Hedayatollah Hosseini

Total Page:16

File Type:pdf, Size:1020Kb

Hedayatollah Hosseini Molecular mechanism of early metastatic breast cancer dissemination Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Fakultät für Biologie und Vorklinische Medizin der Universität Regensburg vorgelegt von Hedayatollah Hosseini aus Ahwaz, Iran 2016 Das Promotionsgesuch wurde eingereicht am 14.Dec. 2016 Die Arbeit wurde angeleitet von Herr Prof. Dr. Christoph A. Klein Untershrift: 2 Contents 1 Introduction ........................................................................................................................................................ 7 1.1 Metastasis ..................................................................................................................................................... 7 1.2 Local invasion and migration ....................................................................................................................... 8 1.3 Cancer stem cells in metastasis ..................................................................................................................... 9 1.4 Mammary gland development and breast cancer ........................................................................................ 10 1.5 Early versus late dissemination of cancer cells........................................................................................... 14 1.6 Balb-NeuT as a mouse model for early dissemination ............................................................................... 15 1.7 Aim of work ............................................................................................................................................... 17 2 Materials and Methods .................................................................................................................................... 19 2.1 Methods ...................................................................................................................................................... 19 2.1.1 Animal Experiments .......................................................................................................................... 19 2.1.2 Laser Microdissection and microarray analysis ................................................................................. 21 2.1.3 Cell culture experiments .................................................................................................................... 22 2.1.4 Differentiation of mammosphere cells ............................................................................................... 25 2.1.5 Migration/Invasion assays ................................................................................................................. 25 2.1.6 Proliferation assay .............................................................................................................................. 27 2.1.7 Staining .............................................................................................................................................. 27 2.1.8 PCR .................................................................................................................................................... 29 2.1.9 Viral transduction .............................................................................................................................. 30 2.1.1 Western blot analysis ......................................................................................................................... 33 2.1.10 miRNA analyses and sequencing ....................................................................................................... 35 2.1.11 Analysis of Breast Cancer Patients: ................................................................................................... 36 2.1.12 Bioinformatic and Statistical analysis ................................................................................................ 36 2.2 Materials ..................................................................................................................................................... 37 2.2.1 Reagent .............................................................................................................................................. 37 2.2.2 Consumable ....................................................................................................................................... 39 2.2.3 Kits ..................................................................................................................................................... 40 2.2.4 Devices .............................................................................................................................................. 40 2.2.5 Primers ............................................................................................................................................... 42 2.2.6 Antibodies .......................................................................................................................................... 43 2.2.7 miRNAs ............................................................................................................................................. 43 2.2.8 Cell lines ............................................................................................................................................ 44 2.1.2 Special cell culturing media ............................................................................................................... 46 2.2 Abbreviation ............................................................................................................................................... 47 3 Results ................................................................................................................................................................ 49 3.1 Cancer cell dissemination starts at early stages in Balb-NeuT model .................................................. 49 3.2 Progesterone and Her2 signaling regulate gene expression program of early lesions ........................ 51 3.2.1 Gene expression analyses revealed an exclusive expression profile for early lesions ................. 51 3.2.2 Progesterone as regulator of EL gene expression profile ............................................................. 56 3.2.3 Her2 and progesterone cooperate to generate EL signature ........................................................ 59 3.3 Progesterone signaling regulates the migration program in EL and is linked to side branching and morphogenesis ....................................................................................................................................................... 61 3.3.1 Role of Progesterone in side branching and morphogenesis ........................................................ 61 3.3.2 Progesterone and its paracrine factors regulate in vitro migration of PT and EL cells ............. 63 3.4 Progesterone signaling regulates migration, stemness, and proliferation of cancer cells ................... 64 3 3.4.1 Higher sphere formation ability of young mammary epithelial cells .......................................... 64 3.4.2 Higher expression of PgR in young mammary glands .................................................................. 65 3.4.3 Progesterone-induced paracrine factors regulate stemness of PT and EL cells ......................... 66 3.4.4 Stemness feature of migrating cells ................................................................................................ 67 3.5 Her2 expression levels determine migratory vs. proliferative cellular responses ................... 68 3.5.1 Progesterone-induced paracrine factors act as inducer of stemness and migration for EL-like cells and supressor for PT-like cells ................................................................................................................ 68 3.5.2 Her2 expression level defines types of responses to the progestrone signaling ........................... 71 3.5.3 Her2 and PgR expression in the migratory cells ........................................................................... 72 3.6 In vivo support for the identified mechanism ......................................................................................... 74 3.6.1 Proliferation and metastasis properties of PT and EL ................................................................. 74 3.6.2 Proliferation and metastasis traits are constant phenotypes over the time ................................ 76 3.6.3 Higher metastatic property of EL cells comes from higher dissemination ................................. 77 3.7 PgR is the distinticive environmantal factor in regulation of dissemination ....................................... 78 3.7.1 Impact of mammary gland environment on dissemination of PT and EL cells ......................... 78 3.7.2 PgR expression changes dissemination behaviour of cancer cells ............................................... 81 3.7.3 Pregnancy induces migration of EL and proliferation of PT cells .............................................. 82 3.8 Cell density regulates proliferation and dissemination phenotypes ..................................................... 83 3.8.1 PgR expression in PT cells regulated by cell density .................................................................... 83 3.8.2 PT cells regulate PgR expression via miRNAs .............................................................................. 86 3.8.3 miR9-5p and miR30a-5P regulate PgR
Recommended publications
  • Entrez Symbols Name Termid Termdesc 117553 Uba3,Ube1c
    Entrez Symbols Name TermID TermDesc 117553 Uba3,Ube1c ubiquitin-like modifier activating enzyme 3 GO:0016881 acid-amino acid ligase activity 299002 G2e3,RGD1310263 G2/M-phase specific E3 ubiquitin ligase GO:0016881 acid-amino acid ligase activity 303614 RGD1310067,Smurf2 SMAD specific E3 ubiquitin protein ligase 2 GO:0016881 acid-amino acid ligase activity 308669 Herc2 hect domain and RLD 2 GO:0016881 acid-amino acid ligase activity 309331 Uhrf2 ubiquitin-like with PHD and ring finger domains 2 GO:0016881 acid-amino acid ligase activity 316395 Hecw2 HECT, C2 and WW domain containing E3 ubiquitin protein ligase 2 GO:0016881 acid-amino acid ligase activity 361866 Hace1 HECT domain and ankyrin repeat containing, E3 ubiquitin protein ligase 1 GO:0016881 acid-amino acid ligase activity 117029 Ccr5,Ckr5,Cmkbr5 chemokine (C-C motif) receptor 5 GO:0003779 actin binding 117538 Waspip,Wip,Wipf1 WAS/WASL interacting protein family, member 1 GO:0003779 actin binding 117557 TM30nm,Tpm3,Tpm5 tropomyosin 3, gamma GO:0003779 actin binding 24779 MGC93554,Slc4a1 solute carrier family 4 (anion exchanger), member 1 GO:0003779 actin binding 24851 Alpha-tm,Tma2,Tmsa,Tpm1 tropomyosin 1, alpha GO:0003779 actin binding 25132 Myo5b,Myr6 myosin Vb GO:0003779 actin binding 25152 Map1a,Mtap1a microtubule-associated protein 1A GO:0003779 actin binding 25230 Add3 adducin 3 (gamma) GO:0003779 actin binding 25386 AQP-2,Aqp2,MGC156502,aquaporin-2aquaporin 2 (collecting duct) GO:0003779 actin binding 25484 MYR5,Myo1e,Myr3 myosin IE GO:0003779 actin binding 25576 14-3-3e1,MGC93547,Ywhah
    [Show full text]
  • Human DNA2 Possesses a Cryptic DNA Unwinding Activity That
    RESEARCH ARTICLE Human DNA2 possesses a cryptic DNA unwinding activity that functionally integrates with BLM or WRN helicases Cosimo Pinto1, Kristina Kasaciunaite2, Ralf Seidel2, Petr Cejka1* 1Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland; 2Institute of Experimental Physics I, University of Leipzig, Leipzig, Germany Abstract Human DNA2 (hDNA2) contains both a helicase and a nuclease domain within the same polypeptide. The nuclease of hDNA2 is involved in a variety of DNA metabolic processes. Little is known about the role of the hDNA2 helicase. Using bulk and single-molecule approaches, we show that hDNA2 is a processive helicase capable of unwinding kilobases of dsDNA in length. The nuclease activity prevents the engagement of the helicase by competing for the same substrate, hence prominent DNA unwinding by hDNA2 alone can only be observed using the nuclease-deficient variant. We show that the helicase of hDNA2 functionally integrates with BLM or WRN helicases to promote dsDNA degradation by forming a heterodimeric molecular machine. This collectively suggests that the hDNA2 motor promotes the enzyme’s capacity to degrade dsDNA in conjunction with BLM or WRN and thus promote the repair of broken DNA. DOI: 10.7554/eLife.18574.001 Introduction DNA replication, repair and recombination require the function of multiple DNA helicases and nucle- ases (Tsutakawa et al., 2014; Wu and Hickson, 2006). The DNA replication ATP-dependent heli- *For correspondence: cejka@ case/nuclease 2 (DNA2) is an enzyme that contains both helicase and nuclease domains within the imcr.uzh.ch same polypeptide (Bae et al., 1998), and has important functions in a variety of DNA metabolic pro- Competing interests: The cesses.
    [Show full text]
  • Pubertal Mouse Mammary Gland Development - Transcriptome Analysis and the Investigation of Fbln2 Expression and Function
    Olijnyk, Daria (2011) Pubertal mouse mammary gland development - transcriptome analysis and the investigation of Fbln2 expression and function. PhD thesis. http://theses.gla.ac.uk/2996/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] Pubertal Mouse Mammary Gland Development- Transcriptome Analysis and the Investigation of Fbln2 Expression and Function Daria Olijnyk (B.Sc, MRes) Thesis submitted to the University of Glasgow in fulfilment of the requirements for the degree of Doctor of Philosophy June 2011 Institute of Cancer Sciences College of Medical, Veterinary and Life Sciences University of Glasgow 2 For my parents, Bogusława and Bogusław Olijnyk and grandmother, Anna Bandurak 3 Abstract Mouse mammary gland morphogenesis at puberty is a complex developmental process, regulated by systemic hormones, local growth factors and dependent on the epithelial/epithelial and epithelial/stromal interactions. TEBs which invade the fat pad are important in laying down the epithelial framework of the gland at this time point. The objective of this thesis was to use a combination of „pathway-„ and „candidate gene analysis‟ of the transcriptome of isolated TEBs and ducts and associated stroma, combined with detailed analyses of selected proteins, to further define the key proteins and processes involved at puberty.
    [Show full text]
  • Potential Role Vasculogenesis in Lupus Are Mediated
    Downloaded from http://www.jimmunol.org/ by guest on September 28, 2021 Kaplan is online at: on α average * The Journal of Immunology published online 30 August 2010 from submission to initial decision 4 weeks from acceptance to publication The Detrimental Effects of IFN- http://www.jimmunol.org/content/early/2010/08/30/jimmun ol.1001782 Vasculogenesis in Lupus Are Mediated by Repression of IL-1 Pathways: Potential Role in Atherogenesis and Renal Vascular Rarefaction J Immunol Seth G. Thacker, Celine C. Berthier, Deborah Mattinzoli, Maria Pia Rastaldi, Matthias Kretzler and Mariana J. Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2010/08/30/jimmunol.100178 2.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 28, 2021. Published August 30, 2010, doi:10.4049/jimmunol.1001782 The Journal of Immunology The Detrimental Effects of IFN-a on Vasculogenesis in Lupus Are Mediated by Repression of IL-1 Pathways: Potential Role in Atherogenesis and Renal Vascular Rarefaction Seth G. Thacker,*,1 Celine C. Berthier,†,1 Deborah Mattinzoli,‡ Maria Pia Rastaldi,‡ Matthias Kretzler,† and Mariana J.
    [Show full text]
  • The DNA Sequence and Comparative Analysis of Human Chromosome 20
    articles The DNA sequence and comparative analysis of human chromosome 20 P. Deloukas, L. H. Matthews, J. Ashurst, J. Burton, J. G. R. Gilbert, M. Jones, G. Stavrides, J. P. Almeida, A. K. Babbage, C. L. Bagguley, J. Bailey, K. F. Barlow, K. N. Bates, L. M. Beard, D. M. Beare, O. P. Beasley, C. P. Bird, S. E. Blakey, A. M. Bridgeman, A. J. Brown, D. Buck, W. Burrill, A. P. Butler, C. Carder, N. P. Carter, J. C. Chapman, M. Clamp, G. Clark, L. N. Clark, S. Y. Clark, C. M. Clee, S. Clegg, V. E. Cobley, R. E. Collier, R. Connor, N. R. Corby, A. Coulson, G. J. Coville, R. Deadman, P. Dhami, M. Dunn, A. G. Ellington, J. A. Frankland, A. Fraser, L. French, P. Garner, D. V. Grafham, C. Grif®ths, M. N. D. Grif®ths, R. Gwilliam, R. E. Hall, S. Hammond, J. L. Harley, P. D. Heath, S. Ho, J. L. Holden, P. J. Howden, E. Huckle, A. R. Hunt, S. E. Hunt, K. Jekosch, C. M. Johnson, D. Johnson, M. P. Kay, A. M. Kimberley, A. King, A. Knights, G. K. Laird, S. Lawlor, M. H. Lehvaslaiho, M. Leversha, C. Lloyd, D. M. Lloyd, J. D. Lovell, V. L. Marsh, S. L. Martin, L. J. McConnachie, K. McLay, A. A. McMurray, S. Milne, D. Mistry, M. J. F. Moore, J. C. Mullikin, T. Nickerson, K. Oliver, A. Parker, R. Patel, T. A. V. Pearce, A. I. Peck, B. J. C. T. Phillimore, S. R. Prathalingam, R. W. Plumb, H. Ramsay, C. M.
    [Show full text]
  • Enzymatische Alkinfunktionalisierung Zur Markierung Und Identifizierung
    Enzymatische Alkinfunktionalisierung zur Markierung und Identifizierung von Protein-Methyltransferase-Substraten Von der Fakultat¨ f¨ur Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades einer Doktorin der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Gymnasiallehrerin Sophie Willnow aus Hattingen Berichter: Universitatsprofessor¨ Dr. Elmar Weinhold Universitatsprofessor¨ Dr. Bernhard L¨uscher Tag der m¨undlichen Pr¨ufung: 06. Juli 2012 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verf¨ugbar. Diese Arbeit wurde im Zeitraum von September 2008 bis Oktober 2011 am Institut f¨ur Orga- nische Chemie der Rheinisch-Westf¨alischen Technischen Hochschule Aachen (RWTH Aachen University) unter Anleitung von Prof. Dr. Elmar Weinhold und am Institut f¨ur Biochemie und Molekularbiologie des Universit¨atsklinikums Aachen unter Anleitung von Prof. Dr. Bernhard L¨uscher angefertigt. Mein Dank gilt an erster Stelle Prof. Dr. Elmar Weinhold f¨ur die interessante interdisziplin¨are Themenstellung zwischen Chemie und Biologie, f¨ur das entgegengebrachte Vertrauen, auch eigene Ideen umsetzen zu k¨onnen, und f¨ur die vielen konstruktiven Diskussionen. Ich bedanke mich außerdem herzlich bei Prof. Dr. Bernhard L¨uscher f¨ur die vielen hilfreichen Anmerkungen und Einsch¨atzungen. Teile dieser Arbeit wurden bereits ver¨offentlicht: 1. W. Peters, S. Willnow, M. Duisgen, H. Kleine, T. Macherey, K. E. Duncan, D. W. Litch- field, B. L¨uscher, E. Weinhold. Enzymatic Site-Specific Functionalization of Protein Me- thyltransferase Substrates with Alkynes for Click Labeling. Angew. Chem. 2010, 122, 5296–5299; Angew. Chem. Int. Ed. 2010, 49, 5170–5173. 2. Y. Motorin, J. Burhenne, R. Teimer, K. Koynov, S. Willnow, E. Weinhold, M.
    [Show full text]
  • Promotes Unloading of the Vertebrate Replisome from Chromatin During Replication Termination
    Downloaded from genesdev.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press CRL2Lrr1 promotes unloading of the vertebrate replisome from chromatin during replication termination James M. Dewar,1,4,6 Emily Low,1,6 Matthias Mann,2 Markus Räschle,2,5 and Johannes C. Walter1,3 1Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA; 2Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; 3Howard Hughes Medical Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA A key event during eukaryotic replication termination is the removal of the CMG helicase from chromatin. CMG unloading involves ubiquitylation of its Mcm7 subunit and the action of the p97 ATPase. Using a proteomic screen in Xenopus egg extracts, we identified factors that are enriched on chromatin when CMG unloading is blocked. This approach identified the E3 ubiquitin ligase CRL2Lrr1, a specific p97 complex, other potential regulators of termi- nation, and many replisome components. We show that Mcm7 ubiquitylation and CRL2Lrr1 binding to chromatin are temporally linked and occur only during replication termination. In the absence of CRL2Lrr1, Mcm7 is not ubiquitylated, CMG unloading is inhibited, and a large subcomplex of the vertebrate replisome that includes DNA Pol ε is retained on DNA. Our data identify CRL2Lrr1 as a master regulator of replisome disassembly during verte- brate DNA replication termination. [Keywords: DNA replication; replication termination; p97; CMG; ubiquitin] Supplemental material is available for this article. Received October 9, 2016; revised version accepted January 30, 2017.
    [Show full text]
  • REPORT CHMP4B, a Novel Gene for Autosomal Dominant Cataracts Linked to Chromosome 20Q
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector REPORT CHMP4B, a Novel Gene for Autosomal Dominant Cataracts Linked to Chromosome 20q Alan Shiels, Thomas M. Bennett, Harry L. S. Knopf, Koki Yamada, Koh-ichiro Yoshiura, Norio Niikawa, Soomin Shim, and Phyllis I. Hanson Cataracts are a clinically diverse and genetically heterogeneous disorder of the crystalline lens and a leading cause of visual impairment. Here we report linkage of autosomal dominant “progressive childhood posterior subcapsular” cataracts segregating in a white family to short tandem repeat (STR) markers D20S847 (LOD score [Z] 5.50 at recombination fraction [v] 0.0) and D20S195 (Z p 3.65 atv p 0.0 ) on 20q, and identify a refined disease interval (rs2057262–(3.8 Mb)–rs1291139) by use of single-nucleotide polymorphism (SNP) markers. Mutation profiling of positional-candidate genes detected a heterozygous transversion (c.386ArT) in exon 3 of the gene for chromatin modifying protein-4B (CHMP4B)thatwas predicted to result in the nonconservative substitution of a valine residue for a phylogenetically conserved aspartic acid residue at codon 129 (p.D129V). In addition, we have detected a heterozygous transition (c.481GrA) in exon 3 of CHMP4B cosegregating with autosomal dominant posterior polar cataracts in a Japanese family that was predicted to result in the missense substitution of lysine for a conserved glutamic acid residue at codon 161 (p.E161K). Transfection studies of cultured cells revealed that a truncated form of recombinant D129V-CHMP4B had a different subcellular distribution than wild type and an increased capacity to inhibit release of virus-like particles from the cell surface, consistent with deleterious gain-of-function effects.
    [Show full text]
  • Table S5-Correlation of Cytogenetic Changes with Gene Expression
    Table S5-Correlation of cytogenetic changes with gene expression in MCF10CA1a FeatureNumCytoband GeneName Description logFC Fold change 28 4087 2p21 TACSTD1 Homo sapiens tumor-associated calcium signal transducer 1 (TACSTD1), mRNA-7.04966 [NM_002354]0.007548158 37 38952 20p12.2 JAG1 Homo sapiens jagged 1 (Alagille syndrome) (JAG1), mRNA [NM_000214] -6.44293 0.011494322 67 2569 20q13.33 COL9A3 Homo sapiens collagen, type IX, alpha 3 (COL9A3), mRNA [NM_001853] -6.04499 0.015145263 72 44151 2p23.3 KRTCAP3 Homo sapiens clone DNA129535 MRV222 (UNQ3066) mRNA, complete cds. [AY358993]-6.03013 0.015302019 105 40016 8q12.1 CA8 Homo sapiens carbonic anhydrase VIII (CA8), mRNA [NM_004056] 5.68101 51.30442111 129 34872 20q13.32 SYCP2 Homo sapiens synaptonemal complex protein 2 (SYCP2), mRNA [NM_014258]-5.21222 0.026975242 140 27988 2p11.2 THC2314643 Unknown -4.99538 0.031350145 149 12276 2p23.3 KRTCAP3 Homo sapiens keratinocyte associated protein 3 (KRTCAP3), mRNA [NM_173853]-4.97604 0.031773429 154 24734 2p11.2 THC2343678 Q6E5T4 (Q6E5T4) Claudin 2, partial (5%) [THC2343678] 5.08397 33.91774866 170 24047 20q13.33 TNFRSF6B Homo sapiens tumor necrosis factor receptor superfamily, member 6b, decoy (TNFRSF6B),-5.09816 0.029194423 transcript variant M68C, mRNA [NM_032945] 177 39605 8p11.21 PLAT Homo sapiens plasminogen activator, tissue (PLAT), transcript variant 1, mRNA-4.88156 [NM_000930]0.033923737 186 31003 20p11.23 OVOL2 Homo sapiens ovo-like 2 (Drosophila) (OVOL2), mRNA [NM_021220] -4.69868 0.038508469 200 39605 8p11.21 PLAT Homo sapiens plasminogen activator, tissue (PLAT), transcript variant 1, mRNA-4.78576 [NM_000930]0.036252773 209 9317 2p14 ARHGAP25 Homo sapiens Rho GTPase activating protein 25 (ARHGAP25), transcript variant-4.62265 1, mRNA0.040592167 [NM_001007231] 211 39605 8p11.21 PLAT Homo sapiens plasminogen activator, tissue (PLAT), transcript variant 1, mRNA -4.7152[NM_000930]0.038070134 212 16979 2p13.1 MGC10955 Homo sapiens hypothetical protein MGC10955, mRNA (cDNA clone MGC:10955-4.70762 IMAGE:3632495),0.038270716 complete cds.
    [Show full text]
  • Long Pre-Mrna Depletion and RNA Missplicing Contribute to Neuronal Vulnerability from Loss of TDP-43
    ARTICLES Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43 Magdalini Polymenidou1,2,6, Clotilde Lagier-Tourenne1,2,6, Kasey R Hutt2,3,6, Stephanie C Huelga2,3, Jacqueline Moran1,2, Tiffany Y Liang2,3, Shuo-Chien Ling1,2, Eveline Sun1,2, Edward Wancewicz4, Curt Mazur4, Holly Kordasiewicz1,2, Yalda Sedaghat4, John Paul Donohue5, Lily Shiue5, C Frank Bennett4, Gene W Yeo2,3 & Don W Cleveland1,2 We used cross-linking and immunoprecipitation coupled with high-throughput sequencing to identify binding sites in 6,304 genes as the brain RNA targets for TDP-43, an RNA binding protein that, when mutated, causes amyotrophic lateral sclerosis. Massively parallel sequencing and splicing-sensitive junction arrays revealed that levels of 601 mRNAs were changed (including Fus (Tls), progranulin and other transcripts encoding neurodegenerative disease–associated proteins) and 965 altered splicing events were detected (including in sortilin, the receptor for progranulin) following depletion of TDP-43 from mouse adult brain with antisense oligonucleotides. RNAs whose levels were most depleted by reduction in TDP-43 were derived from genes with very long introns and that encode proteins involved in synaptic activity. Lastly, we found that TDP-43 autoregulates its synthesis, in part by directly binding and enhancing splicing of an intron in the 3′ untranslated region of its own transcript, thereby triggering nonsense-mediated RNA degradation. Amyotrophic lateral sclerosis (ALS) is an adult-onset disorder in which RNA processing regulation in neuronal integrity. However, a compre- premature loss of motor neurons leads to fatal paralysis. Most cases hensive protein-RNA interaction map for TDP-43 and identification of ALS are sporadic, with only 10% of affected individuals having a of post-transcriptional events that may be crucial for neuronal survival familial history.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,067,168 B2 Ordway Et Al
    USOO80671 68B2 (12) United States Patent (10) Patent No.: US 8,067,168 B2 Ordway et al. (45) Date of Patent: Nov. 29, 2011 (54) GENE METHYLATION IN CANCER OTHER PUBLICATIONS DAGNOSIS GenBank Locus AF369786 Homo sapiens growth hormone Secretagogue receptor gene, complete cols, alternatively spliced (Jul. (75) Inventors: Jared Ordway, St. Louis, MO (US); 7, 2001), from www.ncbi.nlm.nih.gov. 5 printed pages.* Jeffrey A. Jeddeloh, Oakville, MO Juppner H. Bone (1995) vol. 17 No. 2 Supplement, pp. 39S-42S.* (US); Joseph Bedell, Chesterfield, MO GenBank Locus AC069523 “Homo sapiens 3 BAC RP11-1K20 (Roswell Park Cancer Institute Human BAC Library) complete (US) sequence” (Aug. 30, 2002) from www.ncbi.nlm.nih.gov, pp. 1-31.* Rein T. et al. Nucleic Acids Research (1998) vol. 26, No. 10, pp. (73) Assignee: Orion Genomics LLC, St. Louis,MO 2255-2264. (US) Gaytan F. etal. The Journal of Clinical Endocrinology & Metabolism (Mar. 2005) vol. 90, No. 3, pp. 1798-1804.* (*) Notice: Subject to any disclaimer, the term of this Cmaeron E.E. et al Blood (Oct. 1, 1999) vol. 94, No. 7, p. 2445 patent is extended or adjusted under 35 2451.* Costello, Josoph F. et al.; “Graded Methylation in the Promoter and U.S.C. 154(b) by 462 days. BOdy of the O-Methylguanine DNA Methyltransferase (MGMT) Gene Correlates with MGMT Expression in Human Glioma Cells'; (21) Appl. No.: 11/809,355 1994. The Journal of Biological Chemistry, vol. 269, No. 25, pp. 17228-17237. (22) Filed: May 30, 2007 Widschwendter, Martin et al.; "Methylation and Silencing of the Retinoic Acid Receptor-B2 Gene in Breast Cancer'; 2000, Journal of (65) Prior Publication Data the National Cancer Institute, vol.
    [Show full text]
  • Analyse Des Transcriptomes Du Cerveau De Souris
    Analyse des transcriptomes du cerveau de souris : mise en évidence de patrons régionaux d’expression conservés chez l’homme et altérés dans des modèles de maladies neurodégénératives Camille Brochier To cite this version: Camille Brochier. Analyse des transcriptomes du cerveau de souris : mise en évidence de patrons ré- gionaux d’expression conservés chez l’homme et altérés dans des modèles de maladies neurodégénéra- tives. Sciences du Vivant [q-bio]. Université Paris Sud - Paris XI, 2007. Français. tel-00361207 HAL Id: tel-00361207 https://tel.archives-ouvertes.fr/tel-00361207 Submitted on 13 Feb 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE PARIS SUDSUD----XIXIXIXI FACULTE DES SCIENCES D’ORSAY Année 2007 THESE pour obtenir le grade de DOCTEUR DE L’UNIVERSITE PARIS XI SPECIALITE : GENOMIQUE ECOLE DOCTORALE : « GENES, GENOMES, CELLULES » presentée et soutenue publiquement par Camille BBROCHIERROCHIER Le 21 Septembre 2007 Analyse des transcriptomes du cerveau de souris : Mise en évidence de patrons régionaux d’expression conservés chez l’homme et altérés dans des modèles de maladies neurodégénératives JURY Mme Monique BOLOTINBOLOTIN----FUKUHARAFUKUHARA Présidente Mme Brigitte KIEFFER Rapporteuse MMM.M. Gilbert VASSART Rapporteur Melle Tania VITALIS Examinatrice MMM.M.
    [Show full text]