The Astronomical Journal, 155:163 (13pp), 2018 April https://doi.org/10.3847/1538-3881/aab1f6 © 2018. The American Astronomical Society. All rights reserved. Finding Long Lost Lexellʼs Comet: The Fate of the First Discovered Near-Earth Object Quan-Zhi Ye (叶泉志)1,2 , Paul A. Wiegert3,4 , and Man-To Hui (许文韬)5 1 Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA;
[email protected] 2 Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125, USA 3 Department of Physics and Astronomy, The University of Western Ontario, London, Ontario N6A 3K7, Canada 4 Centre for Planetary Science and Exploration, The University of Western Ontario, London, Ontario N6A 5B8, Canada 5 Department of Earth, Planetary and Space Sciences, UCLA, Los Angeles, CA 90095-1567, USA Received 2017 December 14; revised 2018 February 16; accepted 2018 February 20; published 2018 March 22 Abstract Jupiter-family Comet D/1770 L1 (Lexell) was the first discovered Near-Earth Object (NEO) and passed the Earth on 1770 July 1 at a recorded distance of 0.015 au. The comet was subsequently lost due to unfavorable observing circumstances during its next apparition followed by a close encounter with Jupiter in 1779. Since then, the fate of D/Lexell has attracted interest from the scientific community, and now we revisit this long-standing question. We investigate the dynamical evolution of D/Lexell based on a set of orbits recalculated using the observations made by Charles Messier, the comet’s discoverer, and find that there is a 98% chance that D/Lexell remains in the solar system by the year of 2000.