The Cryosphere Discuss., doi:10.5194/tc-2017-19, 2017 Manuscript under review for journal The Cryosphere Discussion started: 16 March 2017 c Author(s) 2017. CC-BY 3.0 License. Dynamic response of an Arctic epishelf lake to seasonal and long-term forcing: implications for ice shelf thickness Andrew K. Hamilton1,2, Bernard E. Laval1, Derek R. Mueller2, Warwick F. Vincent3, and Luke Copland4 1Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, Canada 2Geography and Environmental Studies, Carleton University, Ottawa, Ontario, Canada 3Department of Biology and Centre for Northern Studies (CEN), Université Laval, Quebec City, Quebec, Canada 4Department of Geography, Environment, and Geomatics, University of Ottawa, Ottawa, Ontario, Canada Correspondence to: A. K. Hamilton (
[email protected]) Abstract. Changes in the depth of the freshwater-seawater interface in epishelf lakes have been used to infer long-term changes in the thickness of ice shelves, however, little is known about the dynamics of epishelf lakes and what other factors may influence their depth. Continuous observations collected between 2011 and 2014 in the Milne Fiord epishelf lake, in the Canadian Arctic, 5 showed that the depth of the halocline varied seasonally by up to 3.3 m, which was comparable to interannual variability. The seasonal depth variation was controlled by the magnitude of surface meltwater inflow and the hydraulics of the inferred outflow pathway, a narrow basal channel in the Milne Ice Shelf. When seasonal variation and an episodic mixing of the halocline were accounted for, long-term records of depth indicated there was no significant change in thickness of ice along the basal channel 1 from 1983 to 2004, followed by a period of steady thinning at 0.50 m a− between 2004 and 2011.