Supraglacial Rivers on the Northwest Greenland Ice Sheet, Devon Ice Cap, and Barnes Ice Cap Mapped Using Sentinel-2 Imagery
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modelling the Transfer of Supraglacial Meltwater to the Bed of Leverett Glacier, Southwest Greenland
The Cryosphere, 9, 123–138, 2015 www.the-cryosphere.net/9/123/2015/ doi:10.5194/tc-9-123-2015 © Author(s) 2015. CC Attribution 3.0 License. Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland C. C. Clason1, D. W. F. Mair2, P. W. Nienow3, I. D. Bartholomew3, A. Sole4, S. Palmer5, and W. Schwanghart6 1Department of Physical Geography and Quaternary Geology, Stockholm University, 106 91 Stockholm, Sweden 2Geography and Environment, University of Aberdeen, Aberdeen, AB24 3UF, UK 3School of Geosciences, University of Edinburgh, Edinburgh, EH8 9XP, UK 4Department of Geography, University of Sheffield, Sheffield, S10 2TN, UK 5Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4RJ, UK 6Institute of Earth and Environmental Science, University of Potsdam, 14476 Potsdam-Golm, Germany Correspondence to: C. C. Clason ([email protected]) Received: 23 June 2014 – Published in The Cryosphere Discuss.: 29 July 2014 Revised: 12 December 2014 – Accepted: 24 December 2014 – Published: 22 January 2015 Abstract. Meltwater delivered to the bed of the Greenland melt to the bed matches the observed delay between the peak Ice Sheet is a driver of variable ice-motion through changes air temperatures and subsequent velocity speed-ups, while in effective pressure and enhanced basal lubrication. Ice sur- the instantaneous transfer of melt to the bed in a control sim- face velocities have been shown to respond rapidly both ulation does not. Although both moulins and lake drainages to meltwater production at the surface and to drainage of are predicted to increase in number for future warmer climate supraglacial lakes, suggesting efficient transfer of meltwa- scenarios, the lake drainages play an increasingly important ter from the supraglacial to subglacial hydrological systems. -
N National Museum of Natural History June 2002 Number 10
ewsletterewsletter Smithsonian Institution NN National Museum of Natural History June 2002www.mnh.si.edu/arctic Number 10 NOTES FROM THE DIRECTOR for the University of Maryland. Irwin Shapiro, Director of By Bill Fitzhugh the Smithsonian Astrophysical Observatory, has been named Interim Under Secretary; and Douglas Erwin has been named In thirty two years at the Smithsonian, I have never Interim Director of NMNH while the search for a permanent experienced a year quite like the last one. In the past, the person for both positions continues. Yours Truly has become Smithsonian seemed immune from worldly upheavals, and Chair of Anthropology (a post I held from 1975-80). By this sailed steadily forward even in troubled times. During these time next year the Science Commission Report will have been years, the Institution changed physically and intellectually, on the table for six months, and I hope to report new directions increased the social and ethnic diversity of its staff and and improved prospects for Smithsonian science. programming, and began to diversify its funding stream; but the basic commitment to scholarship and research remained solid. *** Today, this foundation is being challenged as never before. The result has been an unusual year, to say the least. A Despite difficult times, the ASC has maintained its core stream of directors—seven or eight at last count—have left programs and has initiated new projects. At long last, Igor their posts; a special commission has investigated American Krupnik and I, with assistance from Elisabeth Ward, History’s exhibition program; a congressional science succeeded in realizing the dream of a dedicated ASC monograph commission is evaluating Smithsonian science; and two series. -
Glacial Morphology of the Cary Age Deposits in a Portion of Central Iowa John David Foster Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1-1-1969 Glacial morphology of the Cary age deposits in a portion of central Iowa John David Foster Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Recommended Citation Foster, John David, "Glacial morphology of the Cary age deposits in a portion of central Iowa" (1969). Retrospective Theses and Dissertations. 17570. https://lib.dr.iastate.edu/rtd/17570 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. GLACIAL MORPHOLOGY OF THE CARY AGE DEPOSITS IN A PORTION OF CENTRAL IOWA by John David Foster A Thesis Submitted to the . • Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of MASTER OF SCIENCE Major Subject: Geology Approved: Signatures have been redacted for privacy rs ity Ames, Iowa 1969 !/Y-J ii &EW TABLE OF CONTENTS Page ABSTRACT vii INTRODUCTION Location 2 Drainage 3 Geologic Description 3 Preglacial Topography 6 Pleistocene Stratigraphy 12 Acknowledgments . 16 GLACIAL GEOLOGY 18 General Description 18 Glacial Geology of the Study Area 18 Till Petrofabric Investigation 72 DISCUSSION 82 Introduction 82 Hypothetical Regime of the Cary Glacier 82 Review -
Cryosat-2 Delivers Monthly and Inter-Annual Surface Elevation Change for Arctic Ice Caps
The Cryosphere, 9, 1895–1913, 2015 www.the-cryosphere.net/9/1895/2015/ doi:10.5194/tc-9-1895-2015 © Author(s) 2015. CC Attribution 3.0 License. CryoSat-2 delivers monthly and inter-annual surface elevation change for Arctic ice caps L. Gray1, D. Burgess2, L. Copland1, M. N. Demuth2, T. Dunse3, K. Langley3, and T. V. Schuler3 1Department of Geography, University of Ottawa, Ottawa, K1N 6N5, Canada 2Natural Resources Canada, Ottawa, Canada 3Department of Geosciences, University of Oslo, Oslo, Norway Correspondence to: L. Gray ([email protected]) Received: 29 April 2015 – Published in The Cryosphere Discuss.: 26 May 2015 Revised: 15 August 2015 – Accepted: 3 September 2015 – Published: 25 September 2015 Abstract. We show that the CryoSat-2 radar altimeter can 1 Introduction provide useful estimates of surface elevation change on a variety of Arctic ice caps, on both monthly and yearly Recent evidence suggests that mass losses from ice caps and timescales. Changing conditions, however, can lead to a glaciers will contribute significantly to sea level rise in the varying bias between the elevation estimated from the radar coming decades (Meier et al., 2007; Gardner et al., 2013; altimeter and the physical surface due to changes in the ratio Vaughan et al., 2013). However, techniques to measure the of subsurface to surface backscatter. Under melting condi- changes of smaller ice caps are very limited: Satellite tech- tions the radar returns are predominantly from the surface so niques, such as repeat gravimetry from GRACE (Gravity Re- that if surface melt is extensive across the ice cap estimates covery and Climate Experiment), favour the large Greenland of summer elevation loss can be made with the frequent or Antarctic Ice Sheets, while ground and airborne exper- coverage provided by CryoSat-2. -
A Descriptiol\ of the PENNY ICE CAP. ITS Accuml: LATION and ABLATION
342 JOURNAL OF GLACIOLOGY STUDIES IN GLACIER PHYSICS ON THE PENNY ICE CAP, BAFFIN ISLAND, I953 INTRODUCTION Studies in glacier physics formed a major part of the work of the Baffin Island Expedition, 1953, the second expedition of the Arctic Institute of North America to Baffin. This work will be reported in a series of articles in this journal: the first (Part I) appears below; further parts will follow in due course. It was decided to visit the Penny Ice Cap of the Cumberland Peninsula as a sequel to our work on the Barnes Tee Cap in 1950, since it is the only other large area of glaciation in Baffin Island and because our knowledge of the glaciation of the eastern Canadian Arctic is still very limited. From a study of the aerial photographs taken by the Roya l Canadian Air Force in 1948 and the map, together with a consideration of the general resources of the expedition, it was planned to land a glacio-meteorological camp (Camp AI) by means of a Norseman aircraft on a high dome of the ice cap and another camp in the region of the firn line of onc of the more accessible glaciers (now called Highway Glacier) flowing into the head of the Pangnirtung Pass (see Figs. I and 3, pp. 343 and 347). Here there are two lakes, which were considered to be suitable for spring and autumn aircraft landings and for a base camp. From the two glacier camps it was planned to assess the particular regimen of the glaciation and to couple with this studies of some more general problems in glacier physics. -
Changes in Glacier Facies Zonation on Devon Ice Cap, Nunavut, Detected
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-250 Manuscript under review for journal The Cryosphere Discussion started: 26 November 2018 c Author(s) 2018. CC BY 4.0 License. 1 Changes in glacier facies zonation on Devon Ice Cap, Nunavut, detected from SAR imagery 2 and field observations 3 4 Tyler de Jong1, Luke Copland1, David Burgess2 5 1 Department of Geography, Environment and Geomatics, University of Ottawa, Ottawa, Ontario 6 K1N 6N5, Canada 7 2 Natural Resources Canada, 601 Booth St., Ottawa, Ontario K1A 0E8, Canada 8 9 Abstract 10 Envisat ASAR WS images, verified against mass balance, ice core, ground-penetrating radar and 11 air temperature measurements, are used to map changes in the distribution of glacier facies zones 12 across Devon Ice Cap between 2004 and 2011. Glacier ice, saturation/percolation and pseudo dry 13 snow zones are readily distinguishable in the satellite imagery, and the superimposed ice zone can 14 be mapped after comparison with ground measurements. Over the study period there has been a 15 clear upglacier migration of glacier facies, resulting in regions close to the firn line switching from 16 being part of the accumulation area with high backscatter to being part of the ablation area with 17 relatively low backscatter. This has coincided with a rapid increase in positive degree days near 18 the ice cap summit, and an increase in the glacier ice zone from 71% of the ice cap in 2005 to 92% 19 of the ice cap in 2011. This has significant implications for the area of the ice cap subject to 20 meltwater runoff. -
Ice Velocity Changes on Penny Ice Cap, Baffin Island, Since the 1950S
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref Journal of Glaciology (2017), 63(240) 716–730 doi: 10.1017/jog.2017.40 © The Author(s) 2017. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Ice velocity changes on Penny Ice Cap, Baffin Island, since the 1950s NICOLE SCHAFFER,1,2 LUKE COPLAND,1 CHRISTIAN ZDANOWICZ3 1Department of Geography, Environment and Geomatics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada 2Natural Resources Canada, Geological Survey of Canada, 601 Booth St., Ottawa, Ontario K1A 0E8, Canada 3Department of Earth Sciences, Uppsala University, Uppsala 75236, Sweden Correspondence: Nicole Schaffer <[email protected]> ABSTRACT. Predicting the velocity response of glaciers to increased surface melt is a major topic of ongoing research with significant implications for accurate sea-level rise forecasting. In this study we use optical and radar satellite imagery as well as comparisons with historical ground measurements to produce a multi-decadal record of ice velocity variations on Penny Ice Cap, Baffin Island. Over the period 1985–2011, the six largest outlet glaciers on the ice cap decelerated by an average rate of − − 21 m a 1 over the 26 year period (0.81 m a 2), or 12% per decade. The change was not monotonic, however, as most glaciers accelerated until the 1990s, then decelerated. A comparison of recent imagery with historical velocity measurements on Highway Glacier, on the southern part of Penny Ice − Cap, shows that this glacier decelerated by 71% between 1953 and 2009–11, from 57 to 17 m a 1. -
Elevation Changes of Ice Caps in the Canadian Arctic Archipelago W
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, F04007, doi:10.1029/2003JF000045, 2004 Elevation changes of ice caps in the Canadian Arctic Archipelago W. Abdalati,1 W. Krabill,2 E. Frederick,3 S. Manizade,3 C. Martin,3 J. Sonntag,3 R. Swift,3 R. Thomas,3 J. Yungel,3 and R. Koerner4 Received 17 April 2003; revised 19 July 2004; accepted 8 September 2004; published 20 November 2004. [1] Precise repeat airborne laser surveys were conducted over the major ice caps in the Canadian Arctic Archipelago in the spring of 1995 and 2000 in order to measure elevation changes in the region. Our measurements reveal thinning at lower elevations (below 1600 m) on most of the ice caps and glaciers but either very little change or thickening at higher elevations in the ice cap accumulation zones. Recent increases in precipitation in the area can account for the slight thickening where it was observed but not for the thinning at lower elevations. For the northern ice caps on the Queen Elizabeth Islands, thinning was generally <0.5 m yrÀ1, which is consistent with what would be expected from the warm temperature anomalies in the region for the 5 year period between surveys, and appears to be a continuation of a trend that began in the mid-1980s. Farther south, however, on the Barnes and Penny ice caps on Baffin Island, this thinning was much more pronounced at over 1 m yrÀ1 in the lower elevations. Here temperature anomalies were very small, and the thinning at low elevations far exceeds any associated enhanced ablation. -
Polar Continental Shelf Program Science Report 2019: Logistical Support for Leading-Edge Scientific Research in Canada and Its Arctic
Polar Continental Shelf Program SCIENCE REPORT 2019 LOGISTICAL SUPPORT FOR LEADING-EDGE SCIENTIFIC RESEARCH IN CANADA AND ITS ARCTIC Polar Continental Shelf Program SCIENCE REPORT 2019 Logistical support for leading-edge scientific research in Canada and its Arctic Polar Continental Shelf Program Science Report 2019: Logistical support for leading-edge scientific research in Canada and its Arctic Contact information Polar Continental Shelf Program Natural Resources Canada 2464 Sheffield Road Ottawa ON K1B 4E5 Canada Tel.: 613-998-8145 Email: [email protected] Website: pcsp.nrcan.gc.ca Cover photographs: (Top) Ready to start fieldwork on Ward Hunt Island in Quttinirpaaq National Park, Nunavut (Bottom) Heading back to camp after a day of sampling in the Qarlikturvik Valley on Bylot Island, Nunavut Photograph contributors (alphabetically) Dan Anthon, Royal Roads University: page 8 (bottom) Lisa Hodgetts, University of Western Ontario: pages 34 (bottom) and 62 Justine E. Benjamin: pages 28 and 29 Scott Lamoureux, Queen’s University: page 17 Joël Bêty, Université du Québec à Rimouski: page 18 (top and bottom) Janice Lang, DRDC/DND: pages 40 and 41 (top and bottom) Maya Bhatia, University of Alberta: pages 14, 49 and 60 Jason Lau, University of Western Ontario: page 34 (top) Canadian Forces Combat Camera, Department of National Defence: page 13 Cyrielle Laurent, Yukon Research Centre: page 48 Hsin Cynthia Chiang, McGill University: pages 2, 8 (background), 9 (top Tanya Lemieux, Natural Resources Canada: page 9 (bottom -
Movements and Habitat Use of Muskoxen on Bathurst, Cornwallis
MOVEMENTS AND HABITAT USE OF MUSKOXEN (Ovibos moschatus) ON BATHURST, CORNWALLIS, AND DEVON ISLANDS, 2003-2006 Morgan Anderson1 and Michael A. D. Ferguson Version: 23 December 2016 1Department of Environment, Government of Nunavut, Box 209 Igloolik NU X0A 0L0 STATUS REPORT 2016-08 NUNAVUT DEPARTMENT OF ENVIRONMENT WILDLIFE RESEARCH SECTION IGLOOLIK, NU i Summary Eleven muskoxen (Ovibos moschatus) were fitted with satellite collars in summer 2003 to investigate habitat preferences and movement parameters in areas where they are sympatric with Peary caribou on Bathurst, Cornwallis, and Devon islands. Collars collected locations every 4 days until May 2006, with 4 muskoxen on Bathurst Island collared, 2 muskoxen collared on Cornwallis Island, and 5 muskoxen collared on western Devon Island. Only 5-29% of the satellite locations were associated with an estimated error of less than 150 m (Argos Class 3 locations). Muskoxen in this study used low-lying valleys and coastal areas with abundant vegetation on all 3 islands, in agreement with previous studies in other areas and Inuit qaujimajatuqangit. They often selected tussock graminoid tundra, moist/dry non-tussock graminoid/dwarf shrub tundra, wet sedge, and sparsely vegetated till/colluvium sites. Minimum convex polygon home ranges representing 100% of the locations with <150 m error include these movements between core areas, and ranged from 233 km2 to 2494 km2 for all collared muskoxen over the 3 years, but these home ranges include large areas of unused habitat separating discrete patches of good habitat where most locations were clustered. Several home ranges overlapped, which is not surprising, since muskoxen are not territorial. -
Changes in Snow, Ice and Permafrost Across Canada
CHAPTER 5 Changes in Snow, Ice, and Permafrost Across Canada CANADA’S CHANGING CLIMATE REPORT CANADA’S CHANGING CLIMATE REPORT 195 Authors Chris Derksen, Environment and Climate Change Canada David Burgess, Natural Resources Canada Claude Duguay, University of Waterloo Stephen Howell, Environment and Climate Change Canada Lawrence Mudryk, Environment and Climate Change Canada Sharon Smith, Natural Resources Canada Chad Thackeray, University of California at Los Angeles Megan Kirchmeier-Young, Environment and Climate Change Canada Acknowledgements Recommended citation: Derksen, C., Burgess, D., Duguay, C., Howell, S., Mudryk, L., Smith, S., Thackeray, C. and Kirchmeier-Young, M. (2019): Changes in snow, ice, and permafrost across Canada; Chapter 5 in Can- ada’s Changing Climate Report, (ed.) E. Bush and D.S. Lemmen; Govern- ment of Canada, Ottawa, Ontario, p.194–260. CANADA’S CHANGING CLIMATE REPORT 196 Chapter Table Of Contents DEFINITIONS CHAPTER KEY MESSAGES (BY SECTION) SUMMARY 5.1: Introduction 5.2: Snow cover 5.2.1: Observed changes in snow cover 5.2.2: Projected changes in snow cover 5.3: Sea ice 5.3.1: Observed changes in sea ice Box 5.1: The influence of human-induced climate change on extreme low Arctic sea ice extent in 2012 5.3.2: Projected changes in sea ice FAQ 5.1: Where will the last sea ice area be in the Arctic? 5.4: Glaciers and ice caps 5.4.1: Observed changes in glaciers and ice caps 5.4.2: Projected changes in glaciers and ice caps 5.5: Lake and river ice 5.5.1: Observed changes in lake and river ice 5.5.2: Projected changes in lake and river ice 5.6: Permafrost 5.6.1: Observed changes in permafrost 5.6.2: Projected changes in permafrost 5.7: Discussion This chapter presents evidence that snow, ice, and permafrost are changing across Canada because of increasing temperatures and changes in precipitation. -
Mercury in the Canadian Arctic Terrestrial Environment: an Update
STOTEN-16201; No of Pages 13 Science of the Total Environment xxx (2014) xxx–xxx Contents lists available at ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Review Mercury in the Canadian Arctic Terrestrial Environment: An Update Mary Gamberg a,⁎, John Chételat b, Alexandre J. Poulain c, Christian Zdanowicz d, Jiancheng Zheng e a Gamberg Consulting, Box 30130, Whitehorse, Yukon, Canada Y1A 5M2 b Environment Canada, Ottawa, Ontario, Canada K1A 0H3 c University of Ottawa, Ottawa, Ontario, Canada K1N 6N5 d Uppsala University, Uppsala, Sweden e Natural Resources Canada, Ottawa, Ontario, Canada K1A 0E4 HIGHLIGHTS • THg and MeHg levels in Arctic snow on land are low, except in coastal areas. • Hg levels in Canadian Arctic glaciers were stable for most of the past century. • THg levels in glaciers show an increasing trend along a north-south gradient. • Water-logged Arctic soils have the potential to methylate mercury. • An Arctic caribou population shows no recent temporal trend in Hg levels. article info abstract Article history: Contaminants in the Canadian Arctic have been studied over the last twenty years under the guidance of the Received 17 December 2013 Northern Contaminants Program. This paper provides the current state of knowledge on mercury (Hg) in the Received in revised form 9 April 2014 Canadian Arctic terrestrial environment. Snow, ice, and soils on land are key reservoirs for atmospheric deposi- Accepted 15 April 2014 tion and can become sources of Hg through the melting of terrestrial ice and snow and via soil erosion. In the Available online xxxx Canadian Arctic, new data have been collected for snow and ice that provide more information on the net accu- Keywords: mulation and storage of Hg in the cryosphere.