Der Mathematiker Carl Ludwig Siegel in Frankfurt

Total Page:16

File Type:pdf, Size:1020Kb

Der Mathematiker Carl Ludwig Siegel in Frankfurt Wissenschaftsgeschichte Einer »den irdischen Angelegenheiten möglichst fernliegenden Wissenschaft« gewidmet Der Mathematiker Carl Ludwig Siegel in Frankfurt arl Ludwig Siegel war einer der 1 Carl Ludwig Cbedeutendsten Mathematiker Siegel wurde der ersten Hälfte des 20. Jahrhun- 1922 im Alter von derts. Er forschte und lehrte 15 25 Jahren ordent- licher Professor an Jahre in Frankfurt, von 1922 bis der Universität 1937. In dieser Zeit entstanden sei- Frankfurt. Anfang ne wichtigsten zahlentheoretischen 1938 wechselte Arbeiten. Danach in Göttingen, ab er an die Univer- 1940 in Princeton und ab 1951 sität Göttingen. wieder in Göttingen, erbrachte Sie- Wegen seiner Ab- gel wichtige Beiträge zur Theorie lehnung der natio- nalsozialistischen der Funktionen mehrerer komple- Politik emigrierte xer Variablen und zur Himmelsme- er von dort aus chanik. Außerdem dehnte er seine 1940 in die verei- Methoden erheblich aus, um addi- nigten Staaten. tive Fragen in algebraischen Zahl- körpern (zum Beispiel das Waring- Problem) zu behandeln. Die Frankfurter Jahre fanden ein Ende, als Siegel zum 1. Januar zehnte vergangen, die Schäden folgendem Zufall. Der Vertreter der 2 Willy Hartner, 1938 nach Göttingen wechselte. sind zum Teil repariert, soweit sie Astronomie an der Universität hat- von 1940 bis Die nationalsozialistische Politik, eben repariert werden konnten, te angekündigt, er würde sein Kol- 1970 Professor die seine jüdischstämmigen Kolle- und insbesondere ist die Mathema- leg erst 14 Tage nach Semesterbe- für Geschichte der Naturwissenschaf- gen und Freunde Max Dehn, Paul tik in Frankfurt wieder in guten ginn anfangen, was übrigens in der ten an der Univer- Epstein, Ernst Hellinger und Otto Händen. Wollen wir hoffen, daß damaligen Zeit weniger als heutzu- sität Frankfurt, Szász aus dem Dienst gedrängt hat- sich niemals wiederholen möge, tage üblich war. Zu den Wochen- nahm nach der te, war Siegel zutiefst zuwider.1 was einst irregeleitete Fanatiker stunden Mittwoch und Sonnabend »Reichskristall- Anlässlich der 50-Jahr-Feier der hier rechtlich denkenden Men- 9 bis 11 Uhr war aber auch eine nacht« den jüdi- Universität (1964) hielt Siegel ei- schen angetan haben!«/8/ 2 Vorlesung von Frobenius über Zah- schen Kollegen nen Vortrag zur Geschichte des lentheorie angezeigt. Da ich nicht Max Dehn und dessen Frau Anto- Mathematischen Seminars der »...so besuchte ich aus purer die geringste Ahnung davon hatte, nie vorübergehend /8/ Universität Frankfurt ( , III Neugier dieses Kolleg« was Zahlentheorie sein könnte, so in seinem Haus in 462 – 474). Willy Hartner be- besuchte ich aus purer Neugier Bad Homburg auf. schreibt diesen Bericht: »Dem äu- Carl Ludwig Siegel wurde am dieses Kolleg, und das entschied Wenige Wochen ßeren Anschein nach kühl distan- 31. Dezember 1896 in Berlin gebo- über meine wissenschaftliche Rich- später, im Januar ziert, jedoch in Wahrheit innerlich ren. Zum Wintersemester 1915/16 tung ...« 1939, emigrierten stärkstens engagiert, schildert er nahm er das Studium der Astrono- Auf Antrag von Georg Frobeni- die Dehns. [Siegel] seine Frankfurter Jahre, mie in Berlin auf. us (1849 – 1917, in Berlin 1892 – von der Zeit seiner Berufung als »Als ich im Herbst 1915 an der 1916) erhielt Siegel zum Ende sei- 25-Jähriger im Jahr 1922 bis zum Berliner Universität immatrikuliert nes ersten Semesters den trostlosen beschämenden Ende in wurde, war gerade ein Krieg in Eisensteinpreis, der jährlich einem den 30er Jahren.«/1/ Siegel schloss vollem Gange. Obwohl ich die po- begabten Studenten der Mathema- seine Rede mit den bewegenden litischen Ereignisse nicht durch- tik verliehen wurde. Zur Ausstrah- Worten: schaute, so faßte ich in instinktiver lung von Frobenius schrieb Siegel: »Zusammenfassend läßt sich sa- Abneigung gegen das gewalttätige »..., daß ich nicht gut erklären gen, daß die Zerstörung des Frank- Treiben der Menschen den Vorsatz, kann, wodurch die starke Wirkung furter Mathematischen Seminars mein Studium einer den irdischen der Vorlesungen von Frobenius durch die Herrschaft Hitlers für alle Angelegenheiten möglichst fernlie- hervorgerufen wurde. Nach mei- davon betroffenen Dozenten die genden Wissenschaft zu widmen, ner Schilderung der Art seines Beendigung der besten und frucht- als welche mir damals die Astrono- Auftretens hätte die Wirkung eher barsten Zeit ihres Lebens bedeutet mie erschien. Daß ich trotzdem zur abschreckend sein können. Ohne hat. Inzwischen sind drei Jahr- Zahlentheorie kam, beruhte auf daß es mir klar wurde, beeinfl ußte Forschung Frankfurt 2/2008 79 1122 UUNINI 22008_02008_02 TeilTeil 0303 PSG.inddPSG.indd 7979 226.06.20086.06.2008 12:28:2312:28:23 UhrUhr Wissenschaftsgeschichte 3 Edmund Landau erkannte den Wert einer zunächst sehr kurz gefassten Arbeit Siegels aus dem drit- ten Semester. Unter seiner Anleitung ar- beitete Siegel seine Gedanken aus und wurde in 1920 in Göttingen promoviert. 4 Ludwig Siegel bei seiner Doktorzeremonie in Göttingen: Er sitzt im Bollerwagen in der Bildmitte. Hin- tere Reihe: Walfi sz (mit Hut), Rogosinski, H. Kneser, Bessel-Hagen (mit Hut), Windau, Krull, Emersleben. In der vorderen Reihe: Nefs, Fräulein Wolff, Siegel, Grandjot, Kapferer, Boskovic. Die Identifi zierung der Dargestellten ermöglichte S. J. Patterson, der in Martin Knesers Nachlass eine entsprechende Notiz fand. mich wahrscheinlich die gesamte mich ein neuartiges und befreien- schäftigte sich Siegel, angeregt schöpferische Persönlichkeit des des Erlebnis.« durch eine Vorlesung von Issai großen Gelehrten, die eben auch Dem innerlich abgelehnten Schur, im dritten Studiensemester durch die Art seines Vortrags in ge- Wehrdienst konnte sich Siegel mit dem Problem der »schlechten wisser Weise zur Geltung kam. weitgehend entziehen, dank der Approximierbarkeit« algebraischer Nach bedrückenden Schuljahren Unterstützung durch den Leiter ei- Zahlen durch rationale; Siegel ver- unter mittelmäßigen oder sogar ner psychiatrischen Klinik. Nach schärfte einen Satz des norwegi- bösartigen Lehrern war dies für dem Wechsel zur Mathematik be- schen Mathematikers Axel Thue erheblich [siehe »Approximation algebraischer Zahlen«]. Issai Schur konnte allerdings Diophantische Approximation algebraischer Zahlen mit Siegels extrem kurz gefasster Arbeit nichts anfangen. Edmund Landau (1877 – 1938), der von 1909 bis 1934 in Göttingen wirkte, zeigte sich interessiert und leitete Siegel zu einer ausführlicheren Darstellung an. Die Promotion er- folgte am 9. Juni 1920. »ein Mathematiker von genialer Schaffenskraft « Während des Wintersemesters 1920/21 war Siegel Lehrbeauftrag- ter in Hamburg, dann Assistent bei Richard Courant, Göttingen. Die Habilitation erfolgte am 10. Dezem- ber 1921 über die additive Theorie der Zahlkörper; darin entwickelte er eine technisch aufwendige Aus- dehnung der »Kreis-Methode« von Godefrey H. Hardy und John E. Lit- tlewood auf total-reelle Zahlkör- per. Am 1. August 1922 wurde C. L. 80 Forschung Frankfurt 2/2008 1122 UUNINI 22008_02008_02 TeilTeil 0303 PSG.inddPSG.indd 8080 226.06.20086.06.2008 12:28:2312:28:23 UhrUhr Wissenschaftsgeschichte Siegel ordentlicher Professor in (USA). Auf einem Brief vom 9. Ja- und Führereigenschaften voraus- Frankfurt als Nachfolger von Ar- nuar 1935, der im Frankfurter Uni- setzende Aufgaben zufallen […], thur Schoenfl ies. versitätsarchiv aufbewahrt wird, fehlt dem weiblichen Dozenten Die Naturwissenschaftliche Fa- fi ndet sich ein handschriftlicher künftig die Voraussetzung für eine kultät begründete ihren Beru- Entwurf eines Gutachtens über ersprießliche Tätigkeit«. fungsvorschlag: Siegel durch den Rektor Walter Die Fakultät sah sich nicht in »Wenn die Fakultät in erster Li- Platzhoff. der Lage, das Gesuch von Prof. Sie- nie einen jungen, soeben habili- »Prof. Siegel ist, wie ich allge- gel zu befürworten. »Die pädagogi- tierten Mann vorschlägt, ist sie der mein höre, ein bedeutender Ma- sche Eignung [von Dr. Weber] wird festen Ueberzeugung, daß seine thematiker, z. Zt. in Amerika zu gerade von den Studenten unserer Persönlichkeit und bisherigen Leis- Gastvorlesungen. Auch als Lehrer Universität, darunter dem [NS-] tungen einen so ungewöhnlichen ist er sehr geschätzt. Nationalsozia- Fachschaftsleiter, gerühmt. Der Schritt vollauf rechtfertigen. Nach listisch ist er sicher nicht, steht sehr Vertreter der [NS-]Dozentenschaft einhelligem Urteil aller Sachver- gut mit seinen jüdischen Kollegen. hat erklärt, daß für ihn nur Dr. We- ständigen ist Siegel einer der selte- Charakterlich kaum zu beurteilen, ber als Vertreter in Frage käme.« nen Mathematiker von genialer lebt ganz zurückgezogen, kommt Nebenbei: Werner Weber Schaffenskraft. Aus relativ kurzer zu keiner Veranstaltung, ist Eigen- (1906 – 1975), ab 1940 außerplan- Zeit liegen Arbeiten von ihm vor, brödler und Sonderling.« mäßiger Professor an der Universi- die in der allerersten Reihe mathe- Die Vertretung in Frankfurt er- tät Berlin, wurde 1945 entlassen. matischer Produktion stehen. Sie folgte durch den Dozenten behandeln tiefste arithmetische Dr. Werner Weber aus Göttingen, Probleme – es sei nur die Approxi- der 1933 Anführer des NS-Boykot- 5 Arthur Schoen- mierbarkeit algebraischer Zahlen tes gegen seinen Lehrer E. Landau fl ies war erster Or- und die additive Zahlentheorie in gewesen war. Nach seiner Rück- dinarius für Ma- beliebigen Zahlkörpern hervorge- kehr wehrte sich Siegel massiv, thematik an der Universität Frank- hoben – und zeigen nicht nur eine aber erfolglos gegen die weitere furt. Carl Ludwig vollendete Beherrschung der vor- Beauftragung von Dr. Weber. In ei- Siegel wurde sein handenen zahlentheoretischen nem
Recommended publications
  • Transnational Mathematics and Movements: Shiing- Shen Chern, Hua Luogeng, and the Princeton Institute for Advanced Study from World War II to the Cold War1
    Chinese Annals of History of Science and Technology 3 (2), 118–165 (2019) doi: 10.3724/SP.J.1461.2019.02118 Transnational Mathematics and Movements: Shiing- shen Chern, Hua Luogeng, and the Princeton Institute for Advanced Study from World War II to the Cold War1 Zuoyue Wang 王作跃,2 Guo Jinhai 郭金海3 (California State Polytechnic University, Pomona 91768, US; Institute for the History of Natural Sciences, Chinese Academy of Sciences, Beijing 100190, China) Abstract: This paper reconstructs, based on American and Chinese primary sources, the visits of Chinese mathematicians Shiing-shen Chern 陈省身 (Chen Xingshen) and Hua Luogeng 华罗庚 (Loo-Keng Hua)4 to the Institute for Advanced Study in Princeton in the United States in the 1940s, especially their interactions with Oswald Veblen and Hermann Weyl, two leading mathematicians at the IAS. It argues that Chern’s and Hua’s motivations and choices in regard to their transnational movements between China and the US were more nuanced and multifaceted than what is presented in existing accounts, and that socio-political factors combined with professional-personal ones to shape their decisions. The paper further uses their experiences to demonstrate the importance of transnational scientific interactions for the development of science in China, the US, and elsewhere in the twentieth century. Keywords: Shiing-shen Chern, Chen Xingshen, Hua Luogeng, Loo-Keng Hua, Institute for 1 This article was copy-edited by Charlie Zaharoff. 2 Research interests: History of science and technology in the United States, China, and transnational contexts in the twentieth century. He is currently writing a book on the history of American-educated Chinese scientists and China-US scientific relations.
    [Show full text]
  • Arxiv:1402.0409V1 [Math.HO]
    THE PICARD SCHEME STEVEN L. KLEIMAN Abstract. This article introduces, informally, the substance and the spirit of Grothendieck’s theory of the Picard scheme, highlighting its elegant simplicity, natural generality, and ingenious originality against the larger historical record. 1. Introduction A scientific biography should be written in which we indicate the “flow” of mathematics ... discussing a certain aspect of Grothendieck’s work, indicating possible roots, then describing the leap Grothendieck made from those roots to general ideas, and finally setting forth the impact of those ideas. Frans Oort [60, p. 2] Alexander Grothendieck sketched his proof of the existence of the Picard scheme in his February 1962 Bourbaki talk. Then, in his May 1962 Bourbaki talk, he sketched his proofs of various general properties of the scheme. Shortly afterwards, these two talks were reprinted in [31], commonly known as FGA, along with his commentaries, which included statements of nine finiteness theorems that refine the single finiteness theorem in his May talk and answer several related questions. However, Grothendieck had already defined the Picard scheme, via the functor it represents, on pp.195-15,16 of his February 1960 Bourbaki talk. Furthermore, on p.212-01 of his February 1961 Bourbaki talk, he had announced that the scheme can be constructed by combining results on quotients sketched in that talk along with results on the Hilbert scheme to be sketched in his forthcoming May 1961 Bourbaki talk. Those three talks plus three earlier talks, which prepare the way, were also reprinted in [31]. arXiv:1402.0409v1 [math.HO] 3 Feb 2014 Moreover, Grothendieck noted in [31, p.
    [Show full text]
  • All That Math Portraits of Mathematicians As Young Researchers
    Downloaded from orbit.dtu.dk on: Oct 06, 2021 All that Math Portraits of mathematicians as young researchers Hansen, Vagn Lundsgaard Published in: EMS Newsletter Publication date: 2012 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Hansen, V. L. (2012). All that Math: Portraits of mathematicians as young researchers. EMS Newsletter, (85), 61-62. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY Editorial Obituary Feature Interview 6ecm Marco Brunella Alan Turing’s Centenary Endre Szemerédi p. 4 p. 29 p. 32 p. 39 September 2012 Issue 85 ISSN 1027-488X S E European M M Mathematical E S Society Applied Mathematics Journals from Cambridge journals.cambridge.org/pem journals.cambridge.org/ejm journals.cambridge.org/psp journals.cambridge.org/flm journals.cambridge.org/anz journals.cambridge.org/pes journals.cambridge.org/prm journals.cambridge.org/anu journals.cambridge.org/mtk Receive a free trial to the latest issue of each of our mathematics journals at journals.cambridge.org/maths Cambridge Press Applied Maths Advert_AW.indd 1 30/07/2012 12:11 Contents Editorial Team Editors-in-Chief Jorge Buescu (2009–2012) European (Book Reviews) Vicente Muñoz (2005–2012) Dep.
    [Show full text]
  • The History of the Abel Prize and the Honorary Abel Prize the History of the Abel Prize
    The History of the Abel Prize and the Honorary Abel Prize The History of the Abel Prize Arild Stubhaug On the bicentennial of Niels Henrik Abel’s birth in 2002, the Norwegian Govern- ment decided to establish a memorial fund of NOK 200 million. The chief purpose of the fund was to lay the financial groundwork for an annual international prize of NOK 6 million to one or more mathematicians for outstanding scientific work. The prize was awarded for the first time in 2003. That is the history in brief of the Abel Prize as we know it today. Behind this government decision to commemorate and honor the country’s great mathematician, however, lies a more than hundred year old wish and a short and intense period of activity. Volumes of Abel’s collected works were published in 1839 and 1881. The first was edited by Bernt Michael Holmboe (Abel’s teacher), the second by Sophus Lie and Ludvig Sylow. Both editions were paid for with public funds and published to honor the famous scientist. The first time that there was a discussion in a broader context about honoring Niels Henrik Abel’s memory, was at the meeting of Scan- dinavian natural scientists in Norway’s capital in 1886. These meetings of natural scientists, which were held alternately in each of the Scandinavian capitals (with the exception of the very first meeting in 1839, which took place in Gothenburg, Swe- den), were the most important fora for Scandinavian natural scientists. The meeting in 1886 in Oslo (called Christiania at the time) was the 13th in the series.
    [Show full text]
  • Analysis in Complex Geometry
    1946-4 School and Conference on Differential Geometry 2 - 20 June 2008 Analysis in Complex Geometry Shing-Tung Yau Harvard University, Dept. of Mathematics Cambridge, MA 02138 United States of America Analysis in Complex Geometry Shing-Tung Yau Harvard University ICTP, June 18, 2008 1 An important question in complex geometry is to char- acterize those topological manifolds that admit a com- plex structure. Once a complex structure is found, one wants to search for the existence of algebraic or geo- metric structures that are compatible with the complex structure. 2 Most geometric structures are given by Hermitian met- rics or connections that are compatible with the com- plex structure. In most cases, we look for connections with special holonomy group. A connection may have torsion. The torsion tensor is not well-understood. Much more research need to be done especially for those Hermitian connections with special holonomy group. 3 Karen Uhlenbeck Simon Donaldson By using the theorem of Donaldson-Uhlenbeck-Yau, it is possible to construct special holonomy connections with torsion. Their significance in relation to complex or algebraic structure need to be explored. 4 K¨ahler metrics have no torsion and their geometry is very close to that of algebraic geometry. Yet, as was demonstrated by Voisin, there are K¨ahler manifolds that are not homotopy equivalent to any algebraic manifolds. The distinction between K¨ahler and algebraic geometry is therefore rather delicate. Erich K¨ahler 5 Algebraic geometry is a classical subject and there are several natural equivalences of algebraic manifolds: bi- rational equivalence, biregular equivalence, and arith- metic equivalence.
    [Show full text]
  • Programme & Information Brochure
    Programme & Information 6th European Congress of Mathematics Kraków 2012 6ECM Programme Coordinator Witold Majdak Editors Agnieszka Bojanowska Wojciech Słomczyński Anna Valette Typestetting Leszek Pieniążek Cover Design Podpunkt Contents Welcome to the 6ECM! 5 Scientific Programme 7 Plenary and Invited Lectures 7 Special Lectures and Session 10 Friedrich Hirzebruch Memorial Session 10 Mini-symposia 11 Satellite Thematic Sessions 12 Panel Discussions 13 Poster Sessions 14 Schedule 15 Social events 21 Exhibitions 23 Books and Software Exhibition 23 Old Mathematical Manuscripts and Books 23 Art inspired by mathematics 23 Films 25 6ECM Specials 27 Wiadomości Matematyczne and Delta 27 Maths busking – Mathematics in the streets of Kraków 27 6ECM Medal 27 Coins commemorating Stefan Banach 28 6ECM T-shirt 28 Where to eat 29 Practical Information 31 6ECM Tourist Programme 33 Tours in Kraków 33 Excursions in Kraków’s vicinity 39 More Tourist Attractions 43 Old City 43 Museums 43 Parks and Mounds 45 6ECM Organisers 47 Maps & Plans 51 Honorary Patron President of Poland Bronisław Komorowski Honorary Committee Minister of Science and Higher Education Barbara Kudrycka Voivode of Małopolska Voivodship Jerzy Miller Marshal of Małopolska Voivodship Marek Sowa Mayor of Kraków Jacek Majchrowski WELCOME to the 6ECM! We feel very proud to host you in Poland’s oldest medieval university, in Kraków. It was in this city that the Polish Mathematical Society was estab- lished ninety-three years ago. And it was in this country, Poland, that the European Mathematical Society was established in 1991. Thank you very much for coming to Kraków. The European Congresses of Mathematics are quite different from spe- cialized scientific conferences or workshops.
    [Show full text]
  • The Intellectual Journey of Hua Loo-Keng from China to the Institute for Advanced Study: His Correspondence with Hermann Weyl
    ISSN 1923-8444 [Print] Studies in Mathematical Sciences ISSN 1923-8452 [Online] Vol. 6, No. 2, 2013, pp. [71{82] www.cscanada.net DOI: 10.3968/j.sms.1923845220130602.907 www.cscanada.org The Intellectual Journey of Hua Loo-keng from China to the Institute for Advanced Study: His Correspondence with Hermann Weyl Jean W. Richard[a],* and Abdramane Serme[a] [a] Department of Mathematics, The City University of New York (CUNY/BMCC), USA. * Corresponding author. Address: Department of Mathematics, The City University of New York (CUN- Y/BMCC), 199 Chambers Street, N-599, New York, NY 10007-1097, USA; E- Mail: [email protected] Received: February 4, 2013/ Accepted: April 9, 2013/ Published: May 31, 2013 \The scientific knowledge grows by the thinking of the individual solitary scientist and the communication of ideas from man to man Hua has been of great value in this respect to our whole group, especially to the younger members, by the stimulus which he has provided." (Hermann Weyl in a letter about Hua Loo-keng, 1948).y Abstract: This paper explores the intellectual journey of the self-taught Chinese mathematician Hua Loo-keng (1910{1985) from Southwest Associ- ated University (Kunming, Yunnan, China)z to the Institute for Advanced Study at Princeton. The paper seeks to show how during the Sino C Japanese war, a genuine cross-continental mentorship grew between the prolific Ger- man mathematician Hermann Weyl (1885{1955) and the gifted mathemati- cian Hua Loo-keng. Their correspondence offers a profound understanding of a solidarity-building effort that can exist in the scientific community.
    [Show full text]
  • Life and Work of Friedrich Hirzebruch
    Jahresber Dtsch Math-Ver (2015) 117:93–132 DOI 10.1365/s13291-015-0114-1 HISTORICAL ARTICLE Life and Work of Friedrich Hirzebruch Don Zagier1 Published online: 27 May 2015 © Deutsche Mathematiker-Vereinigung and Springer-Verlag Berlin Heidelberg 2015 Abstract Friedrich Hirzebruch, who died in 2012 at the age of 84, was one of the most important German mathematicians of the twentieth century. In this article we try to give a fairly detailed picture of his life and of his many mathematical achievements, as well as of his role in reshaping German mathematics after the Second World War. Mathematics Subject Classification (2010) 01A70 · 01A60 · 11-03 · 14-03 · 19-03 · 33-03 · 55-03 · 57-03 Friedrich Hirzebruch, who passed away on May 27, 2012, at the age of 84, was the outstanding German mathematician of the second half of the twentieth century, not only because of his beautiful and influential discoveries within mathematics itself, but also, and perhaps even more importantly, for his role in reshaping German math- ematics and restoring the country’s image after the devastations of the Nazi years. The field of his scientific work can best be summed up as “Topological methods in algebraic geometry,” this being both the title of his now classic book and the aptest de- scription of an activity that ranged from the signature and Hirzebruch-Riemann-Roch theorems to the creation of the modern theory of Hilbert modular varieties. Highlights of his activity as a leader and shaper of mathematics inside and outside Germany in- clude his creation of the Arbeitstagung,
    [Show full text]
  • EMS Newsletter September 2012 1 EMS Agenda EMS Executive Committee EMS Agenda
    NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY Editorial Obituary Feature Interview 6ecm Marco Brunella Alan Turing’s Centenary Endre Szemerédi p. 4 p. 29 p. 32 p. 39 September 2012 Issue 85 ISSN 1027-488X S E European M M Mathematical E S Society Applied Mathematics Journals from Cambridge journals.cambridge.org/pem journals.cambridge.org/ejm journals.cambridge.org/psp journals.cambridge.org/flm journals.cambridge.org/anz journals.cambridge.org/pes journals.cambridge.org/prm journals.cambridge.org/anu journals.cambridge.org/mtk Receive a free trial to the latest issue of each of our mathematics journals at journals.cambridge.org/maths Cambridge Press Applied Maths Advert_AW.indd 1 30/07/2012 12:11 Contents Editorial Team Editors-in-Chief Jorge Buescu (2009–2012) European (Book Reviews) Vicente Muñoz (2005–2012) Dep. Matemática, Faculdade Facultad de Matematicas de Ciências, Edifício C6, Universidad Complutense Piso 2 Campo Grande Mathematical de Madrid 1749-006 Lisboa, Portugal e-mail: [email protected] Plaza de Ciencias 3, 28040 Madrid, Spain Eva-Maria Feichtner e-mail: [email protected] (2012–2015) Society Department of Mathematics Lucia Di Vizio (2012–2016) Université de Versailles- University of Bremen St Quentin 28359 Bremen, Germany e-mail: [email protected] Laboratoire de Mathématiques Newsletter No. 85, September 2012 45 avenue des États-Unis Eva Miranda (2010–2013) 78035 Versailles cedex, France Departament de Matemàtica e-mail: [email protected] Aplicada I EMS Agenda .......................................................................................................................................................... 2 EPSEB, Edifici P Editorial – S. Jackowski ........................................................................................................................... 3 Associate Editors Universitat Politècnica de Catalunya Opening Ceremony of the 6ECM – M.
    [Show full text]
  • Life and Work of Egbert Brieskorn (1936-2013)
    Life and work of Egbert Brieskorn (1936 – 2013)1 Gert-Martin Greuel, Walter Purkert Brieskorn 2007 Egbert Brieskorn died on July 11, 2013, a few days after his 77th birthday. He was an impressive personality who left a lasting impression on anyone who knew him, be it in or out of mathematics. Brieskorn was a great mathematician, but his interests, knowledge, and activities went far beyond mathematics. In the following article, which is strongly influenced by the authors’ many years of personal ties with Brieskorn, we try to give a deeper insight into the life and work of Brieskorn. In doing so, we highlight both his personal commitment to peace and the environment as well as his long–standing exploration of the life and work of Felix Hausdorff and the publication of Hausdorff ’s Collected Works. The focus of the article, however, is on the presentation of his remarkable and influential mathematical work. The first author (GMG) has spent significant parts of his scientific career as a arXiv:1711.09600v1 [math.AG] 27 Nov 2017 graduate and doctoral student with Brieskorn in Göttingen and later as his assistant in Bonn. He describes in the first two parts, partly from the memory of personal cooperation, aspects of Brieskorn’s life and of his political and social commitment. In addition, in the section on Brieskorn’s mathematical work, he explains in detail 1Translation of the German article ”Leben und Werk von Egbert Brieskorn (1936 – 2013)”, Jahresber. Dtsch. Math.–Ver. 118, No. 3, 143-178 (2016). 1 the main scientific results of his publications.
    [Show full text]
  • Science Lives: Video Portraits of Great Mathematicians
    Science Lives: Video Portraits of Great Mathematicians accompanied by narrative profiles written by noted In mathematics, beauty is a very impor- mathematics biographers. tant ingredient… The aim of a math- Hugo Rossi, director of the Science Lives project, ematician is to encapsulate as much as said that the first criterion for choosing a person you possibly can in small packages—a to profile is the significance of his or her contribu- high density of truth per unit word. tions in “creating new pathways in mathematics, And beauty is a criterion. If you’ve got a theoretical physics, and computer science.” A beautiful result, it means you’ve got an secondary criterion is an engaging personality. awful lot identified in a small compass. With two exceptions (Atiyah and Isadore Singer), the Science Lives videos are not interviews; rather, —Michael Atiyah they are conversations between the subject of the video and a “listener”, typically a close friend or colleague who is knowledgeable about the sub- Hearing Michael Atiyah discuss the role of beauty ject’s impact in mathematics. The listener works in mathematics is akin to reading Euclid in the together with Rossi and the person being profiled original: You are going straight to the source. The to develop a list of topics and a suggested order in quotation above is taken from a video of Atiyah which they might be discussed. “But, as is the case made available on the Web through the Science with all conversations, there usually is a significant Lives project of the Simons Foundation. Science amount of wandering in and out of interconnected Lives aims to build an archive of information topics, which is desirable,” said Rossi.
    [Show full text]
  • Notices of the American Mathematical Society
    OF THE 1994 AMS Election Special Section page 7 4 7 Fields Medals and Nevanlinna Prize Awarded at ICM-94 page 763 SEPTEMBER 1994, VOLUME 41, NUMBER 7 Providence, Rhode Island, USA ISSN 0002-9920 Calendar of AMS Meetings and Conferences This calendar lists all meetings and conferences approved prior to the date this issue insofar as is possible. Instructions for submission of abstracts can be found in the went to press. The summer and annual meetings are joint meetings with the Mathe· January 1994 issue of the Notices on page 43. Abstracts of papers to be presented at matical Association of America. the meeting must be received at the headquarters of the Society in Providence, Rhode Abstracts of papers presented at a meeting of the Society are published in the Island, on or before the deadline given below for the meeting. Note that the deadline for journal Abstracts of papers presented to the American Mathematical Society in the abstracts for consideration for presentation at special sessions is usually three weeks issue corresponding to that of the Notices which contains the program of the meeting, earlier than that specified below. Meetings Abstract Program Meeting# Date Place Deadline Issue 895 t October 28-29, 1994 Stillwater, Oklahoma Expired October 896 t November 11-13, 1994 Richmond, Virginia Expired October 897 * January 4-7, 1995 (101st Annual Meeting) San Francisco, California October 3 January 898 * March 4-5, 1995 Hartford, Connecticut December 1 March 899 * March 17-18, 1995 Orlando, Florida December 1 March 900 * March 24-25,
    [Show full text]