1. the Ending Lamination Conjecture 1 2

Total Page:16

File Type:pdf, Size:1020Kb

1. the Ending Lamination Conjecture 1 2 THE CLASSIFICATION OF KLEINIAN SURFACE GROUPS, II: THE ENDING LAMINATION CONJECTURE JEFFREY F. BROCK, RICHARD D. CANARY, AND YAIR N. MINSKY Abstract. Thurston's Ending Lamination Conjecture states that a hy- perbolic 3-manifold with finitely generated fundamental group is uniquely determined by its topological type and its end invariants. In this paper we prove this conjecture for Kleinian surface groups. The main ingredi- ent is the establishment of a uniformly bilipschitz model for a Kleinian surface group. The first half of the proof appeared in [47], and a sub- sequent paper [15] will establish the Ending Lamination Conjecture in general. Contents 1. The ending lamination conjecture 1 2. Background and statements 8 3. Knotting and partial order of subsurfaces 25 4. Cut systems and partial orders 49 5. Regions and addresses 66 6. Uniform embeddings of Lipschitz surfaces 76 7. Insulating regions 91 8. Proof of the bilipschitz model theorem 99 9. Proofs of the main theorems 118 10. Corollaries 119 References 123 1. The ending lamination conjecture In the late 1970's Thurston formulated a conjectural classification scheme for all hyperbolic 3-manifolds with finitely generated fundamental group. The picture proposed by Thurston generalized what had hitherto been un- derstood, through the work of Ahlfors [3], Bers [10], Kra [34], Marden [37], Maskit [38], Mostow [51], Prasad [55], Thurston [67] and others, about geo- metrically finite hyperbolic 3-manifolds. Thurston's scheme proposes end invariants which encode the asymptotic geometry of the ends of the manifold, and which generalize the Riemann Date: December 7, 2004. Partially supported by NSF grants DMS-0354288, DMS-0203698 and DMS-0203976. 1 2 JEFFREY F. BROCK, RICHARD D. CANARY, AND YAIR N. MINSKY surfaces at infinity that arise in the geometrically finite case. Thurston made this conjecture in [67]: Ending Lamination Conjecture. A hyperbolic 3-manifold with finitely generated fundamental group is uniquely determined by its topological type and its end invariants. This paper is the second in a series of three which will establish the Ending Lamination Conjecture for all topologically tame hyperbolic 3-manifolds. (For expository material on this conjecture, and on the proofs in this paper and in [47], we direct the reader to [43],[48] and [49]). Together with the recent proofs of Marden's Tameness Conjecture by Agol [2] and Calegari-Gabai [17], this gives a complete classification of all hyperbolic 3-manifolds with finitely-generated fundamental group. In this paper we will discuss the surface group case. A Kleinian sur- face group is a discrete, faithful representation ρ : π1(S) PSL2(C) where S is a compact orientable surface, such that the restriction! of ρ to any boundary loop has parabolic image. These groups arise naturally as re- strictions of more general Kleinian groups to surface subgroups. Bonahon [11] and Thurston [66] showed that the associated hyperbolic 3-manifold 3 Nρ = H /ρ(π1(S)) is homeomorphic to int(S) R and that ρ has a well- × defined pair of end invariants (ν+; ν ). Typically, each end invariant is either a point in the Teichm¨ullerspace of−S or a geodesic lamination on S. In the general situation, each end invariant is a geodesic lamination on some (possi- bly empty) subsurface of S and a conformal structure on the complementary surface. We will prove: Ending Lamination Theorem for Surface Groups A Kleinian surface group ρ is uniquely determined, up to conjugacy in PSL2(C), by its end invariants. The first part of the proof of this theorem appeared in [47], and we will refer to that paper for some of the background and notation, although we will strive to make this paper readable fairly independently. See Section 1.3 for a discussion of the proof of the general Ending Lami- nation Conjecture, which will appear in [15]. Bilipschitz Model Theorem. The main technical result which leads to the Ending Lamination Theorem is the Bilipschitz Model Theorem, which gives a bilipschitz homeomorphism from a \model manifold" Mν to the hyperbolic manifold Nρ (See 2.7 for a precise statement). The model Mν was constructed in Minsky [47],x and its crucial property is that it depends only on the end invariants ν = (ν+; ν ), and not on ρ itself. (Actually Mν − is mapped to the \augmented convex core" of Nρ, but as this is the same as Nρ in the main case of interest, we will ignore the distinction for the rest of the introduction. See 2.7 for details.) x THE CLASSIFICATION OF KLEINIAN SURFACE GROUPS, II 3 The proof of the Bilipschitz Model Theorem will be completed in Section 8, and the Ending Lamination Conjecture will be obtained as a consequence of this and Sullivan's rigidity theorem in Section 9. In that section we will also prove the Length Bound Theorem, which givesn estimates on the lengths of short geodesics in Nρ (see 2.7 for the statement). x 1.1. Corollaries A positive answer to the Ending Lamination Conjecture allows one to settle a number of fundamental questions about the structure of Kleinian groups and their deformation spaces. In the sequel, we will see that it gives (together with convergence theorems of Thurston, Ohshika, Kleineidam- Souto and Lecuire) a complete proof of the Bers-Sullivan-Thurston density conjecture, which predicts that every finitely generated Kleinian group is an algebraic limit of geometrically finite groups. In the surface group case, the density conjecture follows immediately from our main theorem and results of Thurston [65] and Ohshika [52]. We recall that AH(S) is the space of conjugacy classes of Kleinian surface groups and that a surface group is quasifuchsian if both its ends are geometrically finite and it has no additional parabolic elements. Density Theorem. The set of quasifuchsian surface groups is dense in AH(S). Marden [37] and Sullivan [63] showed that the interior of AH(S) consists exactly of the quasifuchsian groups. Bromberg [16] and Brock-Bromberg [14] previously showed that freely indecomposable Kleinian groups without parabolic elements are algebraic limits of geometrically finite groups, using cone-manifold techniques and the bounded-geometry version of the Ending Lamination Conjecture in Minsky [46]. We also obtain a quasiconformal rigidity theorem that gives the best possible common generalization of Mostow [51] and Sullivan's [62] rigidity theorems. Rigidity Theorem. If two Kleinian surface groups are conjugate by an orientation-preserving homeomorphism of C, then they are quasiconformally conjugate. b We also establish McMullen's conjecture that the volume of the thick part of the convex core of a hyperbolic 3-manifold grows polynomially. thick If x lies in the thick part of the convex core CN , then let BR (x) be the set of points in the 1-thick part of CN which can be joined to x by a path of length at most R lying entirely in the 1-thick part. Volume Growth Theorem. If ρ : π1(S) PSL2(C) is a Kleinian surface 3 ! group and N = H /ρ(π1(S)), then for any x in the 1-thick part of CN , volume Bthick(x) cRd(S); R ≤ 4 JEFFREY F. BROCK, RICHARD D. CANARY, AND YAIR N. MINSKY where c depends only on the topological type of S, and χ(S) genus(S) > 0 d(S) = (− χ(S) 1 genus(S) = 0: − − A different proof of the Volume Growth Theorem is given by Bowditch in [13]. We are grateful to Bowditch for pointing out an error in our original definition of d(S). Proofs of these corollaries are given in Section 10. Each of them ad- mit generalizations to the setting of all finitely generated Kleinian groups and these generalizations will be discussed in [15]. In that paper, we will also use the solution of the Ending Lamination Conjecture and work of Anderson-Canary-McCullough [7] to obtain a complete enumeration of the components of the deformation space of a freely indecomposable, finitely generated Kleinian group. Another corollary, which we postpone to a separate article, is a theorem which describes the topology and geometry of geometric limits of sequences of Kleinian surface groups { in particular such a limit is always homeomor- phic to a subset of S R. This was also shown by Soma [58]. × 1.2. Outline of the proof The Lipschitz Model Theorem, from [47], provides a degree 1 homotopy equivalence from the model manifold Mν to the hyperbolic manifold Nρ (or in general to the augmented core of Nρ, but we ignore the distinction in this outline), which respects the thick-thin decompositions of Mν and Nρ and is Lipschitz on the thick part of Mν. (See 2.7.) Our main task in this paper is to promotex this map to a bilipschitz home- omorphism between Mν and Nρ , and this is the content of our main result, the Bilipschitz Model Theorem. The proof of the Bilipschitz Model Theorem converts the Lipschitz model map to a bilipschitz map incrementally on var- ious subsets of the model. The main ideas of the proof can be summarized as follows: Topological order of subsurfaces. In section 3 we discuss a \topological order relation" among embedded surfaces in a product 3-manifold S R. This is the intuitive notion that one surface may lie \below" another in× this product, but this relation does not in fact induce a partial order and hence a number of sticky technical issues arise. We introduce an object called a “scaffold”, which is a subset of S R consisting of a union of unknotted solid tori and surfaces in S R, each× isotopic to a level subsurface, satisfying certain conditions. The× main the- orem in this section is the Scaffold Extension Theorem (3.8), which states that, under appropriate conditions (in particular an \order-preservation" condition), embeddings of a scaffold into S R can be extended to global homeomorphisms of S R.
Recommended publications
  • Geometric Methods in Heegaard Theory
    GEOMETRIC METHODS IN HEEGAARD THEORY TOBIAS HOLCK COLDING, DAVID GABAI, AND DANIEL KETOVER Abstract. We survey some recent geometric methods for studying Heegaard splittings of 3-manifolds 0. Introduction A Heegaard splitting of a closed orientable 3-manifold M is a decomposition of M into two handlebodies H0 and H1 which intersect exactly along their boundaries. This way of thinking about 3-manifolds (though in a slightly different form) was discovered by Poul Heegaard in his forward looking 1898 Ph. D. thesis [Hee1]. He wanted to classify 3-manifolds via their diagrams. In his words1: Vi vende tilbage til Diagrammet. Den Opgave, der burde løses, var at reducere det til en Normalform; det er ikke lykkedes mig at finde en saadan, men jeg skal dog fremsætte nogle Bemærkninger angaaende Opgavens Løsning. \We will return to the diagram. The problem that ought to be solved was to reduce it to the normal form; I have not succeeded in finding such a way but I shall express some remarks about the problem's solution." For more details and a historical overview see [Go], and [Zie]. See also the French translation [Hee2], the English translation [Mun] and the partial English translation [Prz]. See also the encyclopedia article of Dehn and Heegaard [DH]. In his 1932 ICM address in Zurich [Ax], J. W. Alexander asked to determine in how many essentially different ways a canonical region can be traced in a manifold or in modern language how many different isotopy classes are there for splittings of a given genus. He viewed this as a step towards Heegaard's program.
    [Show full text]
  • Homotopy Type of the Complex of Free Factors of a Free Group
    Research Collection Other Journal Item Homotopy type of the complex of free factors of a free group Author(s): Gupta, Radhika; Brück, Benjamin Publication Date: 2020-12 Permanent Link: https://doi.org/10.3929/ethz-b-000463712 Originally published in: Proceedings of the London Mathematical Society 121(6), http://doi.org/10.1112/plms.12381 Rights / License: Creative Commons Attribution 4.0 International This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Proc. London Math. Soc. (3) 121 (2020) 1737–1765 doi:10.1112/plms.12381 Homotopy type of the complex of free factors of a free group Benjamin Br¨uck and Radhika Gupta Abstract We show that the complex of free factors of a free group of rank n 2 is homotopy equivalent to a wedge of spheres of dimension n − 2. We also prove that for n 2, the complement of (unreduced) Outer space in the free splitting complex is homotopy equivalent to the complex of free factor systems and moreover is (n − 2)-connected. In addition, we show that for every non-trivial free factor system of a free group, the corresponding relative free splitting complex is contractible. 1. Introduction Let F be the free group of finite rank n. A free factor of F is a subgroup A such that F = A ∗ B for some subgroup B of F. Let [.] denote the conjugacy class of a subgroup of F. Define Fn to be the partially ordered set (poset) of conjugacy classes of proper, non-trivial free factors of F where [A] [B] if for suitable representatives, one has A ⊆ B.
    [Show full text]
  • On the Topology of Ending Lamination Space
    1 ON THE TOPOLOGY OF ENDING LAMINATION SPACE DAVID GABAI Abstract. We show that if S is a finite type orientable surface of genus g and p punctures where 3g + p ≥ 5, then EL(S) is (n − 1)-connected and (n − 1)- locally connected, where dim(PML(S)) = 2n + 1 = 6g + 2p − 7. Furthermore, if g = 0, then EL(S) is homeomorphic to the p−4 dimensional Nobeling space. 0. Introduction This paper is about the topology of the space EL(S) of ending laminations on a finite type hyperbolic surface, i.e. a complete hyperbolic surface S of genus-g with p punctures. An ending lamination is a geodesic lamination L in S that is minimal and filling, i.e. every leaf of L is dense in L and any simple closed geodesic in S nontrivally intersects L transversely. Since Thurston's seminal work on surface automorphisms in the mid 1970's, laminations in surfaces have played central roles in low dimensional topology, hy- perbolic geometry, geometric group theory and the theory of mapping class groups. From many points of view, the ending laminations are the most interesting lam- inations. For example, the stable and unstable laminations of a pseudo Anosov mapping class are ending laminations [Th1] and associated to a degenerate end of a complete hyperbolic 3-manifold with finitely generated fundamental group is an ending lamination [Th4], [Bon]. Also, every ending lamination arises in this manner [BCM]. The Hausdorff metric on closed sets induces a metric topology on EL(S). Here, two elements L1, L2 in EL(S) are close if each point in L1 is close to a point of L2 and vice versa.
    [Show full text]
  • On Hyperbolicity of Free Splitting and Free Factor Complexes
    ON HYPERBOLICITY OF FREE SPLITTING AND FREE FACTOR COMPLEXES ILYA KAPOVICH AND KASRA RAFI Abstract. We show how to derive hyperbolicity of the free factor complex of FN from the Handel-Mosher proof of hyperbolicity of the free splitting complex of FN , thus obtaining an alternative proof of a theorem of Bestvina-Feighn. We also show that the natural map from the free splitting complex to free factor complex sends geodesics to quasi-geodesics. 1. Introduction The notion of a curve complex, introduced by Harvey [9] in late 1970s, plays a key role in the study of hyperbolic surfaces, mapping class group and the Teichm¨ullerspace. If S is a compact connected oriented surface, the curve complex C(S) of S is a simplicial complex whose vertices are isotopy classes of essential non-peripheral simple closed curves. A collection [α0];:::; [αn] of (n + 1) distinct vertices of C(S) spans an n{simplex in C(S) if there exist representatives α0; : : : ; αn of these isotopy classes such that for all i 6= j the curves αi and αj are disjoint. (The definition of C(S) is a little different for several surfaces of small genus). The complex C(S) is finite-dimensional but not locally finite, and it comes equipped with a natural action of the mapping class group Mod(S) by simplicial automorphisms. It turns out that the geometry of C(S) is closely related to the geometry of the Teichm¨ullerspace T (S) and also of the mapping class group itself. The curve complex is a basic tool in modern Teichmuller theory, and has also found numerous applications in the study of 3-manifolds and of Kleinian groups.
    [Show full text]
  • 3-Manifold Groups
    3-Manifold Groups Matthias Aschenbrenner Stefan Friedl Henry Wilton University of California, Los Angeles, California, USA E-mail address: [email protected] Fakultat¨ fur¨ Mathematik, Universitat¨ Regensburg, Germany E-mail address: [email protected] Department of Pure Mathematics and Mathematical Statistics, Cam- bridge University, United Kingdom E-mail address: [email protected] Abstract. We summarize properties of 3-manifold groups, with a particular focus on the consequences of the recent results of Ian Agol, Jeremy Kahn, Vladimir Markovic and Dani Wise. Contents Introduction 1 Chapter 1. Decomposition Theorems 7 1.1. Topological and smooth 3-manifolds 7 1.2. The Prime Decomposition Theorem 8 1.3. The Loop Theorem and the Sphere Theorem 9 1.4. Preliminary observations about 3-manifold groups 10 1.5. Seifert fibered manifolds 11 1.6. The JSJ-Decomposition Theorem 14 1.7. The Geometrization Theorem 16 1.8. Geometric 3-manifolds 20 1.9. The Geometric Decomposition Theorem 21 1.10. The Geometrization Theorem for fibered 3-manifolds 24 1.11. 3-manifolds with (virtually) solvable fundamental group 26 Chapter 2. The Classification of 3-Manifolds by their Fundamental Groups 29 2.1. Closed 3-manifolds and fundamental groups 29 2.2. Peripheral structures and 3-manifolds with boundary 31 2.3. Submanifolds and subgroups 32 2.4. Properties of 3-manifolds and their fundamental groups 32 2.5. Centralizers 35 Chapter 3. 3-manifold groups after Geometrization 41 3.1. Definitions and conventions 42 3.2. Justifications 45 3.3. Additional results and implications 59 Chapter 4. The Work of Agol, Kahn{Markovic, and Wise 63 4.1.
    [Show full text]
  • January 2013 Prizes and Awards
    January 2013 Prizes and Awards 4:25 P.M., Thursday, January 10, 2013 PROGRAM SUMMARY OF AWARDS OPENING REMARKS FOR AMS Eric Friedlander, President LEVI L. CONANT PRIZE: JOHN BAEZ, JOHN HUERTA American Mathematical Society E. H. MOORE RESEARCH ARTICLE PRIZE: MICHAEL LARSEN, RICHARD PINK DEBORAH AND FRANKLIN TEPPER HAIMO AWARDS FOR DISTINGUISHED COLLEGE OR UNIVERSITY DAVID P. ROBBINS PRIZE: ALEXANDER RAZBOROV TEACHING OF MATHEMATICS RUTH LYTTLE SATTER PRIZE IN MATHEMATICS: MARYAM MIRZAKHANI Mathematical Association of America LEROY P. STEELE PRIZE FOR LIFETIME ACHIEVEMENT: YAKOV SINAI EULER BOOK PRIZE LEROY P. STEELE PRIZE FOR MATHEMATICAL EXPOSITION: JOHN GUCKENHEIMER, PHILIP HOLMES Mathematical Association of America LEROY P. STEELE PRIZE FOR SEMINAL CONTRIBUTION TO RESEARCH: SAHARON SHELAH LEVI L. CONANT PRIZE OSWALD VEBLEN PRIZE IN GEOMETRY: IAN AGOL, DANIEL WISE American Mathematical Society DAVID P. ROBBINS PRIZE FOR AMS-SIAM American Mathematical Society NORBERT WIENER PRIZE IN APPLIED MATHEMATICS: ANDREW J. MAJDA OSWALD VEBLEN PRIZE IN GEOMETRY FOR AMS-MAA-SIAM American Mathematical Society FRANK AND BRENNIE MORGAN PRIZE FOR OUTSTANDING RESEARCH IN MATHEMATICS BY ALICE T. SCHAFER PRIZE FOR EXCELLENCE IN MATHEMATICS BY AN UNDERGRADUATE WOMAN AN UNDERGRADUATE STUDENT: FAN WEI Association for Women in Mathematics FOR AWM LOUISE HAY AWARD FOR CONTRIBUTIONS TO MATHEMATICS EDUCATION LOUISE HAY AWARD FOR CONTRIBUTIONS TO MATHEMATICS EDUCATION: AMY COHEN Association for Women in Mathematics M. GWENETH HUMPHREYS AWARD FOR MENTORSHIP OF UNDERGRADUATE
    [Show full text]
  • Actions of Mapping Class Groups Athanase Papadopoulos
    Actions of mapping class groups Athanase Papadopoulos To cite this version: Athanase Papadopoulos. Actions of mapping class groups. L. Ji, A. Papadopoulos and S.-T. Yau. Handbook of Group Actions, Vol. I, 31, Higher Education Press; International Press, p. 189-248., 2014, Advanced Lectures in Mathematics, 978-7-04-041363-2. hal-01027411 HAL Id: hal-01027411 https://hal.archives-ouvertes.fr/hal-01027411 Submitted on 21 Jul 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ACTIONS OF MAPPING CLASS GROUPS ATHANASE PAPADOPOULOS Abstract. This paper has three parts. The first part is a general introduction to rigidity and to rigid actions of mapping class group actions on various spaces. In the second part, we describe in detail four rigidity results that concern actions of mapping class groups on spaces of foliations and of laminations, namely, Thurston’s sphere of projective foliations equipped with its projective piecewise-linear structure, the space of unmeasured foliations equipped with the quotient topology, the reduced Bers boundary, and the space of geodesic laminations equipped with the Thurston topology. In the third part, we present some perspectives and open problems on other actions of mapping class groups.
    [Show full text]
  • Marden's Tameness Conjecture
    MARDEN'S TAMENESS CONJECTURE: HISTORY AND APPLICATIONS RICHARD D. CANARY Abstract. Marden's Tameness Conjecture predicts that every hyperbolic 3-manifold with finitely generated fundamental group is homeomorphic to the interior of a compact 3-manifold. It was recently established by Agol and Calegari-Gabai. We will survey the history of work on this conjecture and discuss its many appli- cations. 1. Introduction In a seminal paper, published in the Annals of Mathematics in 1974, Al Marden [65] conjectured that every hyperbolic 3-manifold with finitely generated fundamental group is homeomorphic to the interior of a compact 3-manifold. This conjecture evolved into one of the central conjectures in the theory of hyperbolic 3-manifolds. For example, Mar- den's Tameness Conjecture implies Ahlfors' Measure Conjecture (which we will discuss later). It is a crucial piece in the recently completed classification of hyperbolic 3-manifolds with finitely generated funda- mental group. It also has important applications to geometry and dy- namics of hyperbolic 3-manifolds and gives important group-theoretic information about fundamental groups of hyperbolic 3-manifolds. There is a long history of partial results in the direction of Marden's Tameness Conjecture and it was recently completely established by Agol [1] and Calegari-Gabai [27]. In this brief expository paper, we will survey the history of these results and discuss some of the most important applications. Outline of paper: In section 2, we recall basic definitions from the theory of hyperbolic 3-manifolds. In section 3, we construct a 3- manifold with finitely generated fundamental group which is not home- omorphic to the interior of a compact 3-manifold.
    [Show full text]
  • Marden's Tameness Conjecture: History and Applications
    MARDEN’S TAMENESS CONJECTURE: HISTORY AND APPLICATIONS RICHARD D. CANARY Abstract. Marden’s Tameness Conjecture predicts that every hyperbolic 3-manifold with finitely generated fundamental group is homeomorphic to the interior of a compact 3-manifold. It was recently established by Agol and Calegari-Gabai. We will survey the history of work on this conjecture and discuss its many appli- cations. 1. Introduction In a seminal paper, published in the Annals of Mathematics in 1974, Al Marden [65] conjectured that every hyperbolic 3-manifold with finitely generated fundamental group is homeomorphic to the interior of a compact 3-manifold. This conjecture evolved into one of the central conjectures in the theory of hyperbolic 3-manifolds. For example, Mar- den’s Tameness Conjecture implies Ahlfors’ Measure Conjecture (which we will discuss later). It is a crucial piece in the recently completed classification of hyperbolic 3-manifolds with finitely generated funda- mental group. It also has important applications to geometry and dy- namics of hyperbolic 3-manifolds and gives important group-theoretic information about fundamental groups of hyperbolic 3-manifolds. There is a long history of partial results in the direction of Marden’s Tameness Conjecture and it was recently completely established by arXiv:1008.0118v1 [math.GT] 31 Jul 2010 Agol [1] and Calegari-Gabai [27]. In this brief expository paper, we will survey the history of these results and discuss some of the most important applications. Outline of paper: In section 2, we recall basic definitions from the theory of hyperbolic 3-manifolds. In section 3, we construct a 3- manifold with finitely generated fundamental group which is not home- omorphic to the interior of a compact 3-manifold.
    [Show full text]
  • The Universal Cannon–Thurston Map and the Boundary of the Curve Complex
    Comment. Math. Helv. 86 (2011), 769–816 Commentarii Mathematici Helvetici DOI 10.4171/CMH/240 The universal Cannon–Thurston map and the boundary of the curve complex Christopher J. Leininger, Mahan Mj and Saul Schleimer Abstract. In genus two and higher, the fundamental group of a closed surface acts naturally on the curve complex of the surface with one puncture. Combining ideas from previous work of Kent–Leininger–Schleimer and Mitra, we construct a universal Cannon–Thurston map from a subset of the circle at infinity for the closed surface group onto the boundary of the curve complex of the once-punctured surface. Using the techniques we have developed, we also show that the boundary of this curve complex is locally path-connected. Mathematics Subject Classification (2010). 20F67 Primary; Secondary 22E40, 57M50. Keywords. Mapping class group, curve complex, ending lamination, Cannon–Thurston map. Contents 1 Introduction .......................................770 1.1 Statement of results ................................770 1.2 Notation and conventions .............................772 2 Point position ......................................778 2.1 A bundle over H ..................................779 2.2 An explicit construction of ˆ ...........................780 2.3 A further description of C.S; z/ ..........................783 2.4 Extending to measured laminations ........................784 2.5 ˆ and ‰ ......................................791 3 Universal Cannon–Thurston maps ...........................793 3.1 Quasiconvex sets .................................793
    [Show full text]
  • Combinatorics of Tight Geodesics and Stable Lengths
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 367, Number 10, October 2015, Pages 7323–7342 http://dx.doi.org/10.1090/tran/6301 Article electronically published on April 3, 2015 COMBINATORICS OF TIGHT GEODESICS AND STABLE LENGTHS RICHARDC.H.WEBB Abstract. We give an algorithm to compute the stable lengths of pseudo- Anosovs on the curve graph, answering a question of Bowditch. We also give a procedure to compute all invariant tight geodesic axes of pseudo-Anosovs. Along the way we show that there are constants 1 <a1 <a2 such that the minimal upper bound on ‘slices’ of tight geodesics is bounded below and ξ(S) ξ(S) above by a1 and a2 ,whereξ(S) is the complexity of the surface. As a consequence, we give the first computable bounds on the asymptotic dimension of curve graphs and mapping class groups. Our techniques involve a generalization of Masur–Minsky’s tight geodesics and a new class of paths on which their tightening procedure works. 1. Introduction The curve complex was introduced by Harvey [23]. Its coarse geometric proper- ties were first studied extensively by Masur–Minsky [27,28] and it is a widely useful tool in the study of hyperbolic 3–manifolds, mapping class groups and Teichm¨uller theory. Essential to hierarchies in the curve complex [27] and the Ending Lamination Theorem [10,29] (see also [6]) is the notion of a tight geodesic. This has remedied the non-local compactness of the curve complex, as Masur–Minsky proved that between any pair of curves there is at least one but only finitely many tight geodesics.
    [Show full text]
  • Conical Limit Points and the Cannon-Thurston Map
    CONFORMAL GEOMETRY AND DYNAMICS An Electronic Journal of the American Mathematical Society Volume 20, Pages 58–80 (March 18, 2016) http://dx.doi.org/10.1090/ecgd/294 CONICAL LIMIT POINTS AND THE CANNON-THURSTON MAP WOOJIN JEON, ILYA KAPOVICH, CHRISTOPHER LEININGER, AND KEN’ICHI OHSHIKA Abstract. Let G be a non-elementary word-hyperbolic group acting as a convergence group on a compact metrizable space Z so that there exists a continuous G-equivariant map i : ∂G → Z,whichwecallaCannon-Thurston map. We obtain two characterizations (a dynamical one and a geometric one) of conical limit points in Z in terms of their pre-images under the Cannon- Thurston map i. As an application we prove, under the extra assumption that the action of G on Z has no accidental parabolics, that if the map i is not injective, then there exists a non-conical limit point z ∈ Z with |i−1(z)| =1. This result applies to most natural contexts where the Cannon-Thurston map is known to exist, including subgroups of word-hyperbolic groups and Kleinian representations of surface groups. As another application, we prove that if G is a non-elementary torsion-free word-hyperbolic group, then there exists x ∈ ∂G such that x is not a “controlled concentration point” for the action of G on ∂G. 1. Introduction Let G be a Kleinian group, that is, a discrete subgroup of the isometry group of hyperbolic space G ≤ Isom+(Hn). In [6], Beardon and Maskit defined the notion of a conical limit point (also called a point of approximation or radial limit point), and used this to provide an alternative characterization of geometric finiteness.
    [Show full text]