios  Orden Arqueogastrópodos  Orden Mesogastrópodos  Orden Neogastropodos B Lehmannia marginata Lección 34.- Los Gasterópodos. Definición. Anatomía externa e interna. Reproducción y desarrollo embrionario. Sinopsis sistemática. CLASE GASTERÓPODOS a. Suclase Prosobranquios Orden Arqueogastrópodos Orden Mesogastrópodos Orden Neogastropodos b. Subclase Opistobranquios c. Subclase Pulmonados Orden Arqueopulmonata Orden Basommatofora Orden Stylommatofora Orden Sistelommantofora Morfología ORIGEN EVOLUTIVO 1. La evolución de los gasterópodos implicó cuatro cambios principales respecto a la organización del molusco generalizado: • El desarrollo de una cabeza • El alargamiento del cuerpo en sentido dorso - ventral • La conversión de la concha desde una en forma de escudo, a otra en forma de refugio protector • La torsión 2. El cambio en la forma de la concha implica: • Un incremento de altura • Una disminución en el tamaño de su abertura • Cambio del aspecto de un escudo a un cono Clase GASTERÓPODOS 1. Tienen una organización anatómica muy homogénea, la cabeza es anterior y se puede retraer en la concha 2. En la parte ventral está en pie en forma de suela reptante 3. Encima del pie está la masa visceral, en forma de joroba y enrollada en hélice 4. El ano, por una serie de movimientos se ha hecho anterior y ocupa posición dorso anterior, el tubo digestivo tiene forma de U 5. La mayoría son marinos, los hay de agua dulce y terrestres. Los marinos son bentónicos, aunque los hay pelágicos como el género Ianthina y el g. Carinaria. Los puede haber parásitos como el g. Entoconcha o Stilyfer 6. Las formas terrestres su distribución siempre está ligada a la humedad. Pasan fases de QUIESCENCIA (quietud) Ianthina ianthina Genus of marine snails. They float at the surface in warm waters on a raft of mucus that traps air bubbles to maintain the floating mechanism. The violet sea snail I. ianthina does not occur off Britain's coasts, but occasionally the beautiful purple shells are washed up on western shores during the summer. Very rarely, living specimens are also deposited on the shore. Classification Ianthina is in Epitoniacea, subclass Prosobranchia, class Gastropoda, phylum Mollusca Moluscos pelágicos, nadadores y bentónicos Moluscos parásitos, ectoparásitos y endoparásitos El gasterópodo parásito Stilifer embutido en la pared del cuerpo de una estrella El gasterópodo endoparásito Entoconcha dentro de la cavidad corporal del pepino de mar Gasterópodo parásito Stilifer akahitode Habe & Masuda, 1990 De cómo se produce el fenómeno de asimetría Anus Velum Mouth Foot Torsion 1. Para conseguir que: • El ano se coloca antero dorsal • El tubo digestivo se pliegue en U • La sistema nerviosa tenga las cadenas cruzadas (QUIASTONEURIA) 2. La larva Veliger ha tenido que sufrir los procesos de: • Flexión • Torsión • Enrollamiento: Quiastoneuria de los conectivos nerviosos (lugar de cruce) Torsion Mouth Mouth Mantle Heart cavity Ctenidium Anus Anus Ctenidium Heart Mantle cavity • Flexión • Torsión • Enrollamiento • Flexión • Torsión • Enrollamiento Torsión, cavidad paleal y cadena nerviosa Larva Veliger, fijación al sustrato y torsión La Cavidad paleal y las branquias 1. Algunos órganos que en las larvas son derechos, en el adulto se encuentran en la parte izquierda 2. Las branquias de estar detrás de las aurículas han pasado a estar delante de la aurículas, llamándose estos animales PROSOBRANQUIOS 3. Hay ocasiones que se pueden perder la asimetría por giro secundario de las branquias, y pasan a colocarse detrás de las aurículas, son los OPISTOBRANQUIOS, los prosobranquios son más antiguos que los opistobranquios 4. Dentro de los Prosobranquios puede ocurrir: • Que tengan 2 branquias, 2 aurículas, se les llama DIOTOCARDIOS (son los + primit) • Si el giro es de más de 180º se comprimen ciertos órganos, puede desaparecer una aurícula y una branquia, son los MONOTOCADIOS EXPLICACIÓN DEL PORQUÉ DE LA TORSIÓN (significado evolutivo de la torsión) 1. A todo el conjunto de movimientos que tiene lugar para alcanzar la asimetría deben tener una explicación: • La Teoría Mecanicista indica que por razones de peso. Al desarrollarse mucho la parte visceral, pesa más la parte trasera que la delantera, y para equilibrar sufre el proceso de torsión • Puede ser que represente una adaptación larvaria para proteger la cabeza • Otros indican que fue una adaptación del adulto para proteger la cabeza • Para mejor utilizar las branquias • Para mejor utilización de los órganos sensoriales de la cavidad paleal y corrientes de agua frontales 2. Teoría de Garstang. Veliger con torsión y sin torsión (Brusca&Brusca) Porqué de la Torsión Brusca&Brusca (1990) Ruppert&Barnes (1995) Morfología externa 1. CABEZA • Órganos sensoriales: Tangorreceptores, fotorreceptores • Boca: labios laterales, glándula pedia 2. PIE • Propodio: anterior, rica en células musculares y glandulares • Mesopodio: medio, rica en células glandulares mucosas • Metapodio: posterior, rica en células musculares, puede tener misión de protección • El Metapodio en los Prosobranquios produce el opérculo 1. Quitinoso (Littorina), calcáreo (Strombus) 2. Pulmonados terrestres, mesopodio, Epifragma, Clausilido 3. MASA VISCERAL • Colocada sobre el pie, y encima se sitúa la cavidad paleal • Ano, orificios excretores. Corrientes de agua, excretas caen encima de la cabeza Littorina saxatilis, opérculo córneo Opérculo calcáreo Strombus gibberulus gibberulus Linnaeus, 1758 Strombus pugilis Linnaeus, 1758 Circulación del agua en la Cavidad Paleal 1. Para evitar que las excretas caigan sobre la cabeza, aparece una fisura en la concha: FISURA PALEAL 2. El agua entra, baña branquias, limpia nefridios y ano, y el agua sale por la fisura 3. Las fisuras pueden tener varios aspectos: Perotrochus quoyanus (P. Fischer & Bernardi, 1856) Acmaea mitra Diadora Perotrochus teramachii Kuroda, 1955 Acmaea Pleurotomaria Haliotis Abalone /abelauni/.- Any of various edible marine gastropod molluscs of the genus Haliotis, having an ear-shaped shell that is perforated with a row of respiratory holes. The shells are used for ornament or decoration: from American Spanish abulón; origin unknown ABULÓN.1. m. Caracol marino de California, de concha grande, gruesa, auriculada y muy nacarada. Fissurella Las Branquias 1. Las branquias en los DIOTOCARDIOS (Arqueogastropodos) son Bipectinadas, pero en la mayoría son Monopetinadas 2. Los ctinidios o branquias pueden desaparecer y ser sustituidas por otras branquias de formación secundaria (Patella, Acmea) Pliegues del manto 3. Otros la cavidad paleal se transforma en Pulmón 4. El paso de cavidad paleal con branquias a pulmón se observa en Litorrina 5. Puede suceder que un pulmonado (con pulmón) vuelva al agua y aparezcan nuevas branquias como sucede en Onchidella celtica, que se obliteró el pulmón, y en su lugar aparecen nuevas branquias como diferenciaciones de la pared pulmonar Onchidella celtica recorded and expected distribution in Britain and Ireland Onchidella celtica Littorina littorea Littorina saxatilis Littorina neritoides Circulación del agua en al cavidad paleal Evolución de la Circulación del agua en Gasterópodos La Concha La Concha Gastropod shells LA CONCHA 1. La mayoría de los gasterópodos poseen una concha espiralizada, única, formada por materia orgánica (conquiliolina) y materia inorgánica (CO3Ca) con tres extractos: • PERIOSTRACO: capa sin mineralizar, formada por materia orgánica, es una proteína Apex esclerotizada (proteína curtida con quinona) Conquiolina o CONCHINA. Protege concha contra acidez Whorl • MESOSTRACO (capa laminar). Lo normal es que aparezca “calcita” formando prismas perpendiculares a la superficie de la concha Suture • ENDOSTRACO (capa laminar), formado por “aragonito” y se agrupa en láminas paralelas a superficie de la concha, es el NACAR. EN Columella otras ocasiones aparece calcita formando láminas, se llama el CALCIOSTRACO 2. La concha se forma a partir del manto. El Ca +2 se Aperture obtiene de la alimentación o del medio. El CO2 se obtiene: • Directamente del medio • De la descomposición de la Urea • Ciclo de Krebs (descarboxilación) 3. La concha se inicia en el SURCO PERIOSTRACAL Formación de la Concha Camino hacia la concha interna COLOR DE LAS CONCHAS 1. Se debe a pigmentos depositados en el Periostraco o en las capas calcáreas 2. La diferencia constante del ritmo de adición de materia mineral entre los labios interno y externo de la abertura, es la responsable del enrollamiento característico (logarítmico) de la concha 3. Espiral DEXTRORSA: hacia la derecha 4. Espiral SINESTRORSA: hacia la izquierda PARED DEL CUERPO • Está compuesta por 3 capas: cutícula, epidermis y músculos • La CUTÍCULA. Amino ácidos y proteínas esclerotizadas (conquiolina = CONCHINA), sin Quitina, tal vez en Caudofoveados si hay quitina • La EPIDERMIS. (Iº) Células columnares con cilios, (IIº) células secretoras de la cutícula y (IIIº) células glandulares (mucosas), en (IVº) borde del manto están las “glándulas de la concha” produce la concha o espículas, (Vº) células sensoriales • Membrana basal. Raramente puede existir una Dermis entre la membrana basal y los músculos • Los MÚSCULOS. Tres capas: circular, longitudinal y diagonal Tubo digestivo Tubo digestivo de Prosobranquio primitivo Ceratas Tubo digestivo Nudibranquio TUBO DIGESTIVO 1. La parte anterior del T.D. varía en función de la alimentación 2. Cavidad bucal con mandíbula y rádula. Odontoblasto, odontóforo 3. Esófago Estómago con Protostilo. En los carnívoros (g. Dolium) no existe protostilo, en su lugar tiene unas glándulas que segregan ácido para perforar las conchas de las presas 4. En los
Recommended publications
  • Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources
    Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources http://www.dnr.sc.gov/marine/sertc/ Southeastern Regional Taxonomic Center Invertebrate Literature Library (updated 9 May 2012, 4056 entries) (1958-1959). Proceedings of the salt marsh conference held at the Marine Institute of the University of Georgia, Apollo Island, Georgia March 25-28, 1958. Salt Marsh Conference, The Marine Institute, University of Georgia, Sapelo Island, Georgia, Marine Institute of the University of Georgia. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Caprellidea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Gammaridea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1981). Stomatopods. FAO species identification sheets for fishery purposes. Eastern Central Atlantic; fishing areas 34,47 (in part).Canada Funds-in Trust. Ottawa, Department of Fisheries and Oceans Canada, by arrangement with the Food and Agriculture Organization of the United Nations, vols. 1-7. W. Fischer, G. Bianchi and W. B. Scott. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume II. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume III. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico.
    [Show full text]
  • Deep Coral and Associated Species Taxonomy and Ecology Deepcast II Expedition Report
    Deep Coral and Associated Species Taxonomy and Ecology DeepCAST II Expedition Report Roatán, Honduras. May 21‐28, 2011. Report date: September 2011 NOAA Technical Memorandum NOS NCCOS 137 This report has been reviewed by the National Ocean Service of the National Oceanic and Atmospheric Administration (NOAA) and approved for publication. Such approval does not signify that the contents necessarily represent the official position of NOAA or of the Government of the United States, nor does mention of trade names or commercial products constitute endorsement or recommendation for their use. Furthermore, this report is intended to serve as a record of cruise activities and preliminary observations during a field survey in support of an ongoing research study, and thus does not represent a final analysis or interpretation of project results. Cover Photo. A large yellow sea fan colony with Asteroschema sp. brittlestars in the branches and an orange colored brisingid seastar Novodinia antillensis on a rocky outcrop at 700 meters depth in Roatán, Honduras. Citation for this Report: Etnoyer, PJ, TC Shirley, KA Lavelle. 2011. Deep Coral and Associated Species Taxonomy and Ecology (DeepCAST) II Expedition Report. NOAA Technical Memorandum NOS NCCOS 137. NOAA/NOS Center for Coastal Environmental Health and Biomolecular Research, Charleston, SC. 42 pp. Expedition Report Deep Coral and Associated Species Taxonomy and Ecology (DeepCAST) II Expedition, May 21‐28, 2011 Deep Coral and Associated Species Taxonomy and Ecology (DeepCAST) II Expedition Report
    [Show full text]
  • Shells and Sea Life Formerly the Opisthobranch
    < 1 W Z NOIinillSNI_NVINOSHllWS S3 I a VH 8 I1_LI B RAR I ES SMITHSONIANJNSTITI I B RAR I ES SMITHSONIAN |NSTITUTION louniusNi nvinoshiiws S3iavaan fBRARIES SMITHSONIAN INSTITUTION NOIinillSNI NVINOSHIIWS S3IHV !~ r- .... z z ^— to — w ± — co IBRARIES SMITHSONIAN INSTITUTION NOIinillSNI NVINOSHIIWS S3iaVHaH LI B RAR I ES SMITHSONIAN INSTH ' co „, co z . £2 .»'• £2 z z "S < .v Z W 2 W W 1011 llSN| NVIN0SHHIAIS S3iavyan LIBRARIES SMITHS0NIAN INSTITUTION NOIinillSNI NVIN0SH1IWS S3 W <" co = co 5 = „.„.. to s iC= §C mVS.^. .WC7m <>^#rv yvO/'.-Zty.. wf»V^tTj . wVfl O? roiVOW. .^^/ l<- I LI I I B RAR I ES~"SMITHS0NIAN~INSTITUTI0N~N0linillSNI~NVIN0SHllWS~S3 H VH 8 IT B RAR ES^SMITHSONIANJNSTIl W IOIinillSNI~NVINOSHllWS S3iavyan~ L, BRARIES SMITHSONIAN INSTITUTION NOIinillSNI NVINOSHIIWS S3ld^ co z to . z > <2 ^ ^ z « z w W "NOIinillSNI NVIN0SH1IWS"S3 I I I HVH 3 ES SMITHSONIAN~INSTIT I B RAR ES"'SMITHS0NIAN""|NSTITUTI0N H~LI B RAR m — in ^5 V CO = CO = 2 J J0linillSNrNVIN0SHllWS S3IMVaan" LIBRARIES SMITHSONIAN INSTITUTION NOIinillSNI NVINOSHIIWS S3IM' i- z i- z r- z i- .^.. z CD X' > I I SMITHSONIAN .1 B RAR I ES^SMITHSONIAN'lNSTITUTION^ NOIinillSNrNVINOSHllWS S3 HVH a H~LI B RAR ES Z CO z -,. w z .^ o z W W I INSTITUTION NOIinillSNI_NVINOSHllWS S3 M0linillSNI_NVIN0SHllWS S3 I HVd a \\_ LI B RAR ES SMITHSONIAN_ LIBRARIES SMITHSONIAN INSTITUTION NOIinillSNI NVINOSHIIWS S3iyvyail LIBRARIES SMITHSONIAN INST I" z r- z i->z r- Z _ \ > (if ~LI B I ES NVINOSHIIWS S3IM' NOIinillSNI ^NVINOSHIIWS S3 I H Vd a IT RAR SMITHSONIAN~INSTITUTION NOIinillSNI en TO > ' co w S ^— to \ i= ± CO 1SNI NVIN0SH1IWS S3ldVdaiT LIBRARIES SMITHSONIAN INSTITUTION NOIinillSNI NVIN0SH1IWS S3ldVdai1.
    [Show full text]
  • New Pleurotomariid Gastropods from the Western Atlantic, with A
    BULLETIN OF MARINE SCIENCE VOLUME 15 1965 NUMBER 4 NE\V PLEUROTOlVIARIID GASTROPODS FROM THE \VESTERN ATLANTIC, vVITH A SUMMARY OF THE RECENT SPECIES' FREDERICK M. BAYER ImtitU/e of Marine Science, University of Miami ABSTRACT Three new species of pleurotomariid gastropods from the Western Atlantic, Perotrochus midas, P. lucaya, and P. gemma, are described and figured. All previously known Recent species of the family are reviewed briefly and illustrated. The type specimens of Perotrochus quoyanus, P. teramachii, and Entemnotrochus rumphii are figured. The generic groups are discussed and defined. INTRODUCTION Owing to their long geological history and comparatively recent discovery in the living state, their striking appearance, and their general rarity, perhaps no mollusks have attracted more concentrated interest on the part of both scientists and laymen than have the pleurotomarians. The surviving family, Pleurotomariidae, extends back in geological time to the beginning of the Mesozoic, and related extinct families carry the line back to the Cambrian. The discovery, in 1856, of the first living representative of a predominantly Paleozoic family naturally excited much interest. During the ensuing 48 years, five more species were discovered, three in Japan, one in the East Indies, and another in the West Indies. For many years, each new specimen elicited individual attention. Bouvier & Fischer (1899) reviewed all the reported examples of the four species known up to that time. After the publication of Pleurotomaria hirasei by Pilsbry in 1903, no further new species of pleurotomarians were discovered for 45 years, tending to corroborate the idea, supported by Lindholm (1927), that the survivors of this once numerous group are few in number of species and rare in individuals, indicating the approach of total extinction.
    [Show full text]
  • The Nature of Names Japanese Vernacular Nomenclature in Natural Science
    The Nature of Names Japanese vernacular nomenclature in natural science A Thesis Submitted to the Faculty of Drexel University by Paul Callomon in partial fulfillment of the requirements for the degree of Master of Science September 2016 ii © Copyright 2016 Paul Callomon All rights reserved iii Acknowledgments In addition to research and interviews carried out specifically for it, this paper draws on my many years of engagement with Japanese malacology as an author, photographer and translator. The following people were all involved directly in its creation, but a great many others have influenced it. Of the latter, two merit special mention: the late Mr. Shun’ichi Higo of Isahaya, Nagasaki Prefecture and Mr. Yoshihiro Gotō of Yao, Osaka Prefecture. In Japan Mr. Mitsuo Chino, Kawasaki, Kangawa Prefecture; Mr. Kazufumi Ekawa, Arita, Wakayama Prefecture; Mr. Hirofumi Fujimoto, Marugame, Kagawa Prefecture; Dr. Harufumi Nishida, Chūo University, Tokyo; Mr. Masatoyo Okamoto, Chiba Prefecture; Dr. Takashi Okutani, Tokyo; Ms. Yoko Ōtani & Mr. Kenji Ōhara, Ashiya, Hyōgo Prefecture; Mr. Akira Tada & Ms. Tomoko Taki, Sanbonmatsu, Kagawa Prefecture. (National Museum of Nature and Science) Dr. Kazunori Hasegawa; Dr. T. Kitayama; Dr. Hiroshi Saitō; Dr. G. Shinohara. (Tokyo University) Dr. Takenori Sasaki; Ms. Akiko Shimizu; Dr. Rei Ueshima; Dr. Masaya Yago. (Osaka Museum of Natural History) Mr. Kiyotaka Hato’oka; Dr. Shōji Hayashi; Ms. Ayako Hino; Dr. Sō Ishida; Mr. Itaru Kanazawa; Mr. Hisanori Kōtsuka; Mr. Nobuhira Kurozaki; Dr. K. Kogo; Mr. Kōzō Mizuno; Mr. Hisashi Ōishi; Mr. Daisuke Sakuma; Ms. Makino Tachibana; Mr. Kōichi Takenouchi; Dr. Kazumi Tanida; Mr. Hiroyoshi Taruno; Mr. Toshiya Yamazaki; Ms. Satomi Yonezawa; Mr.
    [Show full text]
  • Perotrochus Caledonicus (Gastropoda: Pleurotomariidae) Revisited: Descriptions of New Species from the South-West Pacific
    European Journal of Taxonomy 134: 1–23 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2015.134 www.europeanjournaloftaxonomy.eu 2015 · Anseeuw P. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Research article urn:lsid:zoobank.org:pub:B623BC1C-96CD-410B-97E6-4D03864D29EC Perotrochus caledonicus (Gastropoda: Pleurotomariidae) revisited: descriptions of new species from the South-West Pacific Patrick ANSEEUW1, Nicolas PUILLANDRE2,*, José UTGE3, Philippe BOUCHET4 1 Mispelstraat 18, 9820 Merelbeke, Belgium. 2 Institut de Systématique, Evolution, Biodiversité ISYEB – UMR7205 – CNRS, MNHN, UPMC, EPHE, Muséum National d’Histoire Naturelle, Sorbonne Universités, 43 Rue Cuvier, F-75231 Paris, France. 3 UMS 2700, Muséum National d’Histoire Naturelle, Département Systématique et Evolution, 43 Rue Cuvier, F-75231 Paris, France. 4 Institut de Systématique, Evolution, Biodiversité ISYEB – UMR7205 – CNRS, MNHN, UPMC, EPHE, Muséum National d’Histoire Naturelle, Sorbonne Universités, 55 Rue Buffon, F-75231 Paris, France. * Corresponding author: [email protected] 1 urn:lsid:zoobank.org:author:89470910-9E6E-4B84-91E4-9C10019DD7DD 2 urn:lsid:zoobank.org:author:00565F2A-C170-48A1-AAD9-16559C536E4F 3 urn:lsid:zoobank.org:author:3888EAFD-B518-4979-A2DF-4A7A1D4B7F89 4 urn:lsid:zoobank.org:author:FC9098A4-8374-4A9A-AD34-475E3AAF963A Abstract. Morphological (shell) and molecular examination of a large suite of specimens of pleurotomariids from around New Caledonia and the Coral Sea reveals the existence of four species in the complex of Perotrochus caledonicus: Perotrochus deforgesi Métivier, 1990 and P. pseudogranulosus sp. nov. live allopatrically on the plateaus and guyots of the Coral Sea; Perotrochus caledonicus Bouchet & Métivier, 1982 and Perotrochus wareni sp.
    [Show full text]
  • Pleurotomarioidean Gastropods Н
    ^^/ Pleurotomarioidean Gastropods M. G. Harasewych Department of Systematic Biology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0118, USA e-mail: [email protected] 1. Introduction 238 2. Structure and Functional Morphology 243 2.1. Shell morphology and ultrastructure 243 2.2. External anatomy 249 2.3. Mantle cavity organs 252 2.4. Digestive system 252 2.5. Circulatory system 259 2.6. Excretory system 260 2.7. Reproductive system 260 2.8. Nervous system 261 3. Systematic Relationships 262 3.1. Morphology-based classifications 262 3.2. Classifications based on molecular data 269 4. Ecology 272 4.1. Geographic distribution 272 4.2. Bathymétrie distribution and zonation 274 4.3. Biogeography 277 4.4. Diet 279 4.5. Predators and chemical defenses 281 Acknowledgements 286 References 287 Pleurotomarioidean gastropods are continuously present in the fossil record since the Upper Cambrian and survive into the Recent fauna, thus providing rare insights into the evolutionary history of the class Gastropoda. Pleurotomarioidea achieved greatest numerical and morphological diversity dtiring the Paleozoic, and dominated global shallow water marine gastropod faunas during the Paleozoic and Mesozoic. Only a single family, the Pleurotomariidae, survived the end-Cretaceous Extinction, but was restricted to deep water through most of the Cenozoic. The first living ADVANCES IN MARINE BIOLOGY VOL. 42 Copyriglu ( 20U.2, Eiic\icT Science Lid (SBN0-I2-(1.26!42-1 A)) nghl.s of reproduclion in iiiiy fonn reserved Í y~i 238 M. G. HARASEWYCH pleuroíomariid was discovered during the mid-nineteenth century, along the bathyal zone of the western Atlantic.
    [Show full text]
  • Dietary Effects on Shell Microstructures of Cultured, Maculate Top Shell (Trochidae: Trochus Maculatus, Linnaeus, 1758)
    SPC Trochus Information Bulletin #8 – November 2001 15 Dietary effects on shell microstructures of cultured, maculate top shell (Trochidae: Trochus maculatus, Linnaeus, 1758) Suraphol Chunhabundit1*, Panjit Chunhabundit2, Porcham Aranyakananda1 and Nudol Moree1 Abstract Maculated top shells grew rapidly when co-cultured in tanks with fish and fed on leftover fish feed and fish wastes. During rapid growth on this high protein diet, top shells deposited a red band on their outer shell surface. Top shells reared in tanks without fish and fed only algal diets decreased in size. With the nutritionally deficient diet, top shells deposited a purple band on their outer shell surface. Shell microstructures were observed and described for these two conditions using a scanning electron micro- scope, which revealed substantial differences between shell structures under well-fed and nutritionally deficient conditions. Introduction shell is covered with light green, radiating lines that create a maculated surface (Thapanand and An individual’s life history, or ontogenetic growth Chunhabundit 1993). is often preserved in its mineralised or otherwise refractory structures. With shell-forming molluscs, The aim of this study was to document changes in changes in the animal’s environment are reflected shell microstructures associated with dietary in shell structures. These preserved shell records changes and food availability in top shells. This include growth increments and discontinuities; or study was part of a larger programme to develop changes in shell allometry structure, mineralogy, appropriate propagation methods for top shell and/or chemistry. These features are observed on stock enhancement. whole shell surfaces, or using special shell prepa- rations. Environmental factors known to effect Materials and methods shell structures include: temperature (Phillips et al.
    [Show full text]
  • Bayerotrochus Belauensis, a New Species of Pleurotomariid from the Palau Islands, Western Pacific (Gastropoda: Pleurotomariidae)
    THE NAUTILUS 131(2):138–146, 2017 Page 138 Bayerotrochus belauensis, a new species of pleurotomariid from the Palau Islands, western Pacific (Gastropoda: Pleurotomariidae) Patrick Anseeuw Lori J. Bell M.G. Harasewych1 Mispelstraat, 18 Coral Reef Research Dept. of Invertebrate Zoology, MRC-163 9820 Merelbecke, BELGIUM Foundation Box 1765 National Museum of Natural History Koror, PW 96940, PALAU Smithsonian Institution PO Box 37012 Washington, DC 20013-7012 USA ABSTRACT October of 1996 (Okutani and Kurata, 1998). They were provisionally identified as Perotrochus africanus ter- A new pleurotomariid species, Bayerotrochus belauensis new fi amachii (Kuroda, 1955) based on shell morphology. species, collected from the Palau Islands, western Paci c, is During subsequent explorations at similar depths in Palau described and illustrated. This new species is most similar in shell morphology to B. teramachii (Kuroda, 1955), from which it may in 2001 using the research submersible DEEPWORKER be distinguished by its thinner, lighter shell with a taller, more 2000, Coral Reef Research Foundation (CRRF) was able stepped spire and lack of pronounced spiral sculpture along the to observe, photograph, and collect additional specimens shell base. Molecular data (COI) show B. belauensis new species of that species of Bayerotrochus. Shells and tissues of to be more closely related to B. boucheti from New Caledonia several of these samples were deposited in the collections and B. delicatus from Yap, than to B. teramachii. Bayerotrochus of the National Museum of Natural History, Smithsonian boucheti (Anseeuw and Poppe, 2001) differs in having a broader, Institution (USNM). Most recently, Zhang et al. (2016) more conical spire, a more depressed aperture, and a more described Bayerotrochus delicatus from Yap Seamount darkly pigmented shell with spiral sculpture on the shell base.
    [Show full text]
  • Literature Cited
    Literature cited Abbott, R. T. 1954. American Seashells. D. Van Nostrand Company, Inc., Princeton, NJ, 541 pp. Abbott, R. T. & S. P. Dance. 1983. Compendium of Seashells. E. P. Dutton, Inc., New York, 411 pp. Adam, W. & E. Leloup. 1938. Résultats scientifiques du voyage aus Indes Orientales Néerlandaises ... : Prosobranchia et Opisthobranchia. Vol. 2 Fasc. 19: 209 pp, 8 pls. Adams, H. & A. Adams. 1853-1858. The Genera of Recent Mollusca, 3 Vols. John Van Voorst, London, 484 pp., 661 pp., 138 pls. Addicott, W. O. & W. K. Emerson. 1959. Late Pleistocene invertebrates from Punta Cabras, Baja California, Mexico. American Museum Novitates 1925:1-33. Adobe. 1994. Adobe Photoshop 3.0. Adobe Systems. Aguayo, C. G. & M. L. Jaume. 1947. Gastropoda - Haliotidae. Catalogo Moluscos de Cuba No. 140: 1 p. Allen, J. 1959. Australian Shells. Branford, Boston. 487 pp. Anderson, F. M. 1902. Cretaceous deposits of the Pacific coast. Proceedings of the Cal- ifornia Academy of Sciences, 3rd Series, Geology, 2:1-154. Angas. G. F. 1871. A list of additional species of marine Mollusca to be include in the fauna of Port Jackson and the adjacent coasts of New South Wales. Proceedings of the Zoological Society of London 39:87-101. Anonymous. 1973. Hybrid Haliotis. Australian Shell News 2:12. Anonymous. 1975. Some Australian Haliotids. Australian Shell News 10:4-5. Anonymous. 1981. Shell update. The Mollusk 19(3):7. 376 Anonymous. 1982. New abalone record for Western Australia. Australian Shell News A9:7. Anonymous. 1987. Roe´s abalone. Fishing West Australia 5:1-4. Anonymous. 1995. Mollusques recoltés à Sulawesi - 1994.
    [Show full text]
  • <I>Mikadotrochus Amabilis</I> Bayer
    OBSERVATIONS ON THE ANATOMY OF MIKlfDOTROCIIUS AMABILIS BAYER' VERA FRETfER University of Reading, England ABSTRACT The gross anatomy of the hoJotype specimen of Mikadotrochus amabilis Bayer, 1963, is described insofar as the state of preservation permits. A brief description of the external features is given to point out differences between this species and those previously described, especially Mikado- trochus beyrichi (Hilgendorf). INTRODUCTION The most comprehensive description of the anatomy of a member of the gastropod family Pleurotomariidae is given by Woodward (1901) for Mikadotrochus beyrichi (Hilgendorf). With three preserved speci- mens he was able to examine the most important systems of the body and compare this species with what was already known of the anatomy of Entemnotrochus adansoni{Jnl!s (Crosse & Fischer) and Perotrochus quoyanus (Fisher & Bernardi); owing to poor preservation of the speci- mens our knowledge of these two species is confined to external features, radula, some details in connection with the pallial complex and for P. quoyanus the nervous system (Dall, 1889: Bouvier & Fischer, 1899). The single specimen of a new species, Mikadotrochlls amabilis Bayer, 1963 (described below), was trawled southeast of Sombrero Key, Florida. It was fixed in alcohol and retracted into the shell. When removed it was found that the stomach was damaged so that nothing but its contents could be justifiably examined, and the posterior part of the right kidney was torn. The rest of the animal was moderately well preserved for work on gross anatomy. A brief description of the external features will be given to emphasize certain differences between this and other species which have already been described, especially M.
    [Show full text]
  • Mollusc Shell Microstructures and Crystallographic Textures
    Journal of Structural Geology 22 (2000) 1723±1735 www.elsevier.nl/locate/jstrugeo Mollusc shell microstructures and crystallographic textures D. Chateignera,*, C. Hedegaardb, H.-R. Wenkc aLaboratoire de Physique de l'Etat CondenseÂ, Universite Du Maine, Le Mans, France bInstitute of Biology, Department of Ecology and Genetics, University of Aarhus, Aarhus, Denmark cDepartment of Geology and Geophysics, University of California, Berkeley, CA, USA Received 30 November 1999; accepted 26 June 2000 Abstract X-ray diffraction is used to characterise textures of the aragonite layers of shells from monoplacophoras, bivalves, cephalopods and gastropods. Textures vary in strength, pattern and through the thickness of the shells. The texture patterns exhibited in the studied taxa, which can be quantitatively described by a limited number of parameters, are compared with the microstructure types observed with scanning electron microscopy. Whereas for simple crystallite arrangements, such as nacres, there is a good correspondence between texture and microstructure, this is often not the case in more complex microstructures such as in crossed lamellar layers. Morphologically similar microstructures may have different crystallographic textures, and the same textures may be found in microstructures with different morphol- ogy. These two kinds of measurements are shown to be complementary since they provide non-redundant information for many taxa, which suggests that they may be valuable phylogenetic indicators. q 2000 Elsevier Science Ltd. All rights reserved. 1. Introduction dominates the anisotropic properties of aggregates (Kocks et al., 1998). However, only few papers consider the aggre- The investigation of mollusc shell microstructures, built gate properties of shells (Bùggild, 1930; Wenk, 1965; of complex calcite and/or aragonite layer intergrowths, is of Wilmot et al., 1992).
    [Show full text]