Ice Masses of the Eastern Canadian Arctic Archipelago 13

Total Page:16

File Type:pdf, Size:1020Kb

Ice Masses of the Eastern Canadian Arctic Archipelago 13 Ice Masses of the Eastern Canadian Arctic Archipelago 13 Wesley Van Wychen, Luke Copland, and David Burgess Abstract since *2000 these ice shelves have been undergoing The islands of the Canadian Arctic, known as the significant reductions in their area and volume, often Canadian Arctic Archipelago (CAA), contain the largest caused by episodic calving events that can produce ice area of glacierized terrain outside of the ice sheets of islands with diameters of 10 km or more. Once detached, Greenland and Antarctica. The ice masses are focused in these ice islands can drift within the waters of the CAA the eastern part of the CAA, and stretch from the ice and Arctic Ocean for years to decades and may pose a shelves of northernmost Ellesmere Island to glaciers in threat to Arctic shipping and offshore oil developments. the southernmost parts of Baffin Island, together with a few mountain glaciers in northern Labrador. The majority Keywords of glacier ice (roughly 70%) is contained within the large Glaciers Á Mass balance Á Glacier motion Á Glacier ice masses located on Baffin Island (Penny and Barnes Ice dynamics Á Canadian Arctic Archipelago Caps), Bylot Island (Bylot Island Ice Cap), Devon Island (Devon Ice Cap), Ellesmere Island (Prince of Wales Icefield, Manson Icefield, Sydkap Ice Cap, Agassiz Ice Cap, Northern Ellesmere Icefield) and Axel Heiberg 13.1 Physical Geography of Ice Masses Island (Steacie and Müller Ice Caps). The remaining ice is in the Canadian Arctic stored mainly in smaller ice caps and valley glaciers that skirt the coastline. The region’s major ice caps typically The islands of the eastern Canadian Arctic Archipelago have maximum elevations around 2000 m asl and (CAA) contain *150,000 km2 of glacierized terrain, rep- descend to sea level where outlet glaciers meet the ocean. resenting 28% of the worlds glacierized area outside of the Scientific studies of glaciers in the Canadian Arctic began ice sheets (Sharp et al. 2014) (Fig. 13.1). Approximately in earnest in the 1950s, with previous knowledge largely 107,000 km2 of the glacier area is located in the northern gleaned from historical materials and expedition reports. CAA, in the Queen Elizabeth Islands (QEI: Devon, Axel Systematic in situ surface mass balance measurements Heiberg and Ellesmere Islands), while the remaining ice is initiated in the late 1950s and continue to present day, located in the southern CAA, on Baffin Island providing one of the longest continuous records of glacier (*37,500 km2) and Bylot Island (*5000 km2). The mass balance within the Arctic. The Canadian Arctic also region’s major ice masses are classified either as “ice caps” contains some of the very few remaining northern (broad dome-like ice masses less than 50,000 km2 in area hemisphere ice shelves. Recent analysis indicates that that cover much of the underlying topography), or “ice- fields” (differentiated from ice caps by the presence of W. Van Wychen (&) bedrock nunataks that protrude through the ice in their Department of Geography and Environment Management, interior regions) (Copland 2013). The remaining *10% University of Waterloo, Waterloo, ON, Canada terrestrial ice cover in this region is composed of stagnant e-mail: [email protected] plateau ice caps in the QEI less than *1200 km2 in size, and Á W. Van Wychen L. Copland standalone Alpine cirque glaciers, many of which fringe the Department of Geography, Environment and Geomatics, fi University of Ottawa, Ottawa, ON, Canada coastlines of Baf n Bay, Nares Strait and the Arctic Ocean. Figures 13.2, 13.3, and 13.4 provide field photos of various D. Burgess Natural Resources Canada, 601 Booth Street, glacier features in the Canadian Arctic. Ottawa, ON K1A 0E8, Canada © Springer Nature Switzerland AG 2020 297 O. Slaymaker and N. Catto (eds.), Landscapes and Landforms of Eastern Canada, World Geomorphological Landscapes, https://doi.org/10.1007/978-3-030-35137-3_13 298 W. Van Wychen et al. Fig. 13.1 Overview of the major ice masses of the eastern Canadian Icefield; 5 = Sydkap Ice Cap; 6 = Steacie Ice Cap, 7 = Müller Ice Cap; 8 High Arctic (denoted by green shading). 1 = Northern Ellesmere = Devon Ice Cap; 9 = Bylot Island Ice Cap, 10 = Barnes Ice Cap; 11 = Icefield; 2 = Agassiz Ice Cap; 3 = Prince of Wales Icefield; 4 = Manson Penny Ice Cap; 12 = Coastal Glaciers and Ice Caps of Baffin Island To understand the distribution of glaciers within the source, with the Arctic Ocean a secondary source (Koerner CAA, it is necessary to understand the regional climatology 1979). As a consequence, the distribution of glaciers within of the Arctic Islands. Mean annual air temperatures within the region follows these climatic conditions, with glacierized the Canadian Arctic decrease as a function of latitude and terrain concentrated in high latitude, mountainous areas elevation, such that areas located at high elevations and more adjacent to moisture sources, such as along the east coast of northerly latitudes are colder than those located at low ele- Ellesmere Island and west coast of Axel Heiberg Island vations and latitudes (Sharp et al. 2014). In general, the (Sharp et al. 2014). The major exception to this distribution climate of the CAA is characterized by relatively short, cool is Barnes Ice Cap, which is located on a plateau in the summers followed by longer, colder winters, which provides interior of Baffin Island and is thought to exist as a remnant the climatic conditions necessary for glacier formation and of the Laurentide Ice Sheet Complex (Briner et al. 2009). survival. In terms of precipitation, there is a southeast to Topographically, the major ice masses of the CAA gen- northwest gradient across the Canadian Arctic Archipelago, erally rise to elevations of 1800–2000 m asl at their sum- with annual average precipitation of 420 mm in Iqaluit and mits, with their inland ice descending gradually to margins at 70 mm in Eureka, with most of the region receiving less 400–500 m asl, and their large outlet glaciers often reaching than 200 mm annually. Baffin Bay is the dominant moisture the ocean. Ice cap sectors flowing towards coastlines 13 Ice Masses of the Eastern Canadian Arctic Archipelago 299 Fig. 13.2 The snout of a glacier on southeastern Penny Ice Cap, July 2016. Photograph L. Copland Fig. 13.3 A land-terminating outlet glacier located on western Axel Heiberg Island, July 2015. Photograph L. Copland adjacent to the Baffin Bay moisture source tend to be thicker bed elevation profiles (3–4 km in width) along most tide- than their inland counterparts (Koerner 1979; Leuschen et al. water glaciers in the Canadian Arctic (https://nsidc.org/data/ 2017) and are drained primarily by large fast-flowing outlet icebridge). An example from these datasets, combined with glaciers which terminate at sea-level. Locations of maximum high resolution surface elevation data from the ArcticDEM, ice thickness (600–800 m) exist under the head of major reveals detailed surface (Fig. 13.5a) and glacier bed outlet glaciers, where the onset of channelization funnels ice (Fig. 13.5b) topography of the Agassiz Ice Cap, NE Elles- from high elevation accumulation areas to the ocean and has mere Island. eroded the subglacial topography (Dowdeswell et al. 2004). Longitudinal profiles extracted along Cañon Glacier The most recent ice thickness surveys conducted in 2014 highlight the contrasting geometry between the surface and under NASA’s Operation IceBridge program mapped the bed geometry, which is characteristic of many glaciers 300 W. Van Wychen et al. Fig. 13.4 Photo of the calving front of Trinity Glacier, Prince of Wales Icefield, August 2016. Photograph L. Copland across the CAA. The relatively smooth descent in surface (25–75 m y−1) near the equilibrium line altitude (ELA) with elevation of Cañon Glacier as it extends from >2000 m asl to velocities decreasing to stagnation in both an up-glacier and sea level along its 80 km length (Fig. 13.5c) contrasts with down-glacier direction from this point. This pattern also the ice-bed interface, which is controlled by the underlying generally holds true for the small tidewater terminating gla- bedrock and drops sharply to 300–400 m below sea-level for ciers of the southern CAA, where speeds of 40–100 m y−1 are the lowermost 50 km of the glacier (Fig. 13.5d). The fact common near the ELA with ice motion often decreasing to that many tidewater glaciers of the northern CAA are near stagnation both up-glacier and down-glacier from there grounded well below sea level for tens of kilometers inland (Van Wychen et al. 2015). On the other hand, velocities of from their termini make them susceptible to thinning and 30–90 m y−1 are commonly found near the ELA of large acceleration driven by changes in sea level and the pene- tidewater terminating glaciers of the QEI, with velocities tration of warm ocean water at their beds. This can result in increasing in a down-glacier direction typically to 100– enhanced subaqueous melting, floatation, and the likely 250 m y−1 at their terminus (Van Wychen et al. 2014). Of presence of highly deformable marine sediments (Burgess particular note are the Trinity and Wykeham Glaciers of Prince et al. 2005; Dowdeswell et al. 2004). Ongoing analysis of of Wales Icefield, which have recently attained flow speeds high resolution geophysical datasets from airborne and of >1200 m y−1 and >600 m y−1 respectively. These maxi- satellite measurements are critical for improving current mum velocities attained by both glaciers make them currently estimates of mass loss through iceberg calving, changing the fastest flowing glaciers in the Canadian Arctic (Fig. 13.6a). glacier dynamics, and the potential for catastrophic collapse The velocity structure of Belcher Glacier on Devon Ice of glaciers in response to measured and predicted climate Cap can be used as an example of the general patterns of ice and ocean warming (Van Wychen et al.
Recommended publications
  • Modelling the Transfer of Supraglacial Meltwater to the Bed of Leverett Glacier, Southwest Greenland
    The Cryosphere, 9, 123–138, 2015 www.the-cryosphere.net/9/123/2015/ doi:10.5194/tc-9-123-2015 © Author(s) 2015. CC Attribution 3.0 License. Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland C. C. Clason1, D. W. F. Mair2, P. W. Nienow3, I. D. Bartholomew3, A. Sole4, S. Palmer5, and W. Schwanghart6 1Department of Physical Geography and Quaternary Geology, Stockholm University, 106 91 Stockholm, Sweden 2Geography and Environment, University of Aberdeen, Aberdeen, AB24 3UF, UK 3School of Geosciences, University of Edinburgh, Edinburgh, EH8 9XP, UK 4Department of Geography, University of Sheffield, Sheffield, S10 2TN, UK 5Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4RJ, UK 6Institute of Earth and Environmental Science, University of Potsdam, 14476 Potsdam-Golm, Germany Correspondence to: C. C. Clason ([email protected]) Received: 23 June 2014 – Published in The Cryosphere Discuss.: 29 July 2014 Revised: 12 December 2014 – Accepted: 24 December 2014 – Published: 22 January 2015 Abstract. Meltwater delivered to the bed of the Greenland melt to the bed matches the observed delay between the peak Ice Sheet is a driver of variable ice-motion through changes air temperatures and subsequent velocity speed-ups, while in effective pressure and enhanced basal lubrication. Ice sur- the instantaneous transfer of melt to the bed in a control sim- face velocities have been shown to respond rapidly both ulation does not. Although both moulins and lake drainages to meltwater production at the surface and to drainage of are predicted to increase in number for future warmer climate supraglacial lakes, suggesting efficient transfer of meltwa- scenarios, the lake drainages play an increasingly important ter from the supraglacial to subglacial hydrological systems.
    [Show full text]
  • 2007 – 2008 – Roger Moe, Former Democratic Letter from Will Steger
    ANNUAL REPORT 2007–2008 INSPIRE EMPOWER EDUCATE SOLAR WIND TABLE OF CONTENTS 1 The Will Steger Foundation (WSF) is dedicated to creating programs that foster international “ [Will Steger and the leadership and cooperation through environmental education and policy. WSF] were the ones that brought the left and the WSF seeks to inspire, educate and empower the world to understand the threat of and solutions right into the center on to global warming. this issue [global warm- CHANGE ACTION ing].” ANNUAL REPORT 2007 – 2008 – Roger Moe, former Democratic Letter from Will Steger...................................................................................................... 2 Congressman Letter from the Executive Director ................................................................................... 4 Fostering Leadership and International Cooperation ...................................................... 6 Inspiring Others through the Eyewitness Account .......................................................... 8 Empowering Others through Education ........................................................................ 10 Global Warming 101 initiative ....................................................................................... 18 Media Outreach .............................................................................................................. 24 Supporters ....................................................................................................................... 26 2801 21st Avenue South, Suite
    [Show full text]
  • MILIEUX MÉSIQUES ET SECS DE L'île BYLOT, NUNAVUT (CANADA): CARACTÉRISATION ET UTILISATION PAR LA GRANDE OIE DES NEIGES - Juin 2002
    UNIVERSITÉ. DU QUÉBEC MÉMOIRE PRÉSENTÉ À L'UNIVERSITÉ DU QUÉBEC À TROIS-RIVIÈRES DÉPÔT FINAL COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN SCIENCES DE L'ENVIRONNEMENT PAR ISABELLE DUCLOS MILIEUX MÉSIQUES ET SECS DE L'ÎLE BYLOT, NUNAVUT (CANADA): CARACTÉRISATION ET UTILISATION PAR LA GRANDE OIE DES NEIGES - Juin 2002 © Isabelle Duclos 2002 Université du Québec à Trois-Rivières Service de la bibliothèque Avertissement L’auteur de ce mémoire ou de cette thèse a autorisé l’Université du Québec à Trois-Rivières à diffuser, à des fins non lucratives, une copie de son mémoire ou de sa thèse. Cette diffusion n’entraîne pas une renonciation de la part de l’auteur à ses droits de propriété intellectuelle, incluant le droit d’auteur, sur ce mémoire ou cette thèse. Notamment, la reproduction ou la publication de la totalité ou d’une partie importante de ce mémoire ou de cette thèse requiert son autorisation. Il Résumé La densité de familles de la Grande Oie des neiges a augmenté récemment dans les milieux mésiques et secs de l'île Bylot, Nunavut (Canada). Ces milieux qui représentent environ 90% de la plaine sud de l'île sont aussi utilisés, parfois intensément, par les lemmings. Cette étude est la première à caractériser la végétation de ces milieux et à quantifier l'utilisation faite par ces principaux herbivores. L'utilisation et la sélection des habitats humides et mésiques par les familles d'oies ont également été étudiées via des décomptes d'oies. Dix communautés végétales ont été identifiées en 2000 et 2001. Leur couvert total de végétation était élevé (>95%), à l'exception de deux communautés végétales xériques.
    [Show full text]
  • High Arctic Holocene Temperature Record from the Agassiz Ice Cap and Greenland Ice Sheet Evolution
    High Arctic Holocene temperature record from the Agassiz ice cap and Greenland ice sheet evolution Benoit S. Lecavaliera,1, David A. Fisherb, Glenn A. Milneb, Bo M. Vintherc, Lev Tarasova, Philippe Huybrechtsd, Denis Lacellee, Brittany Maine, James Zhengf, Jocelyne Bourgeoisg, and Arthur S. Dykeh,i aDepartment of Physics and Physical Oceanography, Memorial University, St. John’s, Canada, A1B 3X7; bDepartment of Earth and Environmental Sciences, University of Ottawa, Ottawa, Canada, K1N 6N5; cCentre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark, 2100; dEarth System Science and Departement Geografie, Vrije Universiteit Brussel, Brussels, Belgium, 1050; eDepartment of Geography, University of Ottawa, Ottawa, Canada, K1N 6N5; fGeological Survey of Canada, Natural Resources Canada, Ottawa, Canada, K1A 0E8; gConsorminex Inc., Gatineau, Canada, J8R 3Y3; hDepartment of Earth Sciences, Dalhousie University, Halifax, Canada, B3H 4R2; and iDepartment of Anthropology, McGill University, Montreal, Canada, H3A 2T7 Edited by Jeffrey P. Severinghaus, Scripps Institution of Oceanography, La Jolla, CA, and approved April 18, 2017 (received for review October 2, 2016) We present a revised and extended high Arctic air temperature leading the authors to adopt a spatially homogeneous change in reconstruction from a single proxy that spans the past ∼12,000 y air temperature across the region spanned by these two ice caps. 18 (up to 2009 CE). Our reconstruction from the Agassiz ice cap (Elles- By removing the temperature signal from the δ O record of mere Island, Canada) indicates an earlier and warmer Holocene other Greenland ice cores (Fig. 1A), the residual was used to thermal maximum with early Holocene temperatures that are estimate altitude changes of the ice surface through time.
    [Show full text]
  • PALEOLIMNOLOGICAL SURVEY of COMBUSTION PARTICLES from LAKES and PONDS in the EASTERN ARCTIC, NUNAVUT, CANADA an Exploratory Clas
    A PALEOLIMNOLOGICAL SURVEY OF COMBUSTION PARTICLES FROM LAKES AND PONDS IN THE EASTERN ARCTIC, NUNAVUT, CANADA An Exploratory Classification, Inventory and Interpretation at Selected Sites NANCY COLLEEN DOUBLEDAY A thesis submitted to the Department of Biology in conformity with the requirements for the degree of Doctor of Philosophy Queen's University Kingston, Ontario, Canada December 1999 Copyright@ Nancy C. Doubleday, 1999 National Library Bibliothèque nationale 1*1 of Canada du Canada Acquisitions and Acquisitions et Bibf iographic Services services bibliographiques 395 Wellington Street 395. rue Wellington Ottawa ON KIA ON4 Ottawa ON K1A ON4 Canada Canada Your lYe Vorre réfhœ Our file Notre refdretua The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive pemettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, Ioan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or othemise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son pemission. autorisation. ABSTRACT Recently international attention has been directed to investigation of anthropogenic contaminants in various biotic and abiotic components of arctic ecosystems. Combustion of coai, biomass (charcoal), petroleum and waste play an important role in industrial emissions, and are associated with most hurnan activities.
    [Show full text]
  • Research Cruise Report: Mission HLY031
    Research Cruise Report: Mission HLY031 Conducted aboard USCGC Healy In Northern Baffi n Bay and Nares Strait 21 July –16 August 2003 Project Title: Variability and Forcing of Fluxes through Nares Strait and Jones Sound: A Freshwater Emphasis Sponsored by the US National Science Foundation, Offi ce of Polar Programs, Arctic Division Table of Contents Introduction by Chief Scientist . 4 Science Program Summary . 6 Science Party List . 7 Crew List . 8 Science Component Reports CTD-Rosette Hydrography . 9 Internally recording CTD . 29 Kennedy Channel Moorings . 33 Pressure Array . 41 Shipboard ADCP . 47 Bi-valve Retrieval . 51 Coring . 55 Seabeam Mapping . 65 Aviation Science Report . 71 Ice Report . 79 Weather Summary . 91 Inuit Perspective . 95 Photojournalist Perspective . 101. Website Log . 105 Chief Scientist Log . 111 Recommendations . .125 Introduction Dr. Kelly Kenison Falkner Chief Scientist Oregon State University In the very early hours of July 17, 2003, I arrived at collected via the ship’s Seabeam system and the underway the USCGC Healy moored at the fueling pier in St. John’s thermosalinograph system was put to good use throughout Newfoundland, Canada to assume my role as chief scientist much of the cruise. for an ambitious interdisciplinary mission to Northern Part of our success can be attributed to luck with Mother Baffi n Bay and Nares St. This research cruise constitutes Nature. Winds and ice worked largely in our favor as we the inaugural fi eld program of a fi ve year collaborative wound our way northward. Our winds were generally research program entitled Variability and Forcing of moderate and out of the south and the ice normal to light.
    [Show full text]
  • Baffin Island: Field Research and High Arctic Adventure, 1961-1967
    University of Calgary PRISM: University of Calgary's Digital Repository University of Calgary Press University of Calgary Press Open Access Books 2016-02 Baffin Island: Field Research and High Arctic Adventure, 1961-1967 Ives, Jack D. University of Calgary Press Ives, J.D. "Baffin Island: Field Research and High Arctic Adventure, 1961-1967." Canadian history and environment series; no. 18. University of Calgary Press, Calgary, Alberta, 2016. http://hdl.handle.net/1880/51093 book http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution Non-Commercial No Derivatives 4.0 International Downloaded from PRISM: https://prism.ucalgary.ca BAFFIN ISLAND: Field Research and High Arctic Adventure, 1961–1967 by Jack D. Ives ISBN 978-1-55238-830-3 THIS BOOK IS AN OPEN ACCESS E-BOOK. It is an electronic version of a book that can be purchased in physical form through any bookseller or on-line retailer, or from our distributors. Please support this open access publication by requesting that your university purchase a print copy of this book, or by purchasing a copy yourself. If you have any questions, please contact us at [email protected] Cover Art: The artwork on the cover of this book is not open access and falls under traditional copyright provisions; it cannot be reproduced in any way without written permission of the artists and their agents. The cover can be displayed as a complete cover image for the purposes of publicizing this work, but the artwork cannot be extracted from the context of the cover of this specific work without breaching the artist’s copyright.
    [Show full text]
  • EXPERIENCES 2021 Table of Contents
    NUNAVUT EXPERIENCES 2021 Table of Contents Arts & Culture Alianait Arts Festival Qaggiavuut! Toonik Tyme Festival Uasau Soap Nunavut Development Corporation Nunatta Sunakkutaangit Museum Malikkaat Carvings Nunavut Aqsarniit Hotel And Conference Centre Adventure Arctic Bay Adventures Adventure Canada Arctic Kingdom Bathurst Inlet Lodge Black Feather Eagle-Eye Tours The Great Canadian Travel Group Igloo Tourism & Outfitting Hakongak Outfitting Inukpak Outfitting North Winds Expeditions Parks Canada Arctic Wilderness Guiding and Outfitting Tikippugut Kool Runnings Quark Expeditions Nunavut Brewing Company Kivalliq Wildlife Adventures Inc. Illu B&B Eyos Expeditions Baffin Safari About Nunavut Airlines Canadian North Calm Air Travel Agents Far Horizons Anderson Vacations Top of the World Travel p uit O erat In ed Iᓇᓄᕗᑦ *denotes an n u q u ju Inuit operated nn tau ut Aula company About Nunavut Nunavut “Our Land” 2021 marks the 22nd anniversary of Nunavut becoming Canada’s newest territory. The word “Nunavut” means “Our Land” in Inuktut, the language of the Inuit, who represent 85 per cent of Nunavut’s resident’s. The creation of Nunavut as Canada’s third territory had its origins in a desire by Inuit got more say in their future. The first formal presentation of the idea – The Nunavut Proposal – was made to Ottawa in 1976. More than two decades later, in February 1999, Nunavut’s first 19 Members of the Legislative Assembly (MLAs) were elected to a five year term. Shortly after, those MLAs chose one of their own, lawyer Paul Okalik, to be the first Premier. The resulting government is a public one; all may vote - Inuit and non-Inuit, but the outcomes reflect Inuit values.
    [Show full text]
  • Cryosat-2 Delivers Monthly and Inter-Annual Surface Elevation Change for Arctic Ice Caps
    The Cryosphere, 9, 1895–1913, 2015 www.the-cryosphere.net/9/1895/2015/ doi:10.5194/tc-9-1895-2015 © Author(s) 2015. CC Attribution 3.0 License. CryoSat-2 delivers monthly and inter-annual surface elevation change for Arctic ice caps L. Gray1, D. Burgess2, L. Copland1, M. N. Demuth2, T. Dunse3, K. Langley3, and T. V. Schuler3 1Department of Geography, University of Ottawa, Ottawa, K1N 6N5, Canada 2Natural Resources Canada, Ottawa, Canada 3Department of Geosciences, University of Oslo, Oslo, Norway Correspondence to: L. Gray ([email protected]) Received: 29 April 2015 – Published in The Cryosphere Discuss.: 26 May 2015 Revised: 15 August 2015 – Accepted: 3 September 2015 – Published: 25 September 2015 Abstract. We show that the CryoSat-2 radar altimeter can 1 Introduction provide useful estimates of surface elevation change on a variety of Arctic ice caps, on both monthly and yearly Recent evidence suggests that mass losses from ice caps and timescales. Changing conditions, however, can lead to a glaciers will contribute significantly to sea level rise in the varying bias between the elevation estimated from the radar coming decades (Meier et al., 2007; Gardner et al., 2013; altimeter and the physical surface due to changes in the ratio Vaughan et al., 2013). However, techniques to measure the of subsurface to surface backscatter. Under melting condi- changes of smaller ice caps are very limited: Satellite tech- tions the radar returns are predominantly from the surface so niques, such as repeat gravimetry from GRACE (Gravity Re- that if surface melt is extensive across the ice cap estimates covery and Climate Experiment), favour the large Greenland of summer elevation loss can be made with the frequent or Antarctic Ice Sheets, while ground and airborne exper- coverage provided by CryoSat-2.
    [Show full text]
  • Supraglacial Rivers on the Northwest Greenland Ice Sheet, Devon Ice Cap, and Barnes Ice Cap Mapped Using Sentinel-2 Imagery
    This is a repository copy of Supraglacial rivers on the northwest Greenland Ice Sheet, Devon Ice Cap, and Barnes Ice Cap mapped using Sentinel-2 imagery. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/141238/ Version: Accepted Version Article: Yang, K., Smith, L., Sole, A. et al. (4 more authors) (2019) Supraglacial rivers on the northwest Greenland Ice Sheet, Devon Ice Cap, and Barnes Ice Cap mapped using Sentinel-2 imagery. International Journal of Applied Earth Observation and Geoinformation, 78. pp. 1-13. ISSN 0303-2434 https://doi.org/10.1016/j.jag.2019.01.008 Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/). Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Supraglacial rivers on the northwest Greenland Ice Sheet, Devon Ice Cap, and 2 Barnes Ice Cap mapped using Sentinel-2 imagery 3 Kang Yang1,2,3, Laurence C.
    [Show full text]
  • Changes in Glacier Facies Zonation on Devon Ice Cap, Nunavut, Detected
    The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-250 Manuscript under review for journal The Cryosphere Discussion started: 26 November 2018 c Author(s) 2018. CC BY 4.0 License. 1 Changes in glacier facies zonation on Devon Ice Cap, Nunavut, detected from SAR imagery 2 and field observations 3 4 Tyler de Jong1, Luke Copland1, David Burgess2 5 1 Department of Geography, Environment and Geomatics, University of Ottawa, Ottawa, Ontario 6 K1N 6N5, Canada 7 2 Natural Resources Canada, 601 Booth St., Ottawa, Ontario K1A 0E8, Canada 8 9 Abstract 10 Envisat ASAR WS images, verified against mass balance, ice core, ground-penetrating radar and 11 air temperature measurements, are used to map changes in the distribution of glacier facies zones 12 across Devon Ice Cap between 2004 and 2011. Glacier ice, saturation/percolation and pseudo dry 13 snow zones are readily distinguishable in the satellite imagery, and the superimposed ice zone can 14 be mapped after comparison with ground measurements. Over the study period there has been a 15 clear upglacier migration of glacier facies, resulting in regions close to the firn line switching from 16 being part of the accumulation area with high backscatter to being part of the ablation area with 17 relatively low backscatter. This has coincided with a rapid increase in positive degree days near 18 the ice cap summit, and an increase in the glacier ice zone from 71% of the ice cap in 2005 to 92% 19 of the ice cap in 2011. This has significant implications for the area of the ice cap subject to 20 meltwater runoff.
    [Show full text]
  • Elevation Changes of Ice Caps in the Canadian Arctic Archipelago W
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, F04007, doi:10.1029/2003JF000045, 2004 Elevation changes of ice caps in the Canadian Arctic Archipelago W. Abdalati,1 W. Krabill,2 E. Frederick,3 S. Manizade,3 C. Martin,3 J. Sonntag,3 R. Swift,3 R. Thomas,3 J. Yungel,3 and R. Koerner4 Received 17 April 2003; revised 19 July 2004; accepted 8 September 2004; published 20 November 2004. [1] Precise repeat airborne laser surveys were conducted over the major ice caps in the Canadian Arctic Archipelago in the spring of 1995 and 2000 in order to measure elevation changes in the region. Our measurements reveal thinning at lower elevations (below 1600 m) on most of the ice caps and glaciers but either very little change or thickening at higher elevations in the ice cap accumulation zones. Recent increases in precipitation in the area can account for the slight thickening where it was observed but not for the thinning at lower elevations. For the northern ice caps on the Queen Elizabeth Islands, thinning was generally <0.5 m yrÀ1, which is consistent with what would be expected from the warm temperature anomalies in the region for the 5 year period between surveys, and appears to be a continuation of a trend that began in the mid-1980s. Farther south, however, on the Barnes and Penny ice caps on Baffin Island, this thinning was much more pronounced at over 1 m yrÀ1 in the lower elevations. Here temperature anomalies were very small, and the thinning at low elevations far exceeds any associated enhanced ablation.
    [Show full text]