Annualreport 2012 2013

Total Page:16

File Type:pdf, Size:1020Kb

Annualreport 2012 2013 C CENTRE R DERECHERCHES M MATHÉMATIQUES AnnualReport 2012 2013 C CENTRE R DERECHERCHES M MATHÉMATIQUES AnnualReport 2012 2013 Centre de recherches mathématiques Université de Montréal C.P. 6128, succ. Centre-ville Montréal, QC H3C 3J7 Canada [email protected] Also available on the CRM website http://crm.math.ca/docs/docRap_an.shtml. © Centre de recherches mathématiques Université de Montréal, 2014 ISBN 978-2-921120-51-7 Contents Presenting the Annual Report 2012–2013 1 Thematic Program 3 Thematic Program of the Year 2012–2013: “Moduli Spaces, Extremality and Global Invariants” and “Mathematics of Planet Earth 2013” ................................... 4 Aisenstadt Chairholders in 2012–2013: Fedor Bogomolov, David Gabai, Helmut Hofer, and Gang Tian . 5 Activities of the Thematic Year ......................................... 7 Past Thematic Programs ............................................. 18 General Program 19 CRM activities .................................................. 20 Colloquium and Seminar Series ......................................... 35 Multidisciplinary and Industrial Program 37 Activities of the Multidisciplinary and Industrial Program .......................... 38 CRM Prizes 40 CRM–Fields–PIMS Prize 2013 Awarded to Bruce Reed ............................ 41 André-Aisenstadt Prize 2013 Awarded to Spyros Alexakis .......................... 41 The CRM–SSC Prize 2013 Awarded to Derek Bingham ............................ 42 The CRM Outreach Program 44 Mathematics of Planet Earth 2013 — CRM Public Lectures .......................... 45 Mathematics of Planet Earth 2013 — Cross-Canada Series of Lectures ................... 48 Grandes Conférences du CRM ......................................... 49 CRM Partnerships 52 CRM Partners .................................................. 53 Joint Initiatives .................................................. 56 Mathematical Education 57 Institut des sciences mathématiques (ISM) ................................... 58 Other Joint Initiatives .............................................. 60 Research Laboratories 61 Applied Mathematics .............................................. 62 CICMA — Centre Interuniversitaire en Calcul Mathématique Algébrique ................. 63 CIRGET — Centre Interuniversitaire de Recherches en Géométrie et Topologie .............. 64 GIREF — Groupe Interdisciplinaire de Recherche en Éléments Finis ..................... 66 LaCIM — Laboratoire de Combinatoire et d’Informatique Mathématique .................. 67 Mathematical Analysis ............................................. 69 Mathematical Physics .............................................. 71 PhysNum ..................................................... 73 Statistics ..................................................... 74 Publications 76 Recent Titles ................................................... 77 Previous Titles .................................................. 77 Scientific Personnel 82 CRM Members in 2012–2013 .......................................... 83 Postdoctoral Fellows ............................................... 85 iii Centre de recherches mathématiqes Visitors ...................................................... 86 List of Students Having Graduated in 2012–2013 88 Ph.D. Students .................................................. 89 M.Sc. Students .................................................. 91 Governance and Scientific Guidance 95 Board of Directors ................................................ 96 Committee of Directors of Laboratories .................................... 96 International Scientific Advisory Committee ................................. 97 CRM Administrative and Support Staff 102 The Director’s Office ............................................... 103 Administration .................................................. 103 Scientific Activities ............................................... 103 Computer Services ................................................ 103 Publications ................................................... 103 Communications ................................................. 103 Mandate of the CRM 104 iv Presenting the Annual Report 2012–2013 Centre de recherches mathématiqes The 2012–2013 thematic program at the CRM wasa (André-Aisenstadt Prize 2013), and Derek Bingham perfect illustration of the breadth of its activities, since from Simon Fraser University (CRM–SSC Prize 2013). it included a Thematic Year on Moduli Spaces, Ex- The public lectures that took place at the CRM in2012– tremality and Global Invariants as well as the The- 2013 were especially brilliant. Four of these were re- matic Year “Mathematics of Planet Earth 2013”. Thus lated to the MPE 2013 Thematic Year. The lectures by both pure and interdisciplinary mathematics were fea- Ingrid Daubechies and Paul Embrechts were part of tured at the CRM this year. The Thematic Year on Mod- the MPE 2013 – CRM Public Lectures Series; the lec- uli Spaces, Extremality and Global Invariants was ded- ture by Professor Daubechies was actually sponsored icated to questions that lie at the heart of the cur- by the prestigious Simons Foundation. The lectures by rent research in geometry. It consisted of eight re- Nilima Nigam and Anthony Peirce were part of the search workshops (paired with mini-courses) and se- MPE 2013 – Cross-Canada Series of Public Lectures. ries of Aisenstadt lectures by Fedor Bogomolov, David The fifth public lecture was given by the French physi- Gabai, Helmut Hofer, and Gang Tian, respectively. I cist Alain Aspect and was part of the Grandes Con- would like to express my thanks to the members of the férences series. Thematic Year scientific committee: Vestislav Apos- tolov, Steven Boyer, Virginie Charette, Olivier Collin, An Unité Mixte Internationale (UMI) was established Octav Cornea, Jacques Hurtubise, François Lalonde, by the CNRS at the CRM in 2011 and has given Steven Lu, Frédéric Rochon, Peter Russell, and Jo- an impetus to the exchanges between the CRM and hannes Walcher. the French mathematical community: sixteen French mathematicians visited the CRM and three Montréal The Mathematics of Planet Earth program, launched researchers visited colleagues in France in 2012-2013 by Christiane Rousseau during her mandate as CRM thanks to the UMI. Also in 2012-2013, the relationship director, was enthusiastically adopted by our Cana- between the CRM and the French mathematical com- dian partners and many mathematics research insti- munity led to the organization of two colloquia within tutes across the globe. In particular the Mathematics of the Entretiens Jacques-Cartier (in Lyon): a colloquium Planet Earth 2013 (MPE 2013) program was a joint ini- on risk management and a colloquium on mathemati- tiative of Canadian institutions, with activities taking cal physics. place in many locations. The goal of this thematic pro- gram was to tackle pressing and emerging challenges The activities of the CRM are supported by the Gov- in population and ecosystem health, including the con- ernment of Canada through NSERC, the Government trol of major transmissible diseases, the optimization of Québec through FRQNT, the Government of the and monitoring of vaccination, the impact of climate United States through the National Science Foundation change on invasive species, the protection of biodiver- (NSF), the Mprime network, and its partner univer- sity, and the sustainable management of ecosystems. sities: the Université de Montréal, McGill University, The MPE 2013 year featured three summer schools for the Université du Québec à Montréal, Concordia Uni- graduate students and postdoctoral fellows as well as versity, the Université Laval, the Université de Sher- workshops that took place at the CRM, the Fields In- brooke, and the University of Ottawa. The Society for stitute (in Toronto), the PIMS (in Edmonton), St. John’s Mathematical Biology (SMB) provided support to stu- (under the auspices of AARMS), and BIRS. The sci- dents and young (particularly pre-tenure) investiga- entific committee of the Canadian program included tors participating in the MPE 2013 program. On behalf Jacques Bélair, Mark Lewis, Frithjof Lutscher, James of the CRM I extend my sincere thanks to all our part- Watmough, and Jianhong Wu. ners, who help the CRM develop its activities within a world-class research program in the mathematical sci- The CRM is also proud of the outstanding re- ences. searchers who were awarded its prizes this year: Bruce Reed from McGill University (CRM–Fields–PIMS Prize Luc Vinet, Director 2013), Spyros Alexakis from the University of Toronto Centre de recherches mathématiques (CRM) 2 Thematic Program Centre de recherches mathématiqes Thematic Programs of the Year 2012–2013 “Moduli Spaces, Extremality and Global Invariants” and “Mathematics of Planet Earth 2013” Moduli Spaces, Extremality and Global ometry that had, until then, stagnated since its infancy Invariants almost two centuries ago. Moduli spaces are present everywhere: the spaces of Geometry in the large sense, and especially the ge- metrics, be they Kähler or almost Kähler, the space ometry of the most natural and simple structures on of almost complex structures, the space of represen- manifolds, is going through a golden age. More than tations of the fundamental group of surfaces or 3- ever, we are close to a satisfactory understanding of the folds in suitable Lie groups and the so-called higher basic blocks that constitute the most intricate spaces, Teichmüller spaces, the Hamiltonian diffeomorphism
Recommended publications
  • Mechanical Aspire
    Newsletter Volume 6, Issue 11, November 2016 Mechanical Aspire Achievements in Sports, Projects, Industry, Research and Education All About Nobel Prize- Part 35 The Breakthrough Prize Inspired by Nobel Prize, there have been many other prizes similar to that, both in amount and in purpose. One such prize is the Breakthrough Prize. The Breakthrough Prize is backed by Facebook chief executive Mark Zuckerberg and Google co-founder Sergey Brin, among others. The Breakthrough Prize was founded by Brin and Anne Wojcicki, who runs genetic testing firm 23andMe, Chinese businessman Jack Ma, and Russian entrepreneur Yuri Milner and his wife Julia. The Breakthrough Prizes honor important, primarily recent, achievements in the categories of Fundamental Physics, Life Sciences and Mathematics . The prizes were founded in 2012 by Sergey Brin and Anne Wojcicki, Mark Zuckerberg and Priscilla Chan, Yuri and Julia Milner, and Jack Ma and Cathy Zhang. Committees of previous laureates choose the winners from candidates nominated in a process that’s online and open to the public. Laureates receive $3 million each in prize money. They attend a televised award ceremony designed to celebrate their achievements and inspire the next generation of scientists. As part of the ceremony schedule, they also engage in a program of lectures and discussions. Those that go on to make fresh discoveries remain eligible for future Breakthrough Prizes. The Trophy The Breakthrough Prize trophy was created by Olafur Eliasson. “The whole idea for me started out with, ‘Where do these great ideas come from? What type of intuition started the trajectory that eventually becomes what we celebrate today?’” Like much of Eliasson's work, the sculpture explores the common ground between art and science.
    [Show full text]
  • Symplectic Embeddings of Toric Domains
    Symplectic Embeddings of Toric Domains by Daniel Reid Irvine A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mathematics) in the University of Michigan 2020 Doctoral Committee: Professor Daniel Burns, Jr., Chair Professor Anthony Bloch Assistant Professor Jun Li Professor John Schotland Professor Alejandro Uribe Daniel Reid Irvine [email protected] ORCID ID: 0000-0003-2721-5901 ©Daniel Reid Irvine 2020 Dedication This work is gratefully dedicated to my family. ii Acknowledgments I would like to extend my deep gratitude to my advisor, Daniel Burns, for his continued support and encouragement during my graduate career. Beyond his mathematical exper- tise, he has been a steadfast friend. Second, I would like to thank Richard Hind for his advise- ment during both my undergraduate and graduate career. He encouraged me to undertake this ambitious project, and his enthusiasm steered me towards the field of symplectic ge- ometry. Third, I would like to thank Jun Li for his advice and many helpful conversations. Finally, I would like to thank all the instructors that guided me through my mathematical career. I would not be where I am today if not for them. iii Table of Contents Dedication ....................................... ii Acknowledgments ................................... iii List of Figures ..................................... vi Abstract ......................................... vii Chapter 1 Introduction ..................................... 1 1.0.1 Summary of Results........................6 1.0.2 Important Past Results.......................7 2 Toric Domains .................................... 11 2.1 ECH Capacities of Toric Domains..................... 13 2.1.1 ECH Capacities of Concave Toric Domains............ 14 2.1.2 Realizing the positive weight vector as a ball packing......
    [Show full text]
  • After Ramanujan Left Us– a Stock-Taking Exercise S
    Ref: after-ramanujanls.tex Ver. Ref.: : 20200426a After Ramanujan left us– a stock-taking exercise S. Parthasarathy [email protected] 1 Remembering a giant This article is a sequel to my article on Ramanujan [14]. April 2020 will mark the death centenary of the legendary Indian mathe- matician – Srinivasa Ramanujan (22 December 1887 – 26 April 1920). There will be celebrations of course, but one way to honour Ramanujan would be to do some introspection and stock-taking. This is a short survey of notable achievements and contributions to mathematics by Indian institutions and by Indian mathematicians (born in India) and in the last hundred years since Ramanujan left us. It would be highly unfair to compare the achievements of an individual, Ramanujan, during his short life span (32 years), with the achievements of an entire nation over a century. We should also consider the context in which Ramanujan lived, and the most unfavourable and discouraging situation in which he grew up. We will still attempt a stock-taking, to record how far we have moved after Ramanujan left us. Note : The table below should not be used to compare the relative impor- tance or significance of the contributions listed there. It is impossible to list out the entire galaxy of mathematicians for a whole century. The table below may seem incomplete and may contain some inad- vertant errors. If you notice any major lacunae or omissions, or if you have any suggestions, please let me know at [email protected]. 1 April 1920 – April 2020 Year Name/instit. Topic Recognition 1 1949 Dattatreya Kaprekar constant, Ramchandra Kaprekar number Kaprekar [1] [2] 2 1968 P.C.
    [Show full text]
  • Mathematics Calendar
    Mathematics Calendar Please submit conference information for the Mathematics Calendar through the Mathematics Calendar submission form at http:// www.ams.org/cgi-bin/mathcal-submit.pl. The most comprehensive and up-to-date Mathematics Calendar information is available on the AMS website at http://www.ams.org/mathcal/. June 2014 Information: http://www.tesol.org/attend-and-learn/ online-courses-seminars/esl-for-the-secondary- 1–7 Modern Time-Frequency Analysis, Strobl, Austria. (Apr. 2013, mathematics-teacher. p. 429) * 2–30 Algorithmic Randomness, Institute for Mathematical Sciences, 2–5 WSCG 2014 - 22nd International Conference on Computer National University of Singapore, Singapore. Graphics, Visualization and Computer Vision 2014, Primavera Description: Activities 1. Informal Collaboration: June 2–8, 2014. 2. Hotel and Congress Centrum, Plzen (close to Prague), Czech Repub- Ninth International Conference on Computability, Complexity and lic. (Jan. 2014, p. 90) Randomness (CCR 2014): June 9–13, 2014. The conference series 2–6 AIM Workshop: Descriptive inner model theory, American “Computability, Complexity and Randomness” is centered on devel- Institute of Mathematics, Palo Alto, California. (Mar. 2014, p. 312) opments in Algorithmic Randomness, and the conference CCR 2014 2–6 Computational Nonlinear Algebra, Institute for Computational will be part of the IMS programme. The CCR has previously been held and Experimental Research in Mathematics, (ICERM), Brown Univer- in Cordoba 2004, in Buenos Aires 2007, in Nanjing 2008, in Luminy sity, Providence, Rhode Island. (Nov. 2013, p. 1398) 2009, in Notre Dame 2010, in Cape Town 2011, in Cambridge 2012, and in Moscow 2013; it will be held in Heidelberg 2015. 3. Informal 2–6 Conference on Ulam’s type stability, Rytro, Poland.
    [Show full text]
  • 3-Manifold Groups
    3-Manifold Groups Matthias Aschenbrenner Stefan Friedl Henry Wilton University of California, Los Angeles, California, USA E-mail address: [email protected] Fakultat¨ fur¨ Mathematik, Universitat¨ Regensburg, Germany E-mail address: [email protected] Department of Pure Mathematics and Mathematical Statistics, Cam- bridge University, United Kingdom E-mail address: [email protected] Abstract. We summarize properties of 3-manifold groups, with a particular focus on the consequences of the recent results of Ian Agol, Jeremy Kahn, Vladimir Markovic and Dani Wise. Contents Introduction 1 Chapter 1. Decomposition Theorems 7 1.1. Topological and smooth 3-manifolds 7 1.2. The Prime Decomposition Theorem 8 1.3. The Loop Theorem and the Sphere Theorem 9 1.4. Preliminary observations about 3-manifold groups 10 1.5. Seifert fibered manifolds 11 1.6. The JSJ-Decomposition Theorem 14 1.7. The Geometrization Theorem 16 1.8. Geometric 3-manifolds 20 1.9. The Geometric Decomposition Theorem 21 1.10. The Geometrization Theorem for fibered 3-manifolds 24 1.11. 3-manifolds with (virtually) solvable fundamental group 26 Chapter 2. The Classification of 3-Manifolds by their Fundamental Groups 29 2.1. Closed 3-manifolds and fundamental groups 29 2.2. Peripheral structures and 3-manifolds with boundary 31 2.3. Submanifolds and subgroups 32 2.4. Properties of 3-manifolds and their fundamental groups 32 2.5. Centralizers 35 Chapter 3. 3-manifold groups after Geometrization 41 3.1. Definitions and conventions 42 3.2. Justifications 45 3.3. Additional results and implications 59 Chapter 4. The Work of Agol, Kahn{Markovic, and Wise 63 4.1.
    [Show full text]
  • Program of the Sessions San Diego, California, January 9–12, 2013
    Program of the Sessions San Diego, California, January 9–12, 2013 AMS Short Course on Random Matrices, Part Monday, January 7 I MAA Short Course on Conceptual Climate Models, Part I 9:00 AM –3:45PM Room 4, Upper Level, San Diego Convention Center 8:30 AM –5:30PM Room 5B, Upper Level, San Diego Convention Center Organizer: Van Vu,YaleUniversity Organizers: Esther Widiasih,University of Arizona 8:00AM Registration outside Room 5A, SDCC Mary Lou Zeeman,Bowdoin upper level. College 9:00AM Random Matrices: The Universality James Walsh, Oberlin (5) phenomenon for Wigner ensemble. College Preliminary report. 7:30AM Registration outside Room 5A, SDCC Terence Tao, University of California Los upper level. Angles 8:30AM Zero-dimensional energy balance models. 10:45AM Universality of random matrices and (1) Hans Kaper, Georgetown University (6) Dyson Brownian Motion. Preliminary 10:30AM Hands-on Session: Dynamics of energy report. (2) balance models, I. Laszlo Erdos, LMU, Munich Anna Barry*, Institute for Math and Its Applications, and Samantha 2:30PM Free probability and Random matrices. Oestreicher*, University of Minnesota (7) Preliminary report. Alice Guionnet, Massachusetts Institute 2:00PM One-dimensional energy balance models. of Technology (3) Hans Kaper, Georgetown University 4:00PM Hands-on Session: Dynamics of energy NSF-EHR Grant Proposal Writing Workshop (4) balance models, II. Anna Barry*, Institute for Math and Its Applications, and Samantha 3:00 PM –6:00PM Marina Ballroom Oestreicher*, University of Minnesota F, 3rd Floor, Marriott The time limit for each AMS contributed paper in the sessions meeting will be found in Volume 34, Issue 1 of Abstracts is ten minutes.
    [Show full text]
  • January 2013 Prizes and Awards
    January 2013 Prizes and Awards 4:25 P.M., Thursday, January 10, 2013 PROGRAM SUMMARY OF AWARDS OPENING REMARKS FOR AMS Eric Friedlander, President LEVI L. CONANT PRIZE: JOHN BAEZ, JOHN HUERTA American Mathematical Society E. H. MOORE RESEARCH ARTICLE PRIZE: MICHAEL LARSEN, RICHARD PINK DEBORAH AND FRANKLIN TEPPER HAIMO AWARDS FOR DISTINGUISHED COLLEGE OR UNIVERSITY DAVID P. ROBBINS PRIZE: ALEXANDER RAZBOROV TEACHING OF MATHEMATICS RUTH LYTTLE SATTER PRIZE IN MATHEMATICS: MARYAM MIRZAKHANI Mathematical Association of America LEROY P. STEELE PRIZE FOR LIFETIME ACHIEVEMENT: YAKOV SINAI EULER BOOK PRIZE LEROY P. STEELE PRIZE FOR MATHEMATICAL EXPOSITION: JOHN GUCKENHEIMER, PHILIP HOLMES Mathematical Association of America LEROY P. STEELE PRIZE FOR SEMINAL CONTRIBUTION TO RESEARCH: SAHARON SHELAH LEVI L. CONANT PRIZE OSWALD VEBLEN PRIZE IN GEOMETRY: IAN AGOL, DANIEL WISE American Mathematical Society DAVID P. ROBBINS PRIZE FOR AMS-SIAM American Mathematical Society NORBERT WIENER PRIZE IN APPLIED MATHEMATICS: ANDREW J. MAJDA OSWALD VEBLEN PRIZE IN GEOMETRY FOR AMS-MAA-SIAM American Mathematical Society FRANK AND BRENNIE MORGAN PRIZE FOR OUTSTANDING RESEARCH IN MATHEMATICS BY ALICE T. SCHAFER PRIZE FOR EXCELLENCE IN MATHEMATICS BY AN UNDERGRADUATE WOMAN AN UNDERGRADUATE STUDENT: FAN WEI Association for Women in Mathematics FOR AWM LOUISE HAY AWARD FOR CONTRIBUTIONS TO MATHEMATICS EDUCATION LOUISE HAY AWARD FOR CONTRIBUTIONS TO MATHEMATICS EDUCATION: AMY COHEN Association for Women in Mathematics M. GWENETH HUMPHREYS AWARD FOR MENTORSHIP OF UNDERGRADUATE
    [Show full text]
  • Mathematical Sciences 2016
    Infosys Prize Mathematical Sciences 2016 Number theory is the branch Ancient civilizations developed intricate of mathematics that deals with methods of counting. Sumerians, Mayans properties of whole numbers or and Greeks all show evidence of elaborate positive integers. mathematical calculations. Akshay Venkatesh Professor, Department of Mathematics, Stanford University, USA • B.Sc. in Mathematics from The University of Western Australia, Perth, Australia • Ph.D. in Mathematics from Princeton University, USA Numbers are Prof. Akshay Venkatesh is a very broad mathematician everything who has worked at the highest level in number theory, arithmetic geometry, topology, automorphic forms and Number theorists are particularly interested in ergodic theory. He is almost unique in his ability to fuse hyperbolic ‘tilings’. These ‘tiles’ carry a great deal of information that are significant in algebraic and analytic ideas to solve concrete and hard number theory. For example they are very problems in number theory. In addition, Venkatesh’s work on the interested in the characteristic frequencies of cohomology of arithmetic groups the tiles. These are the frequencies the tiles studies the shape of these tiles and would vibrate at, if they were used as drums. “I think there’s a lot of math in the world that’s not connects it with other areas of math. at university. Pure math is only one part of math but math is used in a lot of other subjects and I think that’s just as interesting. So learn as much as you can, about all the subjects around math and then see what strikes you as the most interesting.” Prof.
    [Show full text]
  • 2004 Research Fellows
    I Institute News 2004 Research Fellows On February 23, 2004, the Clay Mathematics Institute announced the appointment of four Research Fellows: Ciprian Manolescu and Maryam Mirzakhani of Harvard University, and András Vasy and Akshay Venkatesh of MIT. These outstanding mathematicians were selected for their research achievements and their potential to make signifi cant future contributions. Ci ian Man lescu 1 a nati e R mania is c m letin his h at Ha a ni Ciprian Manolescu pr o (b. 978), v of o , o p g P .D. rv rd U - versity under the direction of Peter B. Kronheimer. In his undergraduate thesis he gave an elegant new construction of Seiberg-Witten Floer homology, and in his Ph.D. thesis he gave a remarkable gluing formula for the Bauer-Furuta invariants of four-manifolds. His research interests span the areas of gauge theory, low-dimensional topology, symplectic geometry and algebraic topology. Manolescu will begin his four-year appointment as a Research Fellow at Princeton University beginning July 1, 2004. Maryam Mirzakhani Maryam Mirzakhani (b. 1977), a native of Iran, is completing her Ph.D. at Harvard under the direction of Curtis T. McMullen. In her thesis she showed how to compute the Weil- Petersson volume of the moduli space of bordered Riemann surfaces. Her research interests include Teichmuller theory, hyperbolic geometry, ergodic theory and symplectic geometry. As a high school student, Mirzakhani entered and won the International Mathematical Olympiad on two occasions (in 1994 and 1995). Mirzakhani will conduct her research at Princeton University at the start of her four-year appointment as a Research Fellow beginning July 1, 2004.
    [Show full text]
  • 1. the Ending Lamination Conjecture 1 2
    THE CLASSIFICATION OF KLEINIAN SURFACE GROUPS, II: THE ENDING LAMINATION CONJECTURE JEFFREY F. BROCK, RICHARD D. CANARY, AND YAIR N. MINSKY Abstract. Thurston's Ending Lamination Conjecture states that a hy- perbolic 3-manifold with finitely generated fundamental group is uniquely determined by its topological type and its end invariants. In this paper we prove this conjecture for Kleinian surface groups. The main ingredi- ent is the establishment of a uniformly bilipschitz model for a Kleinian surface group. The first half of the proof appeared in [47], and a sub- sequent paper [15] will establish the Ending Lamination Conjecture in general. Contents 1. The ending lamination conjecture 1 2. Background and statements 8 3. Knotting and partial order of subsurfaces 25 4. Cut systems and partial orders 49 5. Regions and addresses 66 6. Uniform embeddings of Lipschitz surfaces 76 7. Insulating regions 91 8. Proof of the bilipschitz model theorem 99 9. Proofs of the main theorems 118 10. Corollaries 119 References 123 1. The ending lamination conjecture In the late 1970's Thurston formulated a conjectural classification scheme for all hyperbolic 3-manifolds with finitely generated fundamental group. The picture proposed by Thurston generalized what had hitherto been un- derstood, through the work of Ahlfors [3], Bers [10], Kra [34], Marden [37], Maskit [38], Mostow [51], Prasad [55], Thurston [67] and others, about geo- metrically finite hyperbolic 3-manifolds. Thurston's scheme proposes end invariants which encode the asymptotic geometry of the ends of the manifold, and which generalize the Riemann Date: December 7, 2004. Partially supported by NSF grants DMS-0354288, DMS-0203698 and DMS-0203976.
    [Show full text]
  • Annual Report for the Fiscal Year Julyl, 1984 -June 30, 1985
    The Institute for Advanced Study Annual Report 1984/85 The Institute for Advanced Study Annual Report for the Fiscal Year Julyl, 1984 -June 30, 1985 HISTtffilCAl STUDIES- SOCIAL SCIENCE UBRARY THE INSTITUTE FOR ADVANCED STUDY PRINCETON. NEW JERSEY 08540 The Institute for Advanced Study Olden Lane Princeton, New Jersey 08540 U.S.A. Printed by Princeton University Press Originally designed by Bruce Campbell 9^^ It is fundamental to our purpose, and our Extract from the letter addressed by the express desire, that in the appointments to the Founders to the Institute's Trustees, staff and faculty, as well as in the admission dated June 6, 1930, Newark, New Jersey. of workers and students, no account shall he taken, directly or indirectly, of race, religion or sex. We feel strongly that the spirit characteristic of America at its noblest, above all, the pursuit of higher learning, cannot admit of any conditions as to personnel other than those designed to promote the objects for which this institution is established, and particularly with no regard wliatever to accidents of race, creed or sex. 9^'^Z^ Table of Contents Trustees and Officers 9 Administration 10 The Institute for Advanced Study: Background and Purpose 11 Report of the Chairman 13 Report of the Director 15 Reports of the Schools 21 School of Historical Studies 23 School of Mathematics 35 School of Natural Sciences 45 School of Social Science 59 Record of Events, 1984-85 67 Report of the Treasurer 91 Donors 102 Founders Caroline Bamberger Fuld Louis Bamberger Board of Trustees John F. Akers Ralph E.
    [Show full text]
  • 2018-06-108.Pdf
    NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY Feature S E European Tensor Product and Semi-Stability M M Mathematical Interviews E S Society Peter Sarnak Gigliola Staffilani June 2018 Obituary Robert A. Minlos Issue 108 ISSN 1027-488X Prague, venue of the EMS Council Meeting, 23–24 June 2018 New books published by the Individual members of the EMS, member S societies or societies with a reciprocity agree- E European ment (such as the American, Australian and M M Mathematical Canadian Mathematical Societies) are entitled to a discount of 20% on any book purchases, if E S Society ordered directly at the EMS Publishing House. Bogdan Nica (McGill University, Montreal, Canada) A Brief Introduction to Spectral Graph Theory (EMS Textbooks in Mathematics) ISBN 978-3-03719-188-0. 2018. 168 pages. Hardcover. 16.5 x 23.5 cm. 38.00 Euro Spectral graph theory starts by associating matrices to graphs – notably, the adjacency matrix and the Laplacian matrix. The general theme is then, firstly, to compute or estimate the eigenvalues of such matrices, and secondly, to relate the eigenvalues to structural properties of graphs. As it turns out, the spectral perspective is a powerful tool. Some of its loveliest applications concern facts that are, in principle, purely graph theoretic or combinatorial. This text is an introduction to spectral graph theory, but it could also be seen as an invitation to algebraic graph theory. The first half is devoted to graphs, finite fields, and how they come together. This part provides an appealing motivation and context of the second, spectral, half. The text is enriched by many exercises and their solutions.
    [Show full text]