Shells and Sea Life Formerly the Opisthobranch

Total Page:16

File Type:pdf, Size:1020Kb

Shells and Sea Life Formerly the Opisthobranch < 1 W Z NOIinillSNI_NVINOSHllWS S3 I a VH 8 I1_LI B RAR I ES SMITHSONIANJNSTITI I B RAR I ES SMITHSONIAN |NSTITUTION louniusNi nvinoshiiws S3iavaan fBRARIES SMITHSONIAN INSTITUTION NOIinillSNI NVINOSHIIWS S3IHV !~ r- .... z z ^— to — w ± — co IBRARIES SMITHSONIAN INSTITUTION NOIinillSNI NVINOSHIIWS S3iaVHaH LI B RAR I ES SMITHSONIAN INSTH ' co „, co z . £2 .»'• £2 z z "S < .v Z W 2 W W 1011 llSN| NVIN0SHHIAIS S3iavyan LIBRARIES SMITHS0NIAN INSTITUTION NOIinillSNI NVIN0SH1IWS S3 W <" co = co 5 = „.„.. to s iC= §C mVS.^. .WC7m <>^#rv yvO/'.-Zty.. wf»V^tTj . wVfl O? roiVOW. .^^/ l<- I LI I I B RAR I ES~"SMITHS0NIAN~INSTITUTI0N~N0linillSNI~NVIN0SHllWS~S3 H VH 8 IT B RAR ES^SMITHSONIANJNSTIl W IOIinillSNI~NVINOSHllWS S3iavyan~ L, BRARIES SMITHSONIAN INSTITUTION NOIinillSNI NVINOSHIIWS S3ld^ co z to . z > <2 ^ ^ z « z w W "NOIinillSNI NVIN0SH1IWS"S3 I I I HVH 3 ES SMITHSONIAN~INSTIT I B RAR ES"'SMITHS0NIAN""|NSTITUTI0N H~LI B RAR m — in ^5 V CO = CO = 2 J J0linillSNrNVIN0SHllWS S3IMVaan" LIBRARIES SMITHSONIAN INSTITUTION NOIinillSNI NVINOSHIIWS S3IM' i- z i- z r- z i- .^.. z CD X' > I I SMITHSONIAN .1 B RAR I ES^SMITHSONIAN'lNSTITUTION^ NOIinillSNrNVINOSHllWS S3 HVH a H~LI B RAR ES Z CO z -,. w z .^ o z W W I INSTITUTION NOIinillSNI_NVINOSHllWS S3 M0linillSNI_NVIN0SHllWS S3 I HVd a \\_ LI B RAR ES SMITHSONIAN_ LIBRARIES SMITHSONIAN INSTITUTION NOIinillSNI NVINOSHIIWS S3iyvyail LIBRARIES SMITHSONIAN INST I" z r- z i->z r- Z _ \ > (if ~LI B I ES NVINOSHIIWS S3IM' NOIinillSNI ^NVINOSHIIWS S3 I H Vd a IT RAR SMITHSONIAN~INSTITUTION NOIinillSNI en TO > ' co w S ^— to \ i= ± CO 1SNI NVIN0SH1IWS S3ldVdaiT LIBRARIES SMITHSONIAN INSTITUTION NOIinillSNI NVIN0SH1IWS S3ldVdai1. co co co co z z ,.,.. z >v, z LIBRARIES SMITHSONIAN_INSTITUTION MES^SMITHSONIAN INSTITUTION NOIinillSNI NVINOSHllWS^Sa I d Vd £111 co ^ to S .._. to ~ OT J Z 2 J I S3 I dVd 3 I' lSNl" NVIN0SHIIWS S3 I dVd a II^LI B RAR ES SMITHSONIAN* |NSTITUTION NOIinillSNI^NVINOSHllWS r- „ z i- z •" z s& ^ So /4f22£c5x 2 ^«^« /£2<2&\ 2 > co — ± co ± co MES SMITHSONIAN INSTITUTION NOIinillSNI NVIN0SH1IWS S3ldVdaiT LI B RAR I ES^SMITHSONIAN INSTITUTION co z t co z co |^*' r x^^ g v^* |,'^/- 5|p IZ M |^%f/ IW I N0linillSNI_NVIN0SHllWS^S3 I d Vd a IT NVIN0SH1IWS S3 I dVd a lV\l B RAR I ES^MITHSONIANJNSTITUTION c *• Z _! Z _j Z MES SMITHSONIAN INSTITUTION NOIinillSNI NVIN0SH1IWS S3ldVdan LIBRARIES SMITHSONIAN INSTITUTION Z i- z r- Z CO > NOlinillSNrNVINOSHllWS S3 I d Vd a 11 HSNrNVINOSHllWS^SB I U Vd a H~LI B RAR I ES^SMITHSONIAN'lNSTITUTION z CO Z ~r. CO Z v, co — ' OT Z CO V z ^— ^ * Z CO z LI B RAR I ES SMITHS0NIAN_INSTITUT10N =?IES SMITHSONIAN_INSTITUTION NOIinillSNI_NVINOSHllWS S3 I d Vd 8 I1_ < W 2 Z N0linillSNl"'NVIN0SHllWS S3 I d Vd a IT I1SN| NVIN0SH1IWS S3 I MVd a H^LI B RAR I ES SMITHSONIAN~'lNSTITUTION z ,-> co _ ^—^ co — 5 co = co INSTITUTIO^ R I ES SMITHSONIAN INSTITUTION NOIinillSNI NVIN0SH1IWS S3ldVdaH LIBRARIES SMITHSONIAN co z« co z co.z-, co z « WJA° >"' 2 Xi^oswjS'' > i: (/) C °NOIinillSNI_NVINOSHllWS S3 I d Vd 3 I HSNl' NVIN0SHllWS S3 I d Vd a B RAR I ES^SMITHSONIAN INSTITUTION H^LI to to - co ._ =; to ^—^ z u Ui tJriS. CO ?• ^^\ w /jr^, " r^,. to 3 0.9- SHELLS AND SEA LIFE FORMERLY THE OPISTHOBRANCH Volume 1 6, Number 5 Page 49 Living Guam Bubble Shell (Micromelo undatus) from 8 m off Cape Byron, northern New South Wales, Australia. Photograph by R. C. Willan. : Vol. 16(5): 50 SHELLSANDSEALIFE May1984 The Guam Bubble Shell Micromelo 1961; Marcus & Marcus, 1967; Abbott, 1974; Hum- frey, 1975). Pacific Ocean specimens display the same (Brugiere, 1792) in Australia undatus colour variation: black in Hawaii (Kay, 1979; Bertsch by Richard C. Willan & Johnson, 1981); black in the Philippines (Abrea, This attractive shelled opisthobranch is 1981 - though the illustration of the animal is grossly in recognizable by its smooth, involute shell marked, as if inaccurate); red in my Australian specimens; red the by an accurate computer plotter, with a mesh of three Solomon Islands (Quayle in Coleman, 1982). Separa- dark spirals and numerous, wavy, intersecting radial tions based on these colour differences appear over- in lines. The animal's capacious foot, which can reach 23 exact, as conchological features sometimes are the because the mm when fully extended, is margined in subtlest tur- Cephalaspidea (e.g. Marcus, 1977), quoise and gold and boldly white-spotted. The animal shows little variation in either Atlantic or sinuous head shield and infrapallial lobe carry white Pacific Oceans. Salisbury (1 983) mentioned the colour spots too, but their borders are yellow. The beauty of a of the animal's foot varied from pale green to slide living Micromelo undatus is never to be forgotten; a transparent white. Incidentally, I have a colour this time delight that, unfortunately, is seldom experienced by of a living specimen from South Africa, and shell's lines are reddish-black. It appears, Australians because of its uncommoness . Its range ex- the tends down the eastern coast of that continent to nor- therefore, that the two shell colour morphs are not in Atlantic or thern New South Wales, and it is near their southern discrete nor geographically clinal either limit that I have encountered three living specimens in Pacific populations. four years. The Guam Bubble must possess a veliger stage Actually one could hardly call my first specimen capable of long-distance transport to account for the "living". The animal was being devoured by a species' enormously wide distribution across the predatory mitre shell (Vexillum cadaverosum). tropical oceans. I suggest Micromelo undatus and M. However, the two specimens that I found subsequently guamensis are conspecific with the one species, which were very active and they survived well in the by priority should be M. undatus, widespread in the laboratory allowing me to observe and photograph Pacific and Atlantic. Rudman (1977b) reached this them (see colored illustration). I found all three same conclusion for another member of the same specimens between 8 and 10 metres on a substrate of family, Hydatina physis (Linneaus, 1758). clean sand and coral rubble supporting a little turfing algae. REFERENCES Seashells (2nd ed.) Van- The shell's opacity obscures the interesting features Abbott, R.T. 1974. American Nostrand Reinhold. 663 pp. of its mantle cavity - two raised ciliated ridges (raphes), Abrea, N.S. 1981. Description and illustration of a complex gill and a large rearward extension of the unknown cephalaspid from northern Mindanao, Philip- mantle cavity (pallial caecum) that extends as a spiral- pine Islands. Hawaiian Shell News 29 (9) : 9. Bertsch, H. & S. Johnson 1981. Hawaiian Nudibranchs ing tube from the right posterior corner of the cavity to Oriental Publishing Co. 112 pp. the very top of the visceral mass. Rudman (1972a) Humfrey, M. 1975. Sea Shells of the West Indies. Collins. studied the anatomy of Hawaiian Micromelo undatus 351pp. and Shore and concluded the species should be located in the Kay, E.A. 1979. Hawaiian Marine Shells. Reef Fauna of Hawaii. Section 4 : Mollusca. Bernice P. Bishop- family Hydatinidae on account of the animal's large, Museum Special Publication 64 (4). 653 pp. non-retractile and brightly-coloured animal, lack of Marcus, Eveline 1977. On the genus Tornatina and related operculum, relatively long oral tube, nervous system forms. The Journal of Molluscan Studies. Supplement 2. 35 and radular structure. pp. Marcus, Eveline & Ernst Marcus 1967. American the familial placement for Despite the certainty of Opisthobranch Mollusks. Studies in Tropical the Guam Bubble, doubt remains over its correct Oceanography, Miami 6. 256 pp. generic and specific names. Mr. Robert Burn of Quayle, N. 1982. Photograph of live Micromelo. P. 14, IN: Coleman, N. (Ed.) Underwater 2. Geelong, Australia, is currently investigating the Rosewater, J. 1975. An annotated list of the marine mollusks generic nomenclature. And there is controversy too of Ascenson Island, South Atlantic Ocean. Smithsonian about the specific name because of the shell's shape Contributions to Zoology 189. 41 pp. Rudman, W.B. 1977a. Studies on the primitive and coloration. Differences in shell shape between opisthobranch genera Bullina Ferussac and Micromelo called populations from the Pacific Ocean (presently Pilsbry. Zoological Journal of the Linnean Society 51(2) Micromelo guamensis (Quoy & Gaimard, 1825)) and 105-119. Atlantic Ocean (Micromelo undatus (Brugiere, 1792)) Rudman, W.B. 1977b. The anatomy of the opisthobranch genus Hydatina and the functioning of the mantle cavity are not significant and the differences in colour of the and alimentary canal. Zoological Journal of the Linnean the shell - either red or black - appear to be lines on Society 51(2) : 121-139. merely intraspecific variation. Some specimens from Salisbury, R. 1983. Photograph of Micromelo shell from il- Guam. Hawaiian Shell News 31 (2) : 7 (page of shell the Atlantic Ocean (where the species is also widely lustrations). distributed) have black-lined shells (Rosewater, 1975) Warmke, G.L. & R.T. Abbott 1962. Caribbean Seashells. but others have red-lined shells (Warmke & Abbott, Livingston Publishing Co. 348 pp. May 1984 SHELLS ANDSEA LIFE Vol. 16(5): 51 Editor's Notes: Please consider joining and supporting your local malacological society or club. R. Tucker Abbott's ap- Several subscribers have expressed concern with peal in "Personal Notes" has sound reasoning. In addi- the expanded coverage of the Opisthobranch (see tion to the "National" shell organizations you should Jensen "Personal Notes" for example). I hope that also look at the "International," "Regional" and more everyone will gain with the expansion into all areas of "Local" shell groups.
Recommended publications
  • Gastropoda, Caenogastropoda: Rissoidae; Cingulopsidae; Barleeidae;
    BASTERIA, 70:141-151, 2006 New records and of new species marine molluscs (Gastropoda, Caenogastropoda: Rissoidae; Cingulopsidae; Barleeidae; Tjaernoeiidae) from Mauritaniaand Senegal E. Rolán Museo de Historia Natural, Campus Universitario Sur, E 15782 Santiago de Compostela, Spain; [email protected] & J.M. Hernández E 35460 Capitan Quesada, 41, Gaidar, Gran Canaria, Spain Some species of marine micromolluscs of the families Rissoidae, Cingulopsidae, Barleeidae, and from Africa studied. Tjaernoeiidae West (Mauritaniaand Senegal) are New information on the taxa is Setia Eatonina Barleeia minuscula following reported: nomeae, matildae, (which is con- sidered a valid and Four the Setia species) Tjaernoeia exquisita. new species belonging to genera (1),Crisilla (1) and Eatonina (2) are described. Key words: Gastropoda, Caenogastropoda, Rissoidae, Setia, Crisilla, Cingulopsidae, Eatonina, Barleeidae, Barleeia, Tjaernoeiidae, Tjaernoeia, taxonomy, West Africa. INTRODUCTION For many years West African molluscs have been studied and described, but priority to those of size. small was always given large Only recently, very molluscs have come to the attention of authors. some They are now better known but many of them are still in awaiting study. Concerning the Rissoidae the study area and nearby, we must mention the of Verduin Amati papers (1984), (1987), Ponder (1989), Gofas (1995), Giannuzzi-Savelli et al. and Ardovini (1996), & Cossignani (2004), amongothers. MATERIAL AND METHODS in In some trips of the authors to Dakar, Senegal, 2002and 2003, numerous sediments ofbeach drift and small live species were collected.Additionalmaterialof sediments was loanedby Jacques Pelorce from 2001-2003. This was studied and compared with material from Mauritania, visited the author in 1996 in by senior companyof Jose Templado and Federico Rubio.
    [Show full text]
  • Frontiers in Zoology Biomed Central
    Frontiers in Zoology BioMed Central Research Open Access Functional chloroplasts in metazoan cells - a unique evolutionary strategy in animal life Katharina Händeler*1, Yvonne P Grzymbowski1, Patrick J Krug2 and Heike Wägele1 Address: 1Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany and 2Department of Biological Sciences, California State University, Los Angeles, California, 90032-8201, USA Email: Katharina Händeler* - [email protected]; Yvonne P Grzymbowski - [email protected]; Patrick J Krug - [email protected]; Heike Wägele - [email protected] * Corresponding author Published: 1 December 2009 Received: 26 June 2009 Accepted: 1 December 2009 Frontiers in Zoology 2009, 6:28 doi:10.1186/1742-9994-6-28 This article is available from: http://www.frontiersinzoology.com/content/6/1/28 © 2009 Händeler et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Among metazoans, retention of functional diet-derived chloroplasts (kleptoplasty) is known only from the sea slug taxon Sacoglossa (Gastropoda: Opisthobranchia). Intracellular maintenance of plastids in the slug's digestive epithelium has long attracted interest given its implications for understanding the evolution of endosymbiosis. However, photosynthetic ability varies widely among sacoglossans; some species have no plastid retention while others survive for months solely on photosynthesis. We present a molecular phylogenetic hypothesis for the Sacoglossa and a survey of kleptoplasty from representatives of all major clades. We sought to quantify variation in photosynthetic ability among lineages, identify phylogenetic origins of plastid retention, and assess whether kleptoplasty was a key character in the radiation of the Sacoglossa.
    [Show full text]
  • Intertidal Monitoring Report 2009/2010
    Adelaide Desalination Plant Final Intertidal Monitoring Report 2009/2010 Baring, R.J., Stewart, T. D.C. & Benkendorff, K.* School of Biological Sciences, Flinders University * Author for correspondence email: [email protected] [This document contains the final report for the seasonal Adelaide Desalination Plant Intertidal Monitoring Program undertaken by Flinders University in 2009/2010.] Table of Contents Table of Contents .............................................................................................................................. 1 Executive Summary ........................................................................................................................... 2 Introduction ...................................................................................................................................... 3 Aims and Objectives .......................................................................................................................... 4 Methods ............................................................................................................................................ 5 Sampling locations and sites ............................................................................................................. 5 Invertebrate abundance.................................................................................................................... 9 Percent cover of sessile organisms ...................................................................................................
    [Show full text]
  • Marine Snails of the Genus Phorcus: Biology and Ecology of Sentinel Species for Human Impacts on the Rocky Shores
    DOI: 10.5772/intechopen.71614 Provisional chapter Chapter 7 Marine Snails of the Genus Phorcus: Biology and MarineEcology Snails of Sentinel of the Species Genus Phorcusfor Human: Biology Impacts and on the EcologyRocky Shores of Sentinel Species for Human Impacts on the Rocky Shores Ricardo Sousa, João Delgado, José A. González, Mafalda Freitas and Paulo Henriques Ricardo Sousa, João Delgado, José A. González, MafaldaAdditional information Freitas and is available Paulo at Henriques the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.71614 Abstract In this review article, the authors explore a broad spectrum of subjects associated to marine snails of the genus Phorcus Risso, 1826, namely, distribution, habitat, behaviour and life history traits, and the consequences of anthropological impacts, such as fisheries, pollution, and climate changes, on these species. This work focuses on discussing the ecological importance of these sentinel species and their interactions in the rocky shores as well as the anthropogenic impacts to which they are subjected. One of the main anthro- pogenic stresses that affect Phorcus species is fisheries. Topshell harvesting is recognized as occurring since prehistoric times and has evolved through time from a subsistence to commercial exploitation level. However, there is a gap of information concerning these species that hinders stock assessment and management required for sustainable exploi- tation. Additionally, these keystone species are useful tools in assessing coastal habitat quality, due to their eco-biological features. Contamination of these species with heavy metals carries serious risk for animal and human health due to their potential of biomag- nification in the food chain.
    [Show full text]
  • Morphological Disparity As a Biodiversity Metric in Lower Bathyal and Abyssal Gastropod Assemblages
    Evolution, 58(2), 2004, pp. 338±348 MORPHOLOGICAL DISPARITY AS A BIODIVERSITY METRIC IN LOWER BATHYAL AND ABYSSAL GASTROPOD ASSEMBLAGES CRAIG R. MCCLAIN,1,2 NICHOLAS A. JOHNSON,1,3 AND MICHAEL A. REX1 1Department of Biology, University of Massachusetts, 100 Morrissey Boulevard, Boston, Massachusetts 02125 Abstract. Studies of deep-sea biodiversity focus almost exclusively on geographic patterns of a-diversity. Few include the morphological or ecological properties of species that indicate their actual roles in community assembly. Here, we explore morphological disparity of shell architecture in gastropods from lower bathyal and abyssal environments of the western North Atlantic as a new dimension of deep-sea biodiversity. The lower bathyal-abyssal transition parallels a gradient of decreasing species diversity with depth and distance from land. Morphological disparity measures how the variety of body plans in a taxon ®lls a morphospace. We examine disparity in shell form by constructing both empirical (eigenshape analysis) and theoretical (Schindel's modi®cation of Raup's model) morphospaces. The two approaches provide very consistent results. The centroids of lower bathyal and abyssal morphospaces are statis- tically indistinguishable. The absolute volumes of lower bathyal morphospaces exceed those of the abyss; however, when the volumes are standardized to a common number of species they are not signi®cantly different. The abyssal morphospaces are simply more sparsely occupied. In terms of the variety of basic shell types, abyssal species show the same disparity values as random subsets of the lower bathyal fauna. Abyssal species possess no evident evolutionary innovation. There are, however, conspicuous changes in the relative abundance of shell forms between the two assemblages.
    [Show full text]
  • NEWSNEWS Vol.4Vol.4 No.04: 3123 January 2002 1 4
    4.05 February 2002 Dr.Dr. KikutaroKikutaro BabaBaba MemorialMemorial IssueIssue 19052001 NEWS NEWS nudibranch nudibranch Domo Arigato gozaimas (Thank you) visit www.diveoz.com.au nudibranch NEWSNEWS Vol.4Vol.4 No.04: 3123 January 2002 1 4 1. Protaeolidella japonicus Baba, 1949 Photo W. Rudman 2, 3. Babakina festiva (Roller 1972) described as 1 Babaina. Photos by Miller and A. Ono 4. Hypselodoris babai Gosliner & Behrens 2000 Photo R. Bolland. 5. Favorinus japonicus Baba, 1949 Photo W. Rudman 6. Falbellina babai Schmekel, 1973 Photo Franco de Lorenzo 7. Phyllodesium iriomotense Baba, 1991 Photo W. Rudman 8. Cyerce kikutarobabai Hamatani 1976 - Photo M. Miller 9. Eubranchus inabai Baba, 1964 Photo W. Rudman 10. Dendrodoris elongata Baba, 1936 Photo W. Rudman 2 11. Phyllidia babai Brunckhorst 1993 Photo Brunckhorst 5 3 nudibranch NEWS Vol.4 No.04: 32 January 2002 6 9 7 10 11 8 nudibranch NEWS Vol.4 No.04: 33 January 2002 The Writings of Dr Kikutaro Baba Abe, T.; Baba, K. 1952. Notes on the opisthobranch fauna of Toyama bay, western coast of middle Japan. Collecting & Breeding 14(9):260-266. [In Japanese, N] Baba, K. 1930. Studies on Japanese nudibranchs (1). Polyceridae. Venus 2(1):4-9. [In Japanese].[N] Baba, K. 1930a. Studies on Japanese nudibranchs (2). A. Polyceridae. B. Okadaia, n.g. (preliminary report). Venus 2(2):43-50, pl. 2. [In Japanese].[N] Baba, K. 1930b. Studies on Japanese nudibranchs (3). A. Phyllidiidae. B. Aeolididae. Venus 2(3):117-125, pl. 4.[N] Baba, K. 1931. A noteworthy gill-less holohepatic nudibranch Okadaia elegans Baba, with reference to its internal anatomy.
    [Show full text]
  • ABSTRACT Title of Dissertation: PATTERNS IN
    ABSTRACT Title of Dissertation: PATTERNS IN DIVERSITY AND DISTRIBUTION OF BENTHIC MOLLUSCS ALONG A DEPTH GRADIENT IN THE BAHAMAS Michael Joseph Dowgiallo, Doctor of Philosophy, 2004 Dissertation directed by: Professor Marjorie L. Reaka-Kudla Department of Biology, UMCP Species richness and abundance of benthic bivalve and gastropod molluscs was determined over a depth gradient of 5 - 244 m at Lee Stocking Island, Bahamas by deploying replicate benthic collectors at five sites at 5 m, 14 m, 46 m, 153 m, and 244 m for six months beginning in December 1993. A total of 773 individual molluscs comprising at least 72 taxa were retrieved from the collectors. Analysis of the molluscan fauna that colonized the collectors showed overwhelmingly higher abundance and diversity at the 5 m, 14 m, and 46 m sites as compared to the deeper sites at 153 m and 244 m. Irradiance, temperature, and habitat heterogeneity all declined with depth, coincident with declines in the abundance and diversity of the molluscs. Herbivorous modes of feeding predominated (52%) and carnivorous modes of feeding were common (44%) over the range of depths studied at Lee Stocking Island, but mode of feeding did not change significantly over depth. One bivalve and one gastropod species showed a significant decline in body size with increasing depth. Analysis of data for 960 species of gastropod molluscs from the Western Atlantic Gastropod Database of the Academy of Natural Sciences (ANS) that have ranges including the Bahamas showed a positive correlation between body size of species of gastropods and their geographic ranges. There was also a positive correlation between depth range and the size of the geographic range.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Miocene Vetigastropoda and Neritimorpha (Mollusca, Gastropoda) of Central Chile
    Journal of South American Earth Sciences 17 (2004) 73–88 www.elsevier.com/locate/jsames Miocene Vetigastropoda and Neritimorpha (Mollusca, Gastropoda) of central Chile Sven N. Nielsena,*, Daniel Frassinettib, Klaus Bandela aGeologisch-Pala¨ontologisches Institut und Museum, Universita¨t Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany bMuseo Nacional de Historia Natural, Casilla 787, Santiago, Chile Abstract Species of Vetigastropoda (Fissurellidae, Turbinidae, Trochidae) and one species of Neritimorpha (Neritidae) from the Navidad area, south of Valparaı´so, and the Arauco Peninsula, south of Concepcio´n, are described. Among these, the Fissurellidae comprise Diodora fragilis n. sp., Diodora pupuyana n. sp., two additional unnamed species of Diodora, and a species resembling Fissurellidea. Turbinidae are represented by Cantrainea sp., and Trochidae include Tegula (Chlorostoma) austropacifica n. sp., Tegula (Chlorostoma) chilena n. sp., Tegula (Chlorostoma) matanzensis n. sp., Tegula (Agathistoma) antiqua n. sp., Bathybembix mcleani n. sp., Gibbula poeppigii [Philippi, 1887] n. comb., Diloma miocenica n. sp., Fagnastesia venefica [Philippi, 1887] n. gen. n. comb., Fagnastesia matanzana n. gen. n. sp., Calliostoma mapucherum n. sp., Calliostoma kleppi n. sp., Calliostoma covacevichi n. sp., Astele laevis [Sowerby, 1846] n. comb., and Monilea riorapelensis n. sp. The Neritidae are represented by Nerita (Heminerita) chilensis [Philippi, 1887]. The new genus Fagnastesia is introduced to represent low-spired trochoideans with a sculpture of nodes below the suture, angulated whorls, and a wide umbilicus. This Miocene Chilean fauna includes genera that have lived at the coast and in shallow, relatively warm water or deeper, much cooler water. This composition therefore suggests that many of the Miocene formations along the central Chilean coast consist of displaced sediments.
    [Show full text]
  • Auckland Shell Club Auction Lot List - 24 October 2015 Albany Hall
    Auckland Shell Club Auction Lot List - 24 October 2015 Albany Hall. Setup from 9am. Viewing from 10am. Auction starts at noon. Lot Type Reserve 1 WW Many SMALL CYPRAEIDAE including the rare Rosaria caputdraconis from Easter Is. Mauritian scurra from Somalia, Cypraea eburnea white from from, New Caledonia, Cypraea chinensis from Solomon Is Lyncina sulcidentata from Hawaii and heaps more. 2 WW Many CONIDAE including rare Conus queenslandis (not perfect!) Conus teramachii, beautiful Conus trigonis, Conus ammiralis, all from Australia, Conus aulicus, Conus circumcisus, Conus gubernator, Conus generalis, Conus bullatus, Conus distans, and many more. 3 WW BIVALVES: Many specials including Large Pearl Oyster Pinctada margaritifera, Chlamys sowerbyi, Glycymeris gigantea, Macrocallista nimbosa, Pecten glaber, Amusiium pleuronectes, Pecten pullium, Zygochlamys delicatula, and heaps more. 4 WW VOLUTIDAE: Rare Teramachia johnsoni, Rare Cymbiolacca thatcheri, Livonia roadnightae, Zidona dufresnei, Lyria kurodai, Cymbiola rutila, Cymbium olia, Pulchra woolacottae, Cymbiola pulchra peristicta, Athleta studeri, Amoria undulata, Cymbiola nivosa. 5 WW MIXTURE Rare Campanile symbolium, Livonia roadnightae, Chlamys australis, Distorsio anus, Bulluta bullata, Penion maximus, Matra incompta, Conus imperialis, Ancilla glabrata, Strombus aurisdianae, Fusinus brasiliensis, Columbarium harrisae, Mauritia mauritana, and heaps and heaps more! 6 WW CYPRAEIDAE: 12 stunning shells including Trona stercoraria, Cypraea cervus, Makuritia eglantrine f. grisouridens, Cypraea
    [Show full text]
  • Table of Contents
    ALL INDIA CO-ORDINATED PROJECT ON TAXONOMY OF MOLLUSCA ANNUAL REPORT (December 2016 – May 2018) GUJARAT STATE BOMBAY NATURAL HISTORY SOCIETY Dr. Deepak Apte Director Dr. Dishant Parasharya Dr. Bhavik Patel Scientist – B Scientist – B All India Coordinated Project on Taxonomy – Mollusca , Gujarat State Acknowledgements We are thankful to the Department of Forest and Environment, Government of Gujarat, Mr. G. K. Sinha, IFS HoFF and PCCF (Wildlife) for his guidance and cooperation in the work. We are thankful to then CCF Marine National Park and Sanctuary, Mr. Shyamal Tikader IFS, Mr. S. K. Mehta IFS and their team for the generous support, We take this opportunity to thank the entire team of Marine National Park and Sanctuary. We are thankful to all the colleagues of BNHS who directly or indirectly helped us in our work. We specially thank our field assistant, Rajesh Parmar who helped us in the field work. All India Coordinated Project on Taxonomy – Mollusca , Gujarat State 1. Introduction Gujarat has a long coastline of about 1650 km, which is mainly due to the presence of two gulfs viz. the Gulf of Khambhat (GoKh) and Gulf of Kachchh (GoK). The coastline has diverse habitats such as rocky, sandy, mangroves, coral reefs etc. The southern shore of the GoK in the western India, notified as Marine National Park and Sanctuary (MNP & S), harbours most of these major habitats. The reef areas of the GoK are rich in flora and fauna; Narara, Dwarka, Poshitra, Shivrajpur, Paga, Boria, Chank and Okha are some of these pristine areas of the GoK and its surrounding environs.
    [Show full text]
  • Catalogue of the Hadfield Collection of Shells from the Lifu and Uvea
    » Xlbe flftancbestev Museum # » ©wens College MUSEUM HANDBOOKS. LOYALTY ISLANDS NEW Mare CALEDONIA Noumea- New^ Fyi is Caledonia ^ Australia CATALOGUE OF THE HADFIELD COLLECTION OF SHELLS FROM THE LOYALTY ISLANDS. PARTS II. AND III. ©rice Gwo Sbtlltnge. 00 M^ THE MANCHESTER MUSEUM, OWENS COLLEGE. MUSEUM HANDBOOKS. CiVT.A.T^OGTJE THE HADFIELD COLLECTION OF SHELLS FROM LIFU AND UVEA, LOYALTY ISLANDS. !1Y / JAMES COSMO MELVILL, M.A., F.L.S., Ml AND ROBERT STANDEN. PARTS II. AND III. MANCHESTER: J. E. CORNISH. 1897. INTRODUCTION. During the past few years large collections of the shells of Lifu and Uvea have been made by the Rev. James and Mrs. Hadfield, and have been consigned to several Manchester conchologists. By the kindness of Messrs. R. 1 ). Darbishire, R. Cairns, and W. Moss, a very complete series of these shells has been presented to the Manchester Museum, which possesses in addition the types of the majority of the new species here described, though a few remain in Mr. Melvill's cabinet. They have been arranged for exhibition, and a list of them, with notes and descriptions of new species, was drawn up by Mr. J. Cosmo Melvill (a member of the Committee of the Manchester Museum), and Mr. R. Standen (of the Museum staff). As the collection is one of the largest and most important that has been received in this country from the Loyalty Islands, it has been thought desirable to afford the naturalists of Manchester and elsewhere an opportunity of obtaining separate copies of this catalogue, and it has therefore been reprinted from 'The Journal of Conchologv' and issued as one of the Museum Handbooks.
    [Show full text]