Earth History and the Passerine Superradiation

Total Page:16

File Type:pdf, Size:1020Kb

Earth History and the Passerine Superradiation Earth history and the passerine superradiation Carl H. Oliverosa,1, Daniel J. Fieldb,c, Daniel T. Ksepkad, F. Keith Barkere,f, Alexandre Aleixog, Michael J. Andersenh,i, Per Alströmj,k,l, Brett W. Benzm,n,o, Edward L. Braunp, Michael J. Braunq,r, Gustavo A. Bravos,t,u, Robb T. Brumfielda,v, R. Terry Chesserw, Santiago Claramuntx,y, Joel Cracraftm, Andrés M. Cuervoz, Elizabeth P. Derryberryaa, Travis C. Glennbb, Michael G. Harveyaa, Peter A. Hosnerq,cc, Leo Josephdd, Rebecca T. Kimballp, Andrew L. Mackee, Colin M. Miskellyff, A. Townsend Petersongg, Mark B. Robbinsgg, Frederick H. Sheldona,v, Luís Fábio Silveirau, Brian Tilston Smithm, Noor D. Whiteq,r, Robert G. Moylegg, and Brant C. Fairclotha,v,1 aDepartment of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803; bDepartment of Biology & Biochemistry, Milner Centre for Evolution, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom; cDepartment of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, United Kingdom; dBruce Museum, Greenwich, CT 06830; eDepartment of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108; fBell Museum of Natural History, University of Minnesota, Saint Paul, MN 55108; gDepartment of Zoology, Museu Paraense Emílio Goeldi, São Braz, 66040170 Belém, PA, Brazil; hDepartment of Biology, University of New Mexico, Albuquerque, NM 87131; iMuseum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131; jDepartment of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden; kSwedish Species Information Centre, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden; lKey Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China; mDivision of Vertebrate Zoology, Department of Ornithology, American Museum of Natural History, New York, NY 10024; nMuseum of Zoology, University of Michigan, Ann Arbor, MI 48109; oDepartment of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109; pDepartment of Biology, University of Florida, Gainesville, FL 32611; qDepartment of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012; rBehavior, Ecology, Evolution and Systematics Graduate Program, University of Maryland, College Park, MD 20742; sDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; tMuseum of Comparative Zoology, Harvard University, Cambridge, MA 02138; uMuseudeZoologiadaUniversidadedeSãoPaulo,04263-000Ipiranga,SãoPaulo,SP,Brazil;vMuseum of Natural Science, Louisiana State University, Baton Rouge, LA 70803; wUS Geological Survey, Patuxent Wildlife Research Center, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560; xDepartment of Natural History, Royal Ontario Museum, Toronto, ON M5S2C6, Canada; yDepartmentofEcology and Evolutionary Biology, University of Toronto, Toronto, ON M5S3B2, Canada; zInstituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia, 111321; aaDepartment of Ecology and Evolutionary Biology, University of Tennessee Knoxville, Knoxville, TN 37996; bbDepartment of Environmental Health Science, University of Georgia, Athens, GA 30602; ccCenter for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark; ddAustralian National Wildlife Collection, CSIRO National Research Collections Australia, Canberra, ACT 2601, Australia; eeDivision of Mathematics and Natural Sciences, Pennsylvania State University-Altoona, Altoona, PA 16601; ffMuseum of New Zealand Te Papa Tongarewa, 6140 Wellington, New Zealand; and ggBiodiversity Institute, University of Kansas, Lawrence, KS 66045 Edited by Michael E. Alfaro, University of California, Los Angeles, CA, and accepted by Editorial Board Member David Jablonski February 26, 2019 (received for review August 9, 2018) Avian diversification has been influenced by global climate change, plate tectonic movements, and mass extinction events. However, Significance the impact of these factors on the diversification of the hyper- diverse perching birds (passerines) is unclear because family level Our understanding of the factors that affected the diversifi- relationships are unresolved and the timing of splitting events cation of passerines, the most diverse and widespread bird among lineages is uncertain. We analyzed DNA data from 4,060 order (Passeriformes), is limited. Here, we reconstruct passerine nuclear loci and 137 passerine families using concatenation and evolutionary history and produce the most comprehensive time- coalescent approaches to infer a comprehensive phylogenetic calibrated phylogenetic hypothesis of the group using extensive hypothesis that clarifies relationships among all passerine families. sampling of the genome, complete sampling of all passerine Then, we calibrated this phylogeny using 13 fossils to examine the families, and a number of vetted fossil calibration points. Our effects of different events in Earth history on the timing and rate phylogenetic results refine our knowledge of passerine diversity of passerine diversification. Our analyses reconcile passerine diver- and yield divergence dates that are consistent with the fossil sification with the fossil and geological records; suggest that pas- record, and our macroevolutionary analyses suggest that sin- serines originated on the Australian landmass ∼47 Ma; and show gular events in Earth history, such as increases in Cenozoic that subsequent dispersal and diversification of passerines was global temperature or the colonization of new continents, were affected by a number of climatological and geological events, such not the primary forces driving passerine diversification. as Oligocene glaciation and inundation of the New Zealand land- mass. Although passerine diversification rates fluctuated through- Author contributions: C.H.O., D.J.F., D.T.K., F.K.B., P.A., P.A.H., R.G.M., and B.C.F. designed re- out the Cenozoic, we find no link between the rate of passerine search; C.H.O., D.J.F., D.T.K., F.K.B., and B.C.F. performed research; C.H.O., D.J.F., D.T.K., and F.K.B. analyzed data; C.H.O. and B.C.F. wrote the paper with contributions from D.J.F., D.T.K., F.K.B., diversification and Cenozoic global temperature, and our analyses P.A., E.L.B., R.T.B., S.C., and R.T.K.; C.H.O., A.A., M.J.A., P.A., B.W.B., E.L.B., M.J.B., G.A.B., R.T.B., show that the increases in passerine diversification rate we ob- R.T.C., S.C., J.C., A.M.C., E.P.D., T.C.G., M.G.H., P.A.H., L.J., R.T.K., A.L.M., C.M.M., A.T.P., M.B.R., serve are disconnected from the colonization of new continents. F.H.S., L.F.S., B.T.S., N.D.W., R.G.M., and B.C.F. contributed samples; D.J.F. and D.T.K. selected Taken together, these results suggest more complex mechanisms and vetted fossil calibrations; and F.K.B. performed lineage-specific diversification analyses. than temperature change or ecological opportunity have controlled The authors declare no conflict of interest. macroscale patterns of passerine speciation. This article is a PNAS Direct Submission. M.E.A. is a guest editor invited by the Editorial Board. This open access article is distributed under Creative Commons Attribution-NonCommercial- Passeriformes | diversification | macroevolution | climate | biogeography NoDerivatives License 4.0 (CC BY-NC-ND). Data deposition: Raw sequencing reads and ultraconserved element (UCE) nucleotide se- he diversification of modern birds (Neornithes) was shaped quences are available from the National Center for Biotechnology Information (NCBI) Se- Tby numerous factors, including a mass extinction event (1–3), quence Read Archive and Genbank as part of BioProjects PRJNA304409 and PRJNA480834. shifts in connectivity between continents (4, 5), and changes in NCBI BioSample accession numbers are available in Dataset S1. The PHYLUCE computer code used in this study is available from https://github.com/faircloth-lab/phyluce. Other custom global climate (4, 6). Specific ecological, geological, and clima- computer code, DNA alignments, analysis inputs, and analysis outputs are available from tological events proposed to be associated with the diversifica- the Dryad Digital Repository database, datadryad.org/ (doi: 10.5061/dryad.2vd01gr). tion and global distribution of Neornithes include opening of 1To whom correspondence may be addressed. Email: [email protected] or [email protected]. ecological niches following the Cretaceous-Paleogene (K-Pg) This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. mass extinction event (2, 3, 7, 8), establishment of dispersal 1073/pnas.1813206116/-/DCSupplemental. corridors linking the geographic origin of modern birds to other Published online April 1, 2019. 7916–7925 | PNAS | April 16, 2019 | vol. 116 | no. 16 www.pnas.org/cgi/doi/10.1073/pnas.1813206116 Downloaded by guest on October 3, 2021 landmasses during the Paleogene (4), rapid continental drift and approaches. We then use our time-calibrated phylogeny and island formation in Wallacea allowing the dispersal of songbirds fossil data to investigate passerine biogeography and diversifi- out of Australia (5, 9), fragmentation of tropical habitats during cation rates, as well as the influence of major events in Earth cooling events of the Late Cretaceous and Cenozoic (4, 10), and history on the
Recommended publications
  • Labile Evolution of Display Traits in Bowerbirds Indicates Reduced Effects of Phylogenetic Constraint
    Labile evolution of display traits in bowerbirds indicates reduced effects of phylogenetic constraint " # # RAB KUSMIERSKI , GERALD BORGIA , ALBERT UY " ROSS H.CROZIER " School of Genetics and Human Variation, La Trobe Uniersit, Bundoora, Victoria 3083, Australia # Department of Zoolog, Uniersit of Marland, College Park, MD 20742, USA SUMMARY Bowerbirds (Ptilonorhynchidae) have among the most exaggerated sets of display traits known, including bowers, decorated display courts and bright plumage, that differ greatly in form and degree of elaboration among species. Mapping bower and plumage traits on an independently derived phylogeny constructed from mitochondrial cytochrome b sequences revealed large differences in display traits between closely related species and convergences in both morphological and behavioural traits. Plumage characters showed no effect of phylogenetic inertia, although bowers exhibited some constraint at the more fundamental level of design, but above which they appeared free of constraint. Bowers and plumage characters, therefore, are poor indicators of phylogenetic relationship in this group. Testing Gilliard’s (1969) transferral hypothesis indicated some support for the idea that the focus of display has shifted from bird to bower in avenue-building species, but not in maypole-builders or in bowerbirds as a whole. maypole-builders (Amblornis, four spp.; Prionodura) in- 1. INTRODUCTION clude the orange-crested males of A. macgregoriae, which Bowerbirds (Ptilonorhynchidae) form a monophyletic decorate a sapling with horizontally interwoven sticks. family (Kusmierski et al. 1993) (eight genera, 19 species) The dull-coloured, monomorphic A. inornatus of endemic to Australia and New Guinea, and are unique western Irian Jaya (Arfak and Wandamen mountains) in the bird world in constructing and using a bower in and the orange-crested, dimorphic A.
    [Show full text]
  • MADAGASCAR: the Wonders of the “8Th Continent” a Tropical Birding Custom Trip
    MADAGASCAR: The Wonders of the “8th Continent” A Tropical Birding Custom Trip October 20—November 6, 2016 Guide: Ken Behrens All photos taken during this trip by Ken Behrens Annotated bird list by Jerry Connolly TOUR SUMMARY Madagascar has long been a core destination for Tropical Birding, and with the opening of a satellite office in the country several years ago, we further solidified our expertise in the “Eighth Continent.” This custom trip followed an itinerary similar to that of our main set-departure tour. Although this trip had a definite bird bias, it was really a general natural history tour. We took our time in observing and photographing whatever we could find, from lemurs to chameleons to bizarre invertebrates. Madagascar is rich in wonderful birds, and we enjoyed these to the fullest. But its mammals, reptiles, amphibians, and insects are just as wondrous and accessible, and a trip that ignored them would be sorely missing out. We also took time to enjoy the cultural riches of Madagascar, the small villages full of smiling children, the zebu carts which seem straight out of the Middle Ages, and the ingeniously engineered rice paddies. If you want to come to Madagascar and see it all… come with Tropical Birding! Madagascar is well known to pose some logistical challenges, especially in the form of the national airline Air Madagascar, but we enjoyed perfectly smooth sailing on this tour. We stayed in the most comfortable hotels available at each stop on the itinerary, including some that have just recently opened, and savored some remarkably good food, which many people rank as the best Madagascar Custom Tour October 20-November 6, 2016 they have ever had on any birding tour.
    [Show full text]
  • Mount Canobolas Fauna Survey
    MOUNT CANOBOLAS FAUNA SURVEY 24TH – 29th MARCH 2019 1 Introduction Mount Canobolas State Conservation Area The Mount Canobolas State Conservation Area (SCA) Draft Plan of Management begins with the following vision for this reserve: Mount Canobolas State Conservation Area is a sentinel in the landscape. It is a park valued, understood and protected by the community for its uniqueness, biodiversity, visitor experiences, and for the spiritual and cultural connections between people and this special place, now and into the future (OEH 2018). This iconic place is an extinct volcano rising to an altitude of 1397m asl and more than 500m above the surrounding central tablelands landscape. It has great significance for the local Wiradjuri custodians. The ecological values of this place are shaped by its high altitude, volcanic origins, isolation from similar geological formations and the extensive clearing of the surrounding landscape leaving it as a relatively isolated remnant of native vegetation. The presence of sub-alpine communities is particularly noteworthy (OEH 2018). The SCA incorporates an area of 1672 ha. The vegetation communities of the Mt Canobolas SCA have been broadly described and mapped with the following communities defined: 1. Eucalyptus macrorhyncha – E. dives: shrubby open forest and woodland (26% of the SCA) a. E. macrorhyncha dominant in more exposed sites b. E. dives dominant in less exposed sites 2. E. pauciflora – E. dalrympleana: Grassy woodlands and tall open forests (51% of the SCA) a. E. pauciflora – E. canobolensis grassy woodlands b. E. dalrympleana – E. viminalis tall open forests 3. Outcrop low open woodland (E. canobolensis – E. petroc?) and / or shrubs 4.
    [Show full text]
  • Listing Proposal for Mccown's Longspur
    Listing Proposal for McCown’s Longspur (Rhynchophanes mccownii) in Nebraska Photo by Shawn Billerman Prepared by Melissa J. Panella and Joel G. Jorgensen Nebraska Game and Parks Commission Lincoln, Nebraska April 2018 Introduction The Nebraska Game and Parks Commission (hereafter, Commission) is authorized under the Nebraska Nongame and Endangered Species Conservation Act (NESCA; Neb. Rev. Stat. § 37-801 to 37-811) to determine what species should be placed on the list of threatened or endangered species maintained under the act. Species that are listed as threatened or endangered federally are automatically placed on the state’s list of threatened or endangered species; however, there are additional unlisted species whose continued existence within our state is at- risk and who are candidates for state listing. The Commission is obligated to conduct a review of species when monitoring data or emerging issues indicate concern. In 2017, Commission staff undertook a review of the state’s wildlife, including plants, to determine whether any species warranted placement on the list or whether any species currently listed as threated or endangered should be removed from the list. The last full review and revision of the list occurred in 2000. The purpose of the current statewide review is to maintain an accurate list of threatened and endangered species, based on the best information available, to help the Commission complete its mission of effectively conserving the wildlife resources of Nebraska. Over the last several months, Wildlife Division staff received input from species’ experts, conducted extensive literature reviews, and coordinated with the Commission’s Fisheries and Planning and Programming divisions to develop a list of species to consider for listing action.
    [Show full text]
  • Kachemak Bay Birds Checklist
    LEGEND SPECIES Sp Su F W Status SPECIES Sp Su F W Status SPECIES Sp Su F W Status __Greater Scaup C C C C rmb __Red-tailed Hawk C C C - sb Laridae - Gulls & Terns C Common - Easily found in small to large numbers in __Lesser Scaup U - U - m __Rough-legged Hawk U U U - sb __Franklin’s Gull - A - - v appropriate habitat. __Steller’s Eider C R C C w __Golden Eagle R R R A s __Black-headed Gull - A - - v __Spectacled Eider - - - A v Falconidae - Falcons __Bonaparte’s Gull C C C R sb U Uncommon - Occasionally, but not always, found in small __King Eider R R R R w __American Kestrel R R R - m __Black-tailed Gull - A - - v numbers with some effort in appropriate habitat. __Common Eider C C C U rb __Merlin U C R R sb __Mew Gull C C C C rb __Harlequin Duck C C C C rb __Gyrfalcon R R R R w __Ring-billed Gull A - - A v R Rare - occurs in very small numbers or in a very limited __Surf Scoter C C C C rm __Peregrine Falcon U U R R sb __California Gull - - A - v number of sites and may not be found every year or even with __White-winged Scoter C C C C rm Rallidae - Rails, Coots & Gallinules __Herring Gull C C C C r concentrated effort. There are more than a few records of __Black Scoter C C C C rmb __American Coot - - A - v __Heermann’s Gull - A - - v these species in appropriate habitats.
    [Show full text]
  • Disaggregation of Bird Families Listed on Cms Appendix Ii
    Convention on the Conservation of Migratory Species of Wild Animals 2nd Meeting of the Sessional Committee of the CMS Scientific Council (ScC-SC2) Bonn, Germany, 10 – 14 July 2017 UNEP/CMS/ScC-SC2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II (Prepared by the Appointed Councillors for Birds) Summary: The first meeting of the Sessional Committee of the Scientific Council identified the adoption of a new standard reference for avian taxonomy as an opportunity to disaggregate the higher-level taxa listed on Appendix II and to identify those that are considered to be migratory species and that have an unfavourable conservation status. The current paper presents an initial analysis of the higher-level disaggregation using the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World Volumes 1 and 2 taxonomy, and identifies the challenges in completing the analysis to identify all of the migratory species and the corresponding Range States. The document has been prepared by the COP Appointed Scientific Councilors for Birds. This is a supplementary paper to COP document UNEP/CMS/COP12/Doc.25.3 on Taxonomy and Nomenclature UNEP/CMS/ScC-Sc2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II 1. Through Resolution 11.19, the Conference of Parties adopted as the standard reference for bird taxonomy and nomenclature for Non-Passerine species the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World, Volume 1: Non-Passerines, by Josep del Hoyo and Nigel J. Collar (2014); 2.
    [Show full text]
  • Report No. 201601Rp1(F) AMBROSE
    Report No. 201601rp1(f) AMBROSE ECOLOGICALSERVICES PTY. LTD (ABN: 34 097 016 496. ACN: 097 016 496) CLIENT ngh Environmental Pty Ltd, PO Box 470, Bega NSW 2550 Contact: Mr Nick Graham-Higgs, Mobile: 0427 260 819 Email: [email protected] This report has been prepared in accordance with the scope of services described in the contract or agreement between Ambrose Ecological Services Pty Ltd (Ambecol) and the Client. The report relies upon data, surveys, measurements and results taken at or under the particular times and conditions specified herein. Any findings, conclusions or recommendations only apply to the aforementioned circumstances and no greater reliance should be assumed or drawn by the Client. The products and services referred to in the report should not be regarded as Ambecol’s endorsement of specific manufacturers, distributors or brands. Furthermore, the report has been prepared solely for use by the Client and Ambecol accepts no responsibility for its use by other parties. Author: Dr Stephen Ambrose Position: Director, Ambrose Ecological Services Pty Ltd Signed: Date: 9 September 2016 2______________________________________AMBROSE ECOLOGICAL SERVICES PTY LTD Contents Sections Page No. 1 Introduction 5 2 Proposed Development 5 2.1 Subject Site 5 2.2 Proposed Turbine Development 10 3 Bird Survey and Assessment Methods 10 3.1 Overview 10 3.3 Existing Records 10 3.3 Field Surveys 14 4 Results 15 4.1 Overview 15 4.2 Field Studies 15 4.3 Threatened Bird Taxa 17 4.4 Migratory Bird Taxa 18 4.5 Island Endemics 19 5 Potential Impacts 52 5.1 Introduction 52 5.2 Analysis of Turbine Options for Lord Howe Island 52 5.3 Bird Impacts of Wind Turbines in Other Studies 59 5.4 Impacts on Threatened Bird Species 61 5.5 Impacts on Nationally-listed Migratory Bird Species 62 6 Recommendations 62 7 References 64 Appendices A Flesh-footed Shearwater Report ( & Carlile, 2015) 67 B Directions of Bird Flights Over Subject Site, February and March 77 2016 C Bird Flights Over Each Survey Area on Subject Site, February and 81 March 2016.
    [Show full text]
  • SOUTH ISLAND SADDLEBACK RECOVERY PLAN (Philesturnus Carunculatus Carunculatus )
    THREATENED SPECIES RECOVERY PLAN SERIES NO.11 SOUTH ISLAND SADDLEBACK RECOVERY PLAN (Philesturnus carunculatus carunculatus ) Prepared by Andy Roberts (Southland Conservancy) for the Threatened Species Unit Threatened Species Unit Department of Conservation P.O. Box 10-420 Wellington New Zealand © 1994 ISSN 1170-3806 ISBN 0-478-01481-9 Key words: South Island saddleback, Philesturnus carunculatus carunculatus, recovery plan ABSTRACT South Island saddlebacks (tieke) were widely distributed over the South and Stewart Islands in the 19th century. Their rapid decline was documented during the latter 19th century. Following a rodent invasion on their sole remaining island habitat South Island saddlebacks were under threat of immediate extinction. This was thwarted by prompt translocations of remaining birds to nearby predator-free islands. This plan outlines conservation goals and suggests options for continuing the recovery of this subspecies. Recovery is to be achieved through a programme of island habitat restoration and saddleback translocations. Eradication of rodents and weka is promoted by this plan, in some instances this plan suggests that discussions be held with the local Iwi to determine the appropriateness of these eradications. Saddlebacks are to be introduced or re-introduced to a number of islands around the South Island coast. When recovery has been achieved South Island saddleback populations may be established on up to 26 islands with a total of about 4000 individuals. At this population level they will not be ranked as threatened, but be classified as rare and no longer requiring a programme of on-going intensive conservation management. Recovery management proposed in this plan will be undertaken jointly by Department of Conservation staff, Iwi representatives and members of the public.
    [Show full text]
  • Sericornis, Acanthizidae)
    GENETIC AND MORPHOLOGICAL DIFFERENTIATION AND PHYLOGENY IN THE AUSTRALO-PAPUAN SCRUBWRENS (SERICORNIS, ACANTHIZIDAE) LESLIE CHRISTIDIS,1'2 RICHARD $CHODDE,l AND PETER R. BAVERSTOCK 3 •Divisionof Wildlifeand Ecology, CSIRO, P.O. Box84, Lyneham,Australian Capital Territory 2605, Australia, 2Departmentof EvolutionaryBiology, Research School of BiologicalSciences, AustralianNational University, Canberra, Australian Capital Territory 2601, Australia, and 3EvolutionaryBiology Unit, SouthAustralian Museum, North Terrace, Adelaide, South Australia 5000, Australia ASS•CRACr.--Theinterrelationships of 13 of the 14 speciescurrently recognized in the Australo-Papuan oscinine scrubwrens, Sericornis,were assessedby protein electrophoresis, screening44 presumptivelo.ci. Consensus among analysesindicated that Sericorniscomprises two primary lineagesof hithertounassociated species: S. beccarii with S.magnirostris, S.nouhuysi and the S. perspicillatusgroup; and S. papuensisand S. keriwith S. spiloderaand the S. frontalis group. Both lineages are shared by Australia and New Guinea. Patternsof latitudinal and altitudinal allopatry and sequencesof introgressiveintergradation are concordantwith these groupings,but many featuresof external morphologyare not. Apparent homologiesin face, wing and tail markings, used formerly as the principal criteria for grouping species,are particularly at variance and are interpreted either as coinherited ancestraltraits or homo- plasies. Distribution patternssuggest that both primary lineageswere first split vicariantly between
    [Show full text]
  • The Extraordinary Bill Dimorphism of the Huia
    The extraordinaory bill dimorphism of the Huia (Heteraclocba acutirostris): sexual selection or intersexual competition? School of Biological Sciences, Victoria University of Wellington, P 0.Box 600, Wellington, New Zealand ABSTRACT Morphological comparison of the extinct Huia (fleteralocha acutirostris) with its closest known relatives suRRests that the pronounced sexual hill dimorphism of the former evolved through selection on female, rather th:~n male hill form Recnuse sexu:~l selection acts predominantly on males, 11 cannot readily explam such dimorphism in a non-polyandrous spccics. Greater female divergence in foraging-related anatomy In a species In which inales :ire the larger (and therefore presu~nahlysoclally don~in:~nt)scx is, however, consistent with the hypothesis hat sexual dimorphism can he an ad:~pt:~tionto reduce intersexual competition for food. Iletermining which sex changed most is a more rlgorous means of establishing the evolutionary significance of sexually dimorphic traits than interpretmon of current function. KEYWORDS: Hub, Callaeidae, sexual dimorphism, competition INTRODUCTION The extinct Huia (Heteralocha acutirostris), a large (450 mm) wood-foraging passer- ine endemic to New Zealand (Falla et al. 19791, displayed the most extreme sexual bill dimorphism known in birds (Rand 1952, Phillipps 1963, Selander 1966, Burton 1974). In contrast to the relatively short, robust bill of the male, that of the female was approxin~atelyone third longer, more slender and strongly decurved (Figure 1). With the exception of bill length, the Huia appeared to display the usual avian pattern of sexual size dimorphism, the male being significantly larger than the fe- male in both tarsus and wing length (Selander 1966).
    [Show full text]
  • BORNEO: Bristleheads, Broadbills, Barbets, Bulbuls, Bee-Eaters, Babblers, and a Whole Lot More
    BORNEO: Bristleheads, Broadbills, Barbets, Bulbuls, Bee-eaters, Babblers, and a whole lot more A Tropical Birding Set Departure July 1-16, 2018 Guide: Ken Behrens All photos by Ken Behrens TOUR SUMMARY Borneo lies in one of the biologically richest areas on Earth – the Asian equivalent of Costa Rica or Ecuador. It holds many widespread Asian birds, plus a diverse set of birds that are restricted to the Sunda region (southern Thailand, peninsular Malaysia, Sumatra, Java, and Borneo), and dozens of its own endemic birds and mammals. For family listing birders, the Bornean Bristlehead, which makes up its own family, and is endemic to the island, is the top target. For most other visitors, Orangutan, the only great ape found in Asia, is the creature that they most want to see. But those two species just hint at the wonders held by this mysterious island, which is rich in bulbuls, babblers, treeshrews, squirrels, kingfishers, hornbills, pittas, and much more. Although there has been rampant environmental destruction on Borneo, mainly due to the creation of oil palm plantations, there are still extensive forested areas left, and the Malaysian state of Sabah, at the northern end of the island, seems to be trying hard to preserve its biological heritage. Ecotourism is a big part of this conservation effort, and Sabah has developed an excellent tourist infrastructure, with comfortable lodges, efficient transport companies, many protected areas, and decent roads and airports. So with good infrastructure, and remarkable biological diversity, including many marquee species like Orangutan, several pittas and a whole Borneo: Bristleheads and Broadbills July 1-16, 2018 range of hornbills, Sabah stands out as one of the most attractive destinations on Earth for a travelling birder or naturalist.
    [Show full text]
  • Report on Biodiversity and Tropical Forests in Indonesia
    Report on Biodiversity and Tropical Forests in Indonesia Submitted in accordance with Foreign Assistance Act Sections 118/119 February 20, 2004 Prepared for USAID/Indonesia Jl. Medan Merdeka Selatan No. 3-5 Jakarta 10110 Indonesia Prepared by Steve Rhee, M.E.Sc. Darrell Kitchener, Ph.D. Tim Brown, Ph.D. Reed Merrill, M.Sc. Russ Dilts, Ph.D. Stacey Tighe, Ph.D. Table of Contents Table of Contents............................................................................................................................. i List of Tables .................................................................................................................................. v List of Figures............................................................................................................................... vii Acronyms....................................................................................................................................... ix Executive Summary.................................................................................................................... xvii 1. Introduction............................................................................................................................1- 1 2. Legislative and Institutional Structure Affecting Biological Resources...............................2 - 1 2.1 Government of Indonesia................................................................................................2 - 2 2.1.1 Legislative Basis for Protection and Management of Biodiversity and
    [Show full text]