Ergebnisse Der Mathematik Und Ihrer Grenzgebiete. 3. Folge / a Series of Modern Surveys in Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

Ergebnisse Der Mathematik Und Ihrer Grenzgebiete. 3. Folge / a Series of Modern Surveys in Mathematics Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics Volume 72 Series Editors L. Ambrosio, Pisa V. Baladi, Paris G.-M. Greuel, Kaiserslautern M. Gromov, Bures-sur-Yvette G. Huisken, Tübingen J. Jost, Leipzig J. Kollár, Princeton G. Laumon, Orsay U. Tillmann, Oxford J. Tits, Paris D.B. Zagier, Bonn More information about this series at http://www.springer.com/series/728 The Virtual Series on Symplectic Geometry Series Editors Alberto Abbondandolo Helmut Hofer Tara Suzanne Holm Dusa McDuff Claude Viterbo Associate Editors Dan Cristofaro-Gardiner Umberto Hryniewicz Emmy Murphy Yaron Ostrover Silvia Sabatini Sobhan Seyfaddini Jake Solomon Tony Yue Yu More information about this series at http://www.springer.com/series/16019 Helmut Hofer • Krzysztof Wysocki Eduard Zehnder Polyfold and Fredholm Theory Helmut Hofer Krzysztof Wysocki Institute for Advanced Study Department of Mathematics Princeton, NJ, USA Pennsylvania State University University Park, State College Eduard Zehnder PA , USA Department of Mathematics ETH Zurich Zürich, Switzerland ISSN 0071-1136 ISSN 2197-5655 (electronic) Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics ISBN 978-3-030-78006-7 ISBN 978-3-030-78007-4 (eBook) https://doi.org/10.1007/978-3-030-78007-4 Mathematics Subject Classification (2020): 58, 53, 46 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Two lives were tragically lost while writing this book. My coauthor and friend Kris Wysocki passed away on February 16, 2016 and my son David S. Hofer on March 1, 2016. I dedicate this book to them. Helmut Hofer I dedicate this book to my friend and coauthor Kris Wysocki who lost his long fight against cancer on February 16, 2016, and to his wife and our friend, Beata Wysocka. We all miss Kris. Eduard Zehnder Preface Goals The abstract theory developed in the current volume was initiated in a series of papers [54, 55, 56]. It generalizes differential geometry and nonlinear Fredholm theory to a class of spaces which are much more general than (Banach) manifolds. These spaces may have (locally) varying dimensions (finite or even infinite) and are described locally by retracts on scale Banach spaces, replacing the open sets of Banach spaces in the familiar local description of manifolds. A version of the theory also combines the differential geometric and functional analytic aspects with category theory. In this generality the theory also allows certain kinds of categories to be equipped with smooth structures and the development of a nonlinear Fredholm theory, i.e. Fredholm functors, in this context. The figure below illustrates some aspects of the spaces which will occur. vii viii Preface The top part shows a topological space obtained from an open three-ball and an open two-disk connected by two curves. It will turn out that it admits a new kind of smooth structure, called a (finite-dimensional) M-polyfold structure. The M-polyfold structures can have locally finite or locally infinite dimensions which change rapidly, but nevertheless they are in some sense smooth structures. In this context we can also have bundles and they can also change dimensions. These smooth bundles have smooth sections and if the dimension jumps are correlated the zero set might be something resembling a smooth classical manifold. This is shown in the bottom part of the figure, where we have a submanifold diffeomorphic to a circle as the zero set obtained from a section of the bundle over our space, which has a fiber-dimension one dimension less than the underlying local dimension. As it turns out, one can use the theory developed in this volume to give functional an- alytic treatments of nonlinear problems which show bubbling-off phenomena. The methods cover considerations about compactness, symmetry and transversality. This book is written as a reference volume for polyfold theory and the accompany- ing Fredholm theory. In Part I of this book, based on [54, 55], we develop the Fredholm theory in a class of spaces called M-polyfolds. These spaces can be viewed as a generalization of the notion of a manifold (finite or infinite-dimensional). In Part II M-polyfolds, based on [56], will be generalized to a class of spaces called ep-groupoids, which can be viewed as the polyfold generalization of etale´ proper Lie groupoids. This generalization is useful in dealing with problems having local symmetries, which is needed in more advanced applications. In Part III we develop, following [55, 56, 57, 58], the Fredholm theory in ep- groupoids. Transversality and symmetry are antagonistic concepts, since perturb- ing a problem to achieve transversality might not be possible when we also want to preserve the symmetries. Although it seems hopeless in many cases to achieve transversality, there is a version of transversality theory over the rational numbers, which is based on a perturbation theory using set-valued perturbations. Such an idea was introduced by Fukaya and Ono, [26], in their Kuranishi framework for the Arnold conjectures. The use of set-valued operators in nonlinear analysis is older, and a description can be found in [109]. It seems that the latter was never used to develop a transversality theory in the context of symmetries. We merge these ideas into a convenient formalism which was in a very special case suggested in [11]. In some sense the transversality theory in a symmetric setting locally replaces the equivariant problem by a symmetric weighted family of problems. One of the by- products of our considerations is a version of Fredholm theory, generalizing what in classical terms would be a Fredholm theory on (Banach) orbifolds with boundary with corners. Preface ix In summary, Parts I–III describe a wide array of nonlinear functional analytic tools to study perturbation and transversality questions for a large class of so-called sc- Fredholm sections and Fredholm section functors in ep-groupoids. We note that ‘sc’ is short for ‘scale’. In Part IV, the whole theory is generalized even a step further to equip certain cat- egories (groupoidal categories) with smooth structures and to develop a theory of Fredholm functors. An application of such ideas to Gromov–Witten theory is out- lined in [49]. The language and results of the abstract polyfold theory turn out to be very useful in concrete applications. In fact, right from the beginning it was a declared goal to create a theory with a rich language and many internal results, which would allow the effective study of moduli spaces associated to families (or even infinitely many interacting families) of nonlinear elliptic problems on possibly varying domains, al- lowing for symmetries, bubbling-off and transversality issues. In applications, for example in symplectic geometry/topology, these analytic problems require massive constructions usually covering hundreds of pages. The reader can imagine the asso- ciated difficulties not only for the authors, but also for the referees. A natural idea to soften the burden is to make it possible to have modular constructions. Small pieces of checkable analysis and a theory which would allow such pieces to be combined and guarantee the properties of the newly constructed ‘cluster’. This would make it possible to recycle useful constructions and reuse them in new work, and a theory would guarantee that if the different pieces live up to certain ‘specifications’ the newly created object would have the required ‘functionality’. The reader should not be deceived by the length of the book. The language is rather compact and intuitive, and the length of this volume results from the fact that there are many internal results, where in applications only a few are needed. Since this is a new theory the authors spend an inordinate amount of time pushing it to its limits, since this is a way to spot possible issues and a way to find improvements of the core ideas, besides making sure that the theory covers many of the important applications. As it stands, this is now a reference volume and the follow-up projects will provide the reader with streamlined introductions to the theory designed and explained around important applications, described in the outlook below. The forthcoming project [20] by J. Fish and the first author will illustrate the utility of the theory by developing methods and tools for the constructions of concrete polyfolds. One of the very useful ideas for concrete polyfold constructions, as they occur in applications, is the imprinting method, see [21].
Recommended publications
  • Symplectic Embeddings of Toric Domains
    Symplectic Embeddings of Toric Domains by Daniel Reid Irvine A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mathematics) in the University of Michigan 2020 Doctoral Committee: Professor Daniel Burns, Jr., Chair Professor Anthony Bloch Assistant Professor Jun Li Professor John Schotland Professor Alejandro Uribe Daniel Reid Irvine [email protected] ORCID ID: 0000-0003-2721-5901 ©Daniel Reid Irvine 2020 Dedication This work is gratefully dedicated to my family. ii Acknowledgments I would like to extend my deep gratitude to my advisor, Daniel Burns, for his continued support and encouragement during my graduate career. Beyond his mathematical exper- tise, he has been a steadfast friend. Second, I would like to thank Richard Hind for his advise- ment during both my undergraduate and graduate career. He encouraged me to undertake this ambitious project, and his enthusiasm steered me towards the field of symplectic ge- ometry. Third, I would like to thank Jun Li for his advice and many helpful conversations. Finally, I would like to thank all the instructors that guided me through my mathematical career. I would not be where I am today if not for them. iii Table of Contents Dedication ....................................... ii Acknowledgments ................................... iii List of Figures ..................................... vi Abstract ......................................... vii Chapter 1 Introduction ..................................... 1 1.0.1 Summary of Results........................6 1.0.2 Important Past Results.......................7 2 Toric Domains .................................... 11 2.1 ECH Capacities of Toric Domains..................... 13 2.1.1 ECH Capacities of Concave Toric Domains............ 14 2.1.2 Realizing the positive weight vector as a ball packing......
    [Show full text]
  • Arxiv:1203.5589V2 [Math.SG] 5 Oct 2014 Orbit
    ON GROWTH RATE AND CONTACT HOMOLOGY ANNE VAUGON Abstract. It is a conjecture of Colin and Honda that the number of peri- odic Reeb orbits of universally tight contact structures on hyperbolic mani- folds grows exponentially with the period, and they speculate further that the growth rate of contact homology is polynomial on non-hyperbolic geometries. Along the line of the conjecture, for manifolds with a hyperbolic component that fibers on the circle, we prove that there are infinitely many non-isomorphic contact structures for which the number of periodic Reeb orbits of any non- degenerate Reeb vector field grows exponentially. Our result hinges on the exponential growth of contact homology which we derive as well. We also compute contact homology in some non-hyperbolic cases that exhibit polyno- mial growth, namely those of universally tight contact structures on a circle bundle non-transverse to the fibers. 1. Introduction and main results The goal of this paper is to study connections between the asymptotic number of periodic Reeb orbits of a 3-dimensional contact manifold and the geometry of the underlying manifold. We first recall some basic definitions of contact geometry. A 1-form α on a 3-manifold M is called a contact form if α ∧ dα is a volume form on M.A (cooriented) contact structure ξ is a plane field defined as the kernel of a contact form. If M is oriented, the contact structure ker(α) is called positive if the 3-form α ∧ dα orients M. The Reeb vector field associated to a contact form α is the vector field Rα such that ιRα α = 1 and ιRα dα = 0.
    [Show full text]
  • 2018-06-108.Pdf
    NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY Feature S E European Tensor Product and Semi-Stability M M Mathematical Interviews E S Society Peter Sarnak Gigliola Staffilani June 2018 Obituary Robert A. Minlos Issue 108 ISSN 1027-488X Prague, venue of the EMS Council Meeting, 23–24 June 2018 New books published by the Individual members of the EMS, member S societies or societies with a reciprocity agree- E European ment (such as the American, Australian and M M Mathematical Canadian Mathematical Societies) are entitled to a discount of 20% on any book purchases, if E S Society ordered directly at the EMS Publishing House. Bogdan Nica (McGill University, Montreal, Canada) A Brief Introduction to Spectral Graph Theory (EMS Textbooks in Mathematics) ISBN 978-3-03719-188-0. 2018. 168 pages. Hardcover. 16.5 x 23.5 cm. 38.00 Euro Spectral graph theory starts by associating matrices to graphs – notably, the adjacency matrix and the Laplacian matrix. The general theme is then, firstly, to compute or estimate the eigenvalues of such matrices, and secondly, to relate the eigenvalues to structural properties of graphs. As it turns out, the spectral perspective is a powerful tool. Some of its loveliest applications concern facts that are, in principle, purely graph theoretic or combinatorial. This text is an introduction to spectral graph theory, but it could also be seen as an invitation to algebraic graph theory. The first half is devoted to graphs, finite fields, and how they come together. This part provides an appealing motivation and context of the second, spectral, half. The text is enriched by many exercises and their solutions.
    [Show full text]
  • Contact Homology and Virtual Fundamental Cycles
    Contact homology and virtual fundamental cycles John Pardon∗ 28 October 2015 (revised 4 February 2019) Abstract We give a construction of contact homology in the sense of Eliashberg–Givental– Hofer. Specifically, we construct coherent virtual fundamental cycles on the relevant compactified moduli spaces of pseudo-holomorphic curves. The aim of this work is to provide a rigorous construction of contact homology, an in- variant of contact manifolds and symplectic cobordisms due to Eliashberg–Givental–Hofer [Eli98, EGH00]. The contact homology of a contact manifold (Y,ξ) is defined by counting pseudo-holomorphic curves in the sense of Gromov [Gro85] in its symplectization R × Y . The main problem we solve in this paper is simply to give a rigorous definition of these curve counts, the essential difficulty being that the moduli spaces of such curves are usually not cut out transversally. It is therefore necessary to construct the virtual fundamental cycles of these moduli spaces (which play the same enumerative role that the ordinary fundamental cycles do for transversally cut out moduli spaces). For this construction, we use the frame- work developed in [Par16]. Our methods are quite general, and apply equally well to many other moduli spaces of interest. We use a compactification of the relevant moduli spaces which is smaller than the com- pactification considered in [EGH00, BEHWZ03]. Roughly speaking, for curves in symplecti- zations R × Y , we do not keep track of the relative vertical positions of different components (in particular, no trivial cylinders appear). Our compactification is more convenient for prov- ing the master equations of contact homology: the codimension one boundary strata in our compactification correspond bijectively with the desired terms in the “master equations”, whereas the compactification from [EGH00, BEHWZ03] contains additional codimension one boundary strata.
    [Show full text]
  • Invariants of Legendrian Products Peter Lambert-Cole Louisiana State University and Agricultural and Mechanical College
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2014 Invariants of Legendrian products Peter Lambert-Cole Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Applied Mathematics Commons Recommended Citation Lambert-Cole, Peter, "Invariants of Legendrian products" (2014). LSU Doctoral Dissertations. 2909. https://digitalcommons.lsu.edu/gradschool_dissertations/2909 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. INVARIANTS OF LEGENDRIAN PRODUCTS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Mathematics by Peter Lambert-Cole A.B. Mathematics, Princeton University 2009 M.S. Mathematics, Louisiana State University, 2011 August 2014 Acknowledgments The work in this thesis owes much to the generosity, support and mentorship of many people. First and foremost are Scott Baldridge, my advisor, and Shea Vela-Vick, who has been a second advisor in all but title. I am extremely grateful to the Louisiana State University Board of Regents for a four-year fellowship to study mathematics. My research owes a great deal to the freedom and time it gave me to think deeply about mathematics and pursue ambitious research projects. I would like to thank John Etnyre and Lenhard Ng, for hosting me at Geor- gia Institute of Technology and Duke University, respectively, and many helpful conversations and advice on the research in this thesis.
    [Show full text]
  • Gromov's Alternative, Contact Shape, and C^ 0-Rigidity of Contact
    GROMOV’S ALTERNATIVE, CONTACT SHAPE, AND C0-RIGIDITY OF CONTACT DIFFEOMORPHISMS STEFAN MULLER¨ AND PETER SPAETH Abstract. We prove that the group of contact diffeomorphisms is closed in the group of all diffeomorphisms in the C0-topology. By Gromov’s alternative, it suffices to exhibit a diffeomorphism that can not be approximated uniformly by contact diffeomorphisms. Our construction uses Eliashberg’s contact shape. 1. Introduction and main result Let (W 2n,ω) be a connected symplectic manifold, and ωn be the corresponding canonical volume form. We assume throughout this paper that all diffeomorphisms and vector fields are compactly supported in the interior of a given manifold. A symplectic diffeomorphism obviously preserves the volume form ωn, and thus so does a diffeomorphism that is the uniform limit of symplectic diffeomorphisms. In the early 1970s, Gromov discovered a fundamental hard versus soft alternative [Gro86]: either the group Symp(W, ω) of symplectic diffeomorphisms is C0-closed in the group Diff(W ) of all diffeomorphisms (hardness or rigidity), or its C0-closure is (a subgroup of finite codimension in) the group Diff(W, ωn) of volume preserving diffeomorphisms (softness or flexibility). See section 2 for a more precise statement. Gromov’s alternative is a fundamental question that concerns the very existence of symplectic topology [MS98, DT90]. That rigidity holds was proved by Eliashberg in the late 1970s [Eli82, Eli87]. One of the most geometric expressions of this C0- rigidity is Gromov’s non-squeezing theorem. Denote by B2n(r) a closed ball of 2n 2 2n−2 radius r in R with its standard symplectic form ω0, and by B (R) × R = Z2n(R) ⊂ R2n a cylinder of radius R so that the splitting R2 ×R2n−2 is symplectic.
    [Show full text]
  • Topological Persistence in Geometry and Analysis
    Applied VOLUME 74 UNIVERSITY LECTURE SERIES Mathematics Topological Persistence in Geometry and Analysis Leonid Polterovich Daniel Rosen Karina Samvelyan Jun Zhang 10.1090/ulect/074 Topological Persistence in Geometry and Analysis UNIVERSITY LECTURE SERIES VOLUME 74 Topological Persistence in Geometry and Analysis Leonid Polterovich Daniel Rosen Karina Samvelyan Jun Zhang EDITORIAL COMMITTEE Robert Guralnick William P. Minicozzi II (Chair) Emily Riehl Tatiana Toro 2010 Mathematics Subject Classification. Primary 55U99, 58Cxx, 53Dxx. For additional information and updates on this book, visit www.ams.org/bookpages/ulect-74 Library of Congress Cataloging-in-Publication Data Names: Polterovich, Leonid, 1963- author. | Rosen, Daniel, 1980- author. | Samvelyan, Karina, 1988- author. | Zhang, Jun, 1988- author. Title: Topological persistence in geometry and analysis / Leonid Polterovich, Daniel Rosen, Karina Samvelyan, Jun Zhang. Description: Providence, Rhode Island : American Mathematical Society, [2020] | Series: Univer- sity lecture series, 1047-3998 ; volume 74 | Includes bibliographical references and index. Identifiers: LCCN 2019059052 | ISBN 9781470454951 (paperback) | ISBN 9781470456795 (ebook) Subjects: LCSH: Algebraic topology. | Homology theory. | Combinatorial topology. | Symplectic geometry. | Mathematical analysis. | AMS: Algebraic topology – Applied homological alge- bra and category theory [See also 18Gxx]. | Global analysis, analysis on manifolds [See also 32Cxx, 32Fxx, 32Wxx, 46-XX, 47Hxx, 53Cxx] {For geometric integration theory,
    [Show full text]
  • A Symplectic Prolegomenon 417
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 52, Number 3, July 2015, Pages 415–464 S 0273-0979(2015)01477-1 Article electronically published on January 30, 2015 ASYMPLECTICPROLEGOMENON IVAN SMITH Abstract. A symplectic manifold gives rise to a triangulated A∞-category, the derived Fukaya category, which encodes information on Lagrangian sub- manifolds and dynamics as probed by Floer cohomology. This survey aims to give some insight into what the Fukaya category is, where it comes from, and what symplectic topologists want to do with it. ...everything you wanted to say required a context. If you gave the full context, people thought you a rambling old fool. If you didn’t give the context, people thought you a laconic old fool. Julian Barnes, Staring at the Sun 1. Introduction The origins of symplectic topology lie in classical Hamiltonian dynamics, but it also arises naturally in algebraic geometry, in representation theory, in low- dimensional topology, and in string theory. In all of these settings, arguably the most important technology deployed in symplectic topology is Floer cohomol- ogy, which associates to a pair of oriented n-dimensional Lagrangian submanifolds L, L of a 2n-dimensional symplectic manifold (X, ω)aZ2-graded vector space HF∗(L, L), which categorifies the classical homological intersection number of L and L in the sense that χ(HF∗(L, L)) = (−1)n(n+1)/2 [L] · [L]. In the early days of the subject, Floer cohomology played a role similar to that taken by singular homology groups in algebraic topology at the beginning of the last century: the ranks of the groups provided lower bounds for problems of geo- metric or dynamical origin (numbers of periodic points, for instance).
    [Show full text]
  • IAS Annual Report 2018–19
    Institute for Advanced Study Re port for 2 0 1 8–2 0 1 9 Report for the Academic Year 2018–2019 Cover: On March 19, 2019, Visiting Professor KAREN UHLENBECK became the first woman to win the Abel Prize. Uhlenbeck was cited “for her pioneering achievements in geometric partial differential equations, gauge theory, and integrable systems, and for the fundamental impact of her work on analysis, geometry, and mathematical physics.” Opposite: South Lawn COVER PHOTO: ANDREA KANE Table of Contents DAN KOMODA DAN Reports of the Chair and the Director 4 The Institute for Advanced Study 6 School of Historical Studies 8 School of Mathematics 20 School of Natural Sciences 30 School of Social Science 40 Special Programs and Outreach 48 Record of Events 57 80 Acknowledgments 88 Founders, Trustees, and Officers of the Board and of the Corporation 89 Administration 90 Present and Past Directors and Faculty 91 Independent Auditors’ Report DAN KOMODA REPORT OF THE CHAIR On March 14, 2019, the Institute for Advanced Study celebrated twenty­seven­year service on the Board. Brian had served as the value and astounding influence of basic research and Treasurer of the Corporation since 2006 and was one of our invited others to support IAS’s purpose and mission with the longest­serving Trustees. We are grateful for Brian’s broad and inaugural IAS Einstein Gala held in New York City. deep dedication to the Institute. I was honored to chair the gala, along with Sir James We were delighted to welcome new Trustees R. Marty Wolfensohn, former Chair of the Board (1986–2007).
    [Show full text]
  • Relative Hofer-Zehnder Capacity and Positive Symplectic Homology
    Relative Hofer{Zehnder capacity and positive symplectic homology Gabriele Benedetti and Jungsoo Kang (with an appendix by Alberto Abbondandolo and Marco Mazzucchelli) Dedicated to Claude Viterbo on the occasion of his sixtieth birthday Abstract We study the relationship between a homological capacity cSH+ (W ) for Liouville do- mains W defined using positive symplectic homology and the existence of periodic orbits for Hamiltonian systems on W : If the positive symplectic homology of W is non-zero, then the capacity yields a finite upper bound to the π1-sensitive Hofer{Zehnder capacity of W relative to its skeleton and a certain class of Hamiltonian diffeomorphisms of W has infinitely many non-trivial contractible periodic points. En passant, we give an upper bound for the spectral capacity of W in terms of the homological capacity cSH(W ) defined using the full symplectic homology. Applications of these statements to cotangent bundles are discussed and use a result by Abbondandolo and Mazzucchelli in the appendix, where the monotonicity of systoles of convex Riemannian two-spheres in R3 is proved. 1 Periodic orbits for Hamiltonian systems In this paper, we prove new existence and multiplicity results for periodic orbits of Hamilto- nian systems on Liouville domains using positive symplectic homology. We present our results in Section 2, and, in order to put them into context, we give in this first section a brief (and incomplete) account of previous work on the existence of periodic orbits for Hamiltonian sys- arXiv:2010.15462v2 [math.SG] 8 Jul 2021 tems that will be relevant to our work. For more details, we recommend the excellent surveys [CHLS07, Gin05, GG15].
    [Show full text]
  • MATH+ Friday Colloquium the Floer Jungle: 35 Years of Floer Theory
    MATH+ Friday Colloquium Friday 16 July 2021 at 15:15 Online (Zoom) - Joint IAS/Princeton/Montreal/Paris//Tel-Aviv Symplectic Geometry Zoominar Helmut Hofer (IAS Princeton) The Floer Jungle: 35 Years of Floer Theory An exceptionally gifted mathematician and an extremely complex person, Floer exhibited, as one friend put it, a "radical individuality." He viewed the world around him with a singularly critical way of thinking and a quintessential disregard for convention. Indeed, his revolutionary mathematical ideas, contradicting conventional wisdom, could only be inspired by such impetus, and can only be understood in this context. Poincaré's research on the Three Body Problem laid the foundations for the fields of dynamical systems and symplectic geometry. From whence the ancestral trail follows Marston Morse and Morse theory, Vladimir Arnold and the Arnold con- jectures, through to breakthroughs by Yasha Eliashberg. Likewise, Charles Conley and Eduard Zehnder on the Arnold con- jectures, Mikhail Gromov's theory of pseudoholomorphic curves, providing a new and powerful tool to study symplectic © Helmut Hofer geometry, and Edward Witten's fresh perspective on Morse theory. And finally, Andreas Floer, who counter-intuitively combined all of this, hitting the "jackpot" with what is now called Floer theory. Helmut Hofer is the Hermann Weyl Professor at the Institute for Advanced Study (IAS) in Princeton. Hofer received his Ph.D. from the University of Zürich in 1981. Prior to joining IAS, he was a Silver Professor at NYU's Courant Institute and held faculty positions at the ETH Zürich, the Ruhr-Universität Bochum, Rutgers University and the University of Bath.
    [Show full text]
  • Reflections in a Cup of Coffee
    REFLECTIONS IN A CUP OF COFFEE RAF BOCKLANDT ABSTRACT. Allegedly, Brouwer discovered his famous fixed point theorem while stirring a cup of coffee and noticing that there is always at least one point in the liquid that does not move. In this paper, based on a talk in honour of Brouwer at the University of Amsterdam, we will explore how Brouwer’s ideas about this phenomenon spilt over in a lot of different areas of mathematics and how this eventually led to an intriguing geometrical theory we now know as mirror symmetry. 1. BROUWER’S BEGINNINGS As the nineteenth century drew to a close, the famous French mathematician Henri Poincare´ unleashed a new type of geometry onto the world, which would transform many areas in mathematics and keep mathematicians busy until this very day. Poincare´ used topology —or analysis situs as this new geometry was called in these days— to study solutions of differential equations by looking at the global structure of the spaces on which they were defined [20]. This global information was of a different nature than the classical geometrical prop- erties like distances and angles. Unlike the latter, topological properties of a space do not change under continuous deformations like stretching and bending. They describe more robust features such as the number of holes in a space or the different ways to connect to points. Although some of these concepts were already known before, Poincare´ brought the subject to a new level by demonstrating how they could be used to derive higly nontrivial results in seemingly unrelated research areas.
    [Show full text]