Pdf South-Kivu, Democratic Republic of Congo [Abstract]

Total Page:16

File Type:pdf, Size:1020Kb

Pdf South-Kivu, Democratic Republic of Congo [Abstract] A Peer-Reviewed Journal Tracking and Analyzing Disease Trends pages 369–542 EDITOR-IN-CHIEF D. Peter Drotman EDITORIAL STAFF EDITORIAL BOARD Founding Editor Dennis Alexander, Addlestone Surrey, United Kingdom Joseph E. McDade, Rome, Georgia, USA Ban Allos, Nashville, Tennessee, USA Managing Senior Editor Michael Apicella, Iowa City, Iowa, USA Paul Arguin, Atlanta, Georgia, USA Polyxeni Potter, Atlanta, Georgia, USA Barry J. Beaty, Ft. Collins, Colorado, USA Associate Editors Martin J. Blaser, New York, New York, USA Charles Ben Beard, Ft. Collins, Colorado, USA David Brandling-Bennet, Washington, D.C., USA David Bell, Atlanta, Georgia, USA Donald S. Burke, Baltimore, Maryland, USA Jay C. Butler, Anchorage, Alaska, USA Arturo Casadevall, New York, New York, USA Charles H. Calisher, Ft. Collins, Colorado, USA Kenneth C. Castro, Atlanta, Georgia, USA Stephanie James, Bethesda, Maryland, USA Thomas Cleary, Houston, Texas, USA Anne DeGroot, Providence, Rhode Island, USA Brian W.J. Mahy, Atlanta, Georgia, USA Vincent Deubel, Shanghai, China Martin I. Meltzer, Atlanta, Georgia, USA Ed Eitzen, Washington, D.C., USA David Morens, Bethesda, Maryland, USA Duane J. Gubler, Honolulu, Hawaii, USA J. Glenn Morris, Baltimore, Maryland, USA Richard L. Guerrant, Charlottesville, Virginia, USA Nina Marano, Atlanta, Georgia, USA Scott Halstead, Arlington, Virginia, USA Marguerite Pappaioanou, St. Paul, Minnesota, USA David L. Heymann, Geneva, Switzerland Tanja Popovic, Atlanta, Georgia, USA Sakae Inouye, Tokyo, Japan Charles King, Cleveland, Ohio, USA Patricia M. Quinlisk, Des Moines, Iowa, USA Keith Klugman, Atlanta, Georgia, USA Gabriel Rabinovich, Buenos Aires, Argentina Takeshi Kurata, Tokyo, Japan Jocelyn A. Rankin, Atlanta, Georgia, USA S.K. Lam, Kuala Lumpur, Malaysia Didier Raoult, Marseilles, France Bruce R. Levin, Atlanta, Georgia, USA Pierre Rollin, Atlanta, Georgia, USA Myron Levine, Baltimore, Maryland, USA David Walker, Galveston, Texas, USA Stuart Levy, Boston, Massachusetts, USA J. Todd Weber, Atlanta, Georgia, USA John S. MacKenzie, Perth, Australia Tom Marrie, Edmonton, Alberta, Canada Henrik C. Wegener, Copenhagen, Denmark John E. McGowan, Jr., Atlanta, Georgia, USA Copy Editors Philip P. Mortimer, London, United Kingdom Angie Frey, Thomas Gryczan, Ronnie Henry, Fred A. Murphy, Galveston, Texas, USA Anne Mather, Carol Snarey Barbara E. Murray, Houston, Texas, USA Production P. Keith Murray, Ames, Iowa, USA Reginald Tucker, Ann Jordan, Maureen Marshall Stephen Ostroff, Honolulu, Hawaii, USA Editorial Assistant Rosanna W. Peeling, Geneva, Switzerland David H. Persing, Seattle, Washington, USA Susanne Justice Richard Platt, Boston, Massachusetts, USA www.cdc.gov/eid Mario Raviglione, Geneva, Switzerland Leslie Real, Atlanta, Georgia, USA Emerging Infectious Diseases David Relman, Palo Alto, California, USA Emerging Infectious Diseases is published monthly by the Nancy Rosenstein, Atlanta, Georgia, USA National Center for Infectious Diseases, Centers for Disease Connie Schmaljohn, Frederick, Maryland, USA Control and Prevention, 1600 Clifton Road, Mailstop D61, Tom Schwan, Hamilton, Montana, USA Atlanta, GA 30333, USA. Telephone 404-639-1960, Ira Schwartz, Valhalla, New York, USA fax 404-639-1954, email [email protected]. Tom Shinnick, Atlanta, Georgia, USA Bonnie Smoak, Bethesda, Maryland, USA The opinions expressed by authors contributing to this journal do not necessarily reflect the opinions of the Centers for Disease Rosemary Soave, New York, New York, USA Control and Prevention or the institutions with which the authors P. Frederick Sparling, Chapel Hill, North Carolina, USA are affiliated. Jan Svoboda, Prague, Czech Republic Bala Swaminathan, Atlanta, Georgia, USA All material published in Emerging Infectious Diseases is in Robert Swanepoel, Johannesburg, South Africa the public domain and may be used and reprinted without special Phillip Tarr, St. Louis, Missouri, USA permission; proper citation, however, is required. Timothy Tucker, Cape Town, South Africa Use of trade names is for identification only and does not Elaine Tuomanen, Memphis, Tennessee, USA imply endorsement by the Public Health Service or by the U.S. John Ward, Atlanta, Georgia, USA Department of Health and Human Services. David Warnock, Atlanta, Georgia, USA ∞ Emerging Infectious Diseases is printed on acid-free paper that meets Mary E. Wilson, Cambridge, Massachusetts, USA the requirements of ANSI/NISO 239.48-1992 (Permanence of Paper) Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 12, No. 3, March 2006 March 2006 On the Cover Aspergillus ustus Infections Rembrandt van Rijn (1606–1669). among Transplant Recipients . .403 Scholar in His Study (1634). A.A. Panackal et al. Oil on canvas (141 cm × 135 cm). This is the first report of clustered A. ustus causing National Gallery in Prague, Czech Republic. systemic disease in transplant patients. Clostridium difficile Infections, About the Cover p. 537 US Hospitals, 1996–2003 . .409 L.C. McDonald et al. Clinicians should be aware of the increasing risk for C. difficile–associated disease and make efforts to control its transmission. Medication Sales and p. 370 Syndromic Surveillance . .416 E. Vergu et al. Real-time over-the-counter drug sales provide an Perspectives additional tool for disease surveillance. Possibilities for Relapsing Fever Reemergence . .369 Personal Hygiene and S.J. Cutler MRSA Infection . .422 Increasing globalization may pave the way for G. Turabelidze et al. reemergence of relapsing fever. Improving personal hygiene practices may prevent and control MRSA outbreaks. Cost-effectiveness of West Nile Virus Vaccination . .375 Rapid Detection of A. Zohrabian et al. Rickettsia prowazekii . .428 Universal vaccination is unlikely to result in societal S. Svraka et al. monetary savings. This highly standardized and adaptable assay could improve epidemic typhus surveillance. Synopses Serosurvey on Household Web-based Surveillance Contacts of Marburg Patients . .433 and Salmonella Distribution . .381 M. Borchert et al. E. Galanis et al. Asymptomatic secondary infections are rare. Surveillance improves control of Salmonella infections. Canine Visceral Leishmaniasis, 2000–2003 . .440 Bartonella in Pets Z.H. Duprey et al. and Human Health . .389 Foxhounds infected with Leishmania spp. were B.B. Chomel et al. found in 18 states and 2 Canadian provinces. Pets represent a large reservoir for human infection. Chemoprophylaxis and Malaria Death Rates . .447 Research G. Krause et al. West Nile Virus Infections, Malaria chemoprophylaxis increases the survival of United States, 2003 . .395 nonimmune travelers. M.P. Busch et al. p. 463 Routine donor nucleic acid amplification testing is a valuable surveillance screening tool. Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 12, No. 3, March 2006 Self-medication with Antimicrobial Drugs in Europe . .452 L. Grigoryan et al. March 2006 Antimicrobial drug self-medication occurs most often in eastern and southern Europe and least often in northern and western Europe. 511 Protease-resistant Prion Protein in Mice Pneumonic Plague Cluster, L. Cervenakova et al. Uganda, 2004 . .460 E.M. Begier et al. 514 West Nile Virus Paralysis Outcome In a case cluster, pneumonic plague transmission J.J. Sejvar et al. was compatible with respiratory droplet rather than aerosol transmission. Letters Mosquitoes and West Nile Virus Transmission . .468 517 Human Pythiosis G. Molaei et al. 518 Rift Valley Fever Potential, Arabian Culex salinarius is a bridge vector to humans, while Peninsula Cx. pipiens and Cx. restuans are more efficient enzootic vectors. 520 Screening and Toxigenic Corynebacteria Spread Genotypes in Polyclonal Infections 521 Rickettsia slovaca Infection, by Single Species . .475 France J.M. Colborn et al. The combination of real-time PCR and capillary p. 487 523 Cutaneous Anthrax, Belgian electrophoresis permits the rapid identification and Traveler quantification of pathogen genotypes. 525 Japanese Encephalitis, Singapore Dispatches 526 HIV and Lacaziosis, Brazil 527 Hand Sanitizer Alert 483 “Candidatus Rickettsia kellyi,” 529 Spleen Abscess as Malaria India Complication J.M. Rolain et al. 531 Rickettsioses in South Korea, 486 Lyssavirus Surveillance in Bats, Materials and Methods Bangladesh I.V. Kuzmin et al. 531 Rickettsioses in South Korea, 489 Resistant Salmonella Paratyphi A Data Analysis Isolate, India 532 “Mycobacterium tilburgii” S. Nair et al. p. 524 Infections 492 Highly Pathogenic Canine Coronavirus C. Buonavoglia et al. Book Reviews 495 Acute Hemorrhagic Conjunctivitis, 535 Infection and Autoimmunity Rio de Janeiro F.N. Tavares et al. 535 World Class Parasites: Vol. X, Schistosomiasis 498 Pneumonia and New MRSA Clone F. Garnier et al. 501 Canine Leptospirosis News & Notes G.E. Moore et al. 504 Lagos Bat Virus, South Africa About the Cover W. Markotter et al. 537 Different Strokes for Different Folks in Search of Truth 507 Salmonella Paratyphi B in Aquariums R.S. Levings et al. Notice to Readers and Contributing Authors Summaries of emerging infectious disease conferences are published online only. Summaries submitted for online publication may include illustrations and relevant links. For more information on conference summary requirements, please refer to author guidelines at http://www.cdc.gov/ncidod/eid/instruct.htm. Submit conference summaries at http://www.eid.manuscriptcentral.com Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 12, No. 3, March 2006 Possibilities for Relapsing Fever Reemergence Sally J. Cutler* Relapsing fever Borrelia
Recommended publications
  • View Tickborne Diseases Sample Report
    1360 Bayport Ave, Ste B. San Carlos, CA 94070 1(866) 364-0963 | [email protected] | www. vibrant-wellness.com PATIENT PROVIDER NAME: DEMO REPORT GENDER: Male PRACTICE NAME: Vibrant IT4 Practice DATE OF BIRTH: 04/14/1998 AGE: 22 PROVIDER NAME: Demo Client, DDD (999994) ADDRESS: TEST STREET, TEST CITY, KY- 42437. ACCESSION ID: 2009220006 PHLEBOTOMIST: 607 SPECIMEN COLLECTION TIME: 09-21-2020 11:14 SPECIMEN RECEIVED TIME: 09-22-2020 05:14 FINAL REPORT TIME: 09-25-2020 15:56 FASTING: FASTING Your Vibrant Wellness TickBorne 2.0 panel results are enclosed. These results are intended to aid in the diagnosis of tickborne diseases by your healthcare provider. The Vibrant Tickborne Diseases panel tests for IgG and IgM antibodies for Borreliosis/Lyme disease as well as co-infection(s) and opportunistic infections with other tick-borne illnesses along with detection of DNA of the species causing these infections. The Vibrant Immunochip test is a semiquantitative assay that detects IgG and IgM antibodies in human serum. The PCR Test is a real-time PCR Assay designed for qualitative detection of infectious group- specific DNA in clinical samples. Interpretation of Report: The test results of antibody levels to the individual antigens are calculated by comparing the average intensity of the individual antibody to that of a reference population and cut-off chosen for each protein. Reference ranges have been established using a well characterized set of more than 300 serum samples and antibodies to specific bacteria tested. The results are displayed as In Control, Moderate, or High Risk.for each antigen tested.
    [Show full text]
  • IS IT LYME DISEASE, Or TICK-BORNE RELAPSING FEVER?
    IS IT LYME DISEASE, or TICK-BORNE RELAPSING FEVER? Webinar Presented by Joseph J. Burrascano Jr. M.D. Joined by Jyotsna Shah PhD for the Q&A January 2020 Presenters Joseph J. Burrascano Jr. M.D. • Well-known pioneer in the field of tick-borne diseases, active since 1985 • Founding member of ILADS and ILADEF • Active in physician education on all aspects of tick-borne diseases Jyotsna Shah, PhD • President & Laboratory Director of IGeneX Clinical Laboratory • Over 40 Years of Research Experience in Immunology, Molecular Biology & Microbiology • Author of Multiple Publications & Holds More Than 20 Patents • Member of ILRAD as a Post-Doctoral Scientist • Started the First DNA Sequencing Laboratory in E. Africa 2 Poll Question Before we begin, we’d like to ask a poll question. Which one of these Borrelia causes Tick-Borne Relapsing Fever (TBRF)? a) B. mayonii b) B. turicatae c) B. burgdorferi d) B. andersonii e) B. garinii 3 Poll Question Before we begin, we’d like to ask a poll question. Which one of these Borrelia causes Tick-Borne Relapsing Fever (TBRF)? a) B. mayonii - Lyme b) B. turicatae - TBRF c) B. burgdorferi - Lyme d) B. andersonii - Lyme e) B. garinii – Lyme strain in Europe 4 What is TBRF? • Has been defined by clinical presentation • Has been defined by tick vector • Has been defined by genetics • Has been defined by serotype BUT • Each of these has exceptions and limitations! 5 Clinical Presentation of Classic TBRF • “Recurring febrile episodes that last ~3 days and are separated by afebrile periods of ~7 days duration.” • “Each febrile episode involves a “crisis.” During the “chill phase” of the crisis, patients develop very high fever (up to 106.7°F) and may become delirious, agitated, tachycardic and tachypneic.
    [Show full text]
  • Electronic Laboratory Reporting Use Case January 2011
    ILLINOIS HEALTH INFORMATION EXCHANGE Electronic Laboratory Reporting Use Case Electronic Laboratory Reporting and Health Information Exchange Illinois Health Information Exchange Public Health Work Group January 2011 Electronic Laboratory Reporting Use Case January 2011 Table of Contents 1.0 Executive Summary……………………………………………………………………….3 2.0 Introduction…………………………………………………………………...……………..5 3.0 Scope……………………………………..………………………………………………………5 4.0 Use Case Stakeholders…………………………………………………………….….....6 5.0 Issues and Obstacles……………………………………………………………………...8 6.0 Use Case Pre-Conditions .………………….…………………………………………...8 7.0 Use Case Post-Conditions.……………………………………………………………...9 8.0 Detailed Scenarios/Technical Specifications.………………………………10 9.0 Validation and Certification………………………………………………………...12 Appendix ………………………………………………………………………………………….....13 Page 2 Electronic Laboratory Reporting Use Case January 2011 1.0 Executive Summary This Use Case is a product of the Public Health Work Group (PHWG) of the Illinois Health Information Exchange (HIE) Advisory Committee. The Illinois HIE Advisory Committee was constituted as the diverse public healthcare stakeholder body providing input and recommendations on the creation of the Illinois Health Information Exchange Authority (“the Authority”) as the Illinois vehicle for designing and implementing electronic health information exchange in Illinois. The establishment of the Authority marks the formal transition of the work of the HIE Advisory Committee and the Work Groups into alignment with the provisions of Illinois
    [Show full text]
  • Vector-Borne Disease Flyer
    Do You Have Patients That Suffer from Chronic Pain and Fatigue? Medical Diagnostic Laboratories offers State-of-the-art Vector-Borne Disease Testing • Comprehensive vector-borne test menu including Lyme disease and viral & bacterial coinfections • Detection by DNA-based Polymerase Chain Reaction (PCR) and serology-based IgG/IgM • C6 Peptide ELISA testing for Borrelia burgdorferi • CDC and alternative interpretation of bands provided for Borrelia burgdorferi Immunoblot • Test additions available up to 30 days after collection • No refrigeration required before or after collection • 5-10 days turnaround time • Affordable patient pricing for non-insured patients • We file all insurances including Medicare, Medicaid, PPOs and HMOs • Founded in 1997 as a vector-borne & Lyme testing laboratory • Testing available for patients of all ages A DIVISION OF • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • TM Medical Diagnostic Laboratories, L.L.C. CLINICAL www.mdlab.com • 877.269.0090 DIAGNOSTICS 7/2019 Vector-Borne Diseases TICK-BORNE DISEASES Anaplasmosis & Ehrlichiosis 439 Anaplasma phagocytophilum lgG/lgM by IFA (serum required) 411 Ehrlichia chaff eensis (HME) & Anaplasma phagocytophilum (HGE) by Real-Time PCR 456 Ehrlichia ewingii (HME) by Real-Time PCR Babesiosis 431 Babesia duncani (WA-1) by Real-Time PCR 410 Babesia microti by Real-Time PCR 440 Babesia microti IgG/IgM by IFA (serum required) Borreliosis - Lyme disease 424 Borrelia afzelii (Europe) by Real-Time PCR 441 Borrelia afzelii (Europe) by Western
    [Show full text]
  • Bacteriology
    SECTION 1 High Yield Microbiology 1 Bacteriology MORGAN A. PENCE Definitions Obligate/strict anaerobe: an organism that grows only in the absence of oxygen (e.g., Bacteroides fragilis). Spirochete Aerobe: an organism that lives and grows in the presence : spiral-shaped bacterium; neither gram-positive of oxygen. nor gram-negative. Aerotolerant anaerobe: an organism that shows signifi- cantly better growth in the absence of oxygen but may Gram Stain show limited growth in the presence of oxygen (e.g., • Principal stain used in bacteriology. Clostridium tertium, many Actinomyces spp.). • Distinguishes gram-positive bacteria from gram-negative Anaerobe : an organism that can live in the absence of oxy- bacteria. gen. Bacillus/bacilli: rod-shaped bacteria (e.g., gram-negative Method bacilli); not to be confused with the genus Bacillus. • A portion of a specimen or bacterial growth is applied to Coccus/cocci: spherical/round bacteria. a slide and dried. Coryneform: “club-shaped” or resembling Chinese letters; • Specimen is fixed to slide by methanol (preferred) or heat description of a Gram stain morphology consistent with (can distort morphology). Corynebacterium and related genera. • Crystal violet is added to the slide. Diphtheroid: clinical microbiology-speak for coryneform • Iodine is added and forms a complex with crystal violet gram-positive rods (Corynebacterium and related genera). that binds to the thick peptidoglycan layer of gram-posi- Gram-negative: bacteria that do not retain the purple color tive cell walls. of the crystal violet in the Gram stain due to the presence • Acetone-alcohol solution is added, which washes away of a thin peptidoglycan cell wall; gram-negative bacteria the crystal violet–iodine complexes in gram-negative appear pink due to the safranin counter stain.
    [Show full text]
  • Borrelia Infection in Latin America
    REVISTA DE INVESTIGACIÓN CLÍNICA Contents available at PubMed www .clinicalandtranslationalinvestigation .com PERMANYER Rev Inves Clin. 2018;70:158-63 BRIEF REVIEW Borrelia Infection in Latin America Alejandro Robles1, James Fong2 and Jorge Cervantes2,3* 1Department of Internal Medicine, 2Paul L. Foster School of Medicine and 3Department of Medical Education, Texas Tech University Health Sciences Center, El Paso, TX, USA ABSTRACT Lyme disease (LD) is a multisystemic inflammatory disease caused by pathogenic spirochetes, belonging to the genospecies complex Borrelia burgdorferi sensu lato (B.b.s.l.). Around the world, distinct species of Ixodes tick vectors transmit different species of Borrelia. Despite the rising recognition and occurrence of tick-borne disease in Latin America, serology has proven to be inconclusive in detecting suspected LD cases. Recently, new B.b.s.l. strains or new related species have been described in Brazil, Uruguay, and Chile. This could explain the lack of confirmatory tests, such as indeterminate Western blots (WBs) and polymerase chain reactions, in detecting suspected LD cases in this region of the world. Future studies will need to determine the extension of novel B.b.s.l. species infections in ticks, reservoirs, and humans in Latin America. The existence of these new Borrelia genomic species should prompt the development of innovative diagnostic and clinical approaches. (REV INVES CLIN. 2018;70:158-63) Key words: Lyme disease. Borrelia. Latin America. LYME DISEASE (LD) - multisystemic inflammatory disease caused by patho- GLOBAL DISTRIBUTION genic spirochetes of the Borrelia burgdorferi sensu lato (B.b.s.l.) complex. LD is the most common vector-borne illness in the United States, and a major zoonosis in Europe and LD was first described nearly 40 years ago after an China1,2.
    [Show full text]
  • Article & Appendix
    Case Report and Genetic Sequence Analysis of Candidatus Borrelia kalaharica, Southern Africa Katarina Stete,1 Siegbert Rieg,1 Gabriele Margos, Georg Häcker, Dirk Wagner, Winfried V. Kern, Volker Fingerle Tickborne relapsing fever caused by Borrelia species is geographic regions, and they have traditionally been di- rarely reported in travelers returning from Africa. We report vided into Old World and New World Borrelia. So far, ≈15 a case of a 71-year-old woman who sought treatment at Borrelia species have been described to cause TBRF in hu- University Medical Center in Freiburg, Germany, in 2015 mans worldwide (1). In Africa, TBRF has been traditionally with recurrent fever after traveling to southern Africa. We attributed to B. crocidurae in western Africa, B. hispanica detected spirochetes in Giemsa-stained blood smears. in northern Africa, and B. duttonii in eastern Africa (1,4). Treatment with doxycycline for suspected tickborne relaps- ing fever was successful. Sequence analyses of several loci Because microscopy is currently the standard method (16S rRNA, flagellin, uvrA) showed high similarity to the re- for diagnosis of TBRF in most countries in Africa, diagno- cently described Candidatus Borrelia kalaharica, which was sis does not usually include differentiation of species. With found in a traveler returning from the same region earlier the advent of molecular diagnostic methods, scientists can that year. We provide additional information regarding the identify species by sequencing different loci of Borrelia genetic relationship of Candidatus B. kalaharica. Sequence DNA from blood, such as the 16S rRNA gene, the flagel- information for an additional 6 housekeeping genes enables lin gene (flaB), or the glpQ gene (5,6).
    [Show full text]
  • What's New in Tick-Borne Disease?
    What’s New In Tick-borne Disease? Lyme Disease Relapsing Fever and beyond… Marc Roger Couturier, Ph.D., D(ABMM) Medical Director, Infectious Disease and Immunology ARUP Laboratories Associate Professor of Pathology University of Utah Objectives 1. Understand the epidemiology of tick-borne diseases and the ticks that vector the diseases. 2. Recognize the growing list of tick-borne diseases. 3. Recall the testing available for detection of tick-borne diseases. Anatomy of the tick… 3 Hard Shell Tick (Ixodid) vs Soft Shell (Agasid) https://www.cdc.gov/dpdx/ticks/index.html Hard Ticks-Life Cycle https://www.cdc.gov/dpdx/ticks/index.html Ixodid Ticks – male vs. female female male https://www.cdc.gov/dpdx/ticks/index.html Hard Shelled Ticks of the Northeast Ixodes scapularis “Deer tick or black-legged tick” Rhipicephalus sanguineus “Brown dog tick” Dermacentor variabilis Amblyomma americanum “American Dog Tick” “Lonestar Tick” https://www.cdc.gov/dpdx/ticks/index.html Amblyomma americanum Amblyomma americanum • Ehrlichia ewingii Human monocytic ehrlichiosis • Ehrlichia chaffeensis • Francisella tularensis • STARI (Southern Tick Associated Rash Illness) • Heartland virus Rhipicephalus sanguineus Rhipicephalus sanguineus • Rickettsia rickettsii (Rocky mountain spotted fever) **In the southern USA only** Dermacentor variabilis Dermacentor variabilis. • Ehrlichia spp. (Human monocytic ehrlichiosis) • Rickettsia rickettsii (Rocky mountain spotted fever) • Francisella tularensis (Tularemia) Ixodes scapularis Ixodes scapularis • Borrelia burgdorferi
    [Show full text]
  • Emerging Tickborne Diseases
    CDC PUBLIC HEALTH GRAND ROUNDS Emerging Tickborne Diseases AAccessible version: https://youtu.be/al5EM3yh--0 March 21, 2017 Expanding Diversity and Distribution of Tickborne Diseases Rebecca Eisen, PhD Research Biologist Division of Vector-Borne Diseases National Center for Emerging and Zoonotic Infectious Diseases The Basics of Tickborne Diseases All known tickborne infectious diseases are diseases of animals that can be transmitted to humans via a tick vector (e.g., zoonoses) ● Ticks can maintain the pathogens through transmission to their offspring ● Ticks can acquire infection through feeding on infectious hosts Humans are incidental hosts, infected by the bite of infected ticks Ticks Can Transmit Diverse Types of Bacteria in the United States Bacterial Diseases (9) Pathogens (14) Tick Genera (5) Anaplasmosis Anaplasma phagocytophilum Ixodes spp. Borrelia miyamotoi disease Borrelia miyamotoi Ixodes spp. Ehrlichia chaffeensis Amblyomma spp. Ehrlichiosis Ehrlichia ewingii Ixodes spp. Ehrlichia muris eauclarensis Borrelia burgdorferi Lyme disease Ixodes spp. Borrelia mayonii Rickettsia parkeri rickettsiosis Rickettsia parkeri Amblyomma spp. Dermacentor spp. Rocky Mountain spotted fever Rickettsia rickettsii Rhipicephalus spp. Pacific Coast tick fever Rickettsia philipii Dermacentor spp. Borrelia hermsii Relapsing fever Borrelia parkeri Ornithodoros spp. Borrelia turicatae Amblyomma spp. Tularemia Francisella tularensis Dermacentor spp. Eisen RJ, Kugeler KJ, Eisen L et al. (2017) ILAR J, in press. Other Types of Pathogens Ticks Can Transmit Diseases (4) Pathogens (4) Tick Genera (3) Viruses Colorado tick fever virus Colorado tick fever Dermacentor spp. (Coltivirus) Heartland virus Heartland virus disease Amblyomma spp. (Phlebovirus) Powassan virus Powassan encephalitis Ixodes spp. (Flavivirus) Protozoa Babesiosis Babesia microti Ixodes spp. Eisen RJ, Kugeler KJ, Eisen L et al.
    [Show full text]
  • Win, Lose Or Draw
    Nats, Kept by Rain From Playing Chisox, Gain Half Game as Bosox Beat Tigers ± 4- 4r +■ ^ — .J- ——^ tmfiajj JSaf $§yat 1$ Scores in A—14 WASHINGTON, D. C., JULY 15, 1945.’ Pot o* Luck Nabs Wildlife Upset Dwyer Arlington, -— ----- ■■—-1 Wright Horse Snares $67,150; Lose or Draw Wolff, Niggeling Win, Pavot Runs Last at Aqueduct BY WALTER McCALLUM. Hurl as Odds-on Favorite, Ridden by Arcaro, Takes Konoye's Death Recalls Golf Stardom Against G. U. Today Early Lead, Folds After Six Furlongs Perhaps Billy Shea, Billy Dettweiler, Charley Pettijohn and the late Lt. John P. Burke, all formerly crack golfers on Georgetown Uni- By thf Associated Press. « By the Associated Press. versity’s best links team, would have a twinge of conscience when Browns Visif CHICAGO, July 14.—Pot o’ Luck, NEW YORK, July 14.—On one of of has been killed on they leam that Prince Fumi Konoye Japan route-running 3-year-old son of the biggest turf upsets of the year, Okinawa. It was Konoye more than any one else on the Princeton Chance Play, finally got lucky today Wildlife won the $50,000-added team who turned in an amazingly fine piece of golf at Manor one aay Two Games From First chilled Dwyer Stakes at Aqueduct today aa in May of 1937 to thwart Georgetown’s burgeoning bid for the Eastern exactly as 25,000 spectators Pavot, the 4-to-5 favorite, finished intercollegiate golf title. Place, Club Slugging at Washington Park figured he last, nearly 30 lengths behind the Burke lies buried in Tunisia, victim of a Nazi bullet.
    [Show full text]
  • Taxonomy of the Lyme Disease Spirochetes
    THE YALE JOURNAL OF BIOLOGY AND MEDICINE 57 (1984), 529-537 Taxonomy of the Lyme Disease Spirochetes RUSSELL C. JOHNSON, Ph.D., FRED W. HYDE, B.S., AND CATHERINE M. RUMPEL, B.S. Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota Received January 23, 1984 Morphology, physiology, and DNA nucleotide composition of Lyme disease spirochetes, Borrelia, Treponema, and Leptospira were compared. Morphologically, Lyme disease spirochetes resemble Borrelia. They lack cytoplasmic tubules present in Treponema, and have more than one periplasmic flagellum per cell end and lack the tight coiling which are characteristic of Leptospira. Lyme disease spirochetes are also similar to Borrelia in being microaerophilic, catalase-negative bacteria. They utilize carbohydrates such as glucose as their major carbon and energy sources and produce lactic acid. Long-chain fatty acids are not degraded but are incorporated unaltered into cellular lipids. The diamino amino acid present in the peptidoglycan is ornithine. The mole % guanine plus cytosine values for Lyme disease spirochete DNA were 27.3-30.5 percent. These values are similar to the 28.0-30.5 percent for the Borrelia but differed from the values of 35.3-53 percent for Treponema and Leptospira. DNA reannealing studies demonstrated that Lyme disease spirochetes represent a new species of Borrelia, exhibiting a 31-59 percent DNA homology with the three species of North American borreliae. In addition, these studies showed that the three Lyme disease spirochetes comprise a single species with DNA homologies ranging from 76-100 percent. The three North American borreliae also constitute a single species, displaying DNA homologies of 75-95 per- cent.
    [Show full text]
  • Final Contaminant Candidate List 3 Microbes: Screening to PCCL
    Final Contaminant Candidate List 3 Microbes: Screening to the PCCL Office of Water (4607M) EPA 815-R-09-0005 August 2009 www.epa.gov/safewater EPA-OGWDW Final CCL 3 Microbes: EPA 815-R-09-0005 Screening to the PCCL August 2009 Contents Abbreviations and Acronyms ......................................................................................................... 2 1.0 Background and Scope ....................................................................................................... 3 2.0 Recommendations for Screening a Universe of Drinking Water Contaminants to Produce a PCCL.............................................................................................................................. 3 3.0 Definition of Screening Criteria and Rationale for Their Application............................... 5 3.1 Application of Screening Criteria to the Microbial CCL Universe ..........................................8 4.0 Additional Screening Criteria Considered.......................................................................... 9 4.1 Organism Covered by Existing Regulations.............................................................................9 4.1.1 Organisms Covered by Fecal Indicator Monitoring ..............................................................................9 4.1.2 Organisms Covered by Treatment Technique .....................................................................................10 5.0 Data Sources Used for Screening the Microbial CCL 3 Universe ................................... 11 6.0
    [Show full text]