Enzyme Mimics for Nitric Oxide Delivery
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(12) United States Patent (10) Patent No.: US 7.803,838 B2 Davis Et Al
USOO7803838B2 (12) United States Patent (10) Patent No.: US 7.803,838 B2 Davis et al. (45) Date of Patent: Sep. 28, 2010 (54) COMPOSITIONS COMPRISING NEBIVOLOL 2002fO169134 A1 11/2002 Davis 2002/0177586 A1 11/2002 Egan et al. (75) Inventors: Eric Davis, Morgantown, WV (US); 2002/0183305 A1 12/2002 Davis et al. John O'Donnell, Morgantown, WV 2002/0183317 A1 12/2002 Wagle et al. (US); Peter Bottini, Morgantown, WV 2002/0183365 A1 12/2002 Wagle et al. (US) 2002/0192203 A1 12, 2002 Cho 2003, OOO4194 A1 1, 2003 Gall (73) Assignee: Forest Laboratories Holdings Limited 2003, OO13699 A1 1/2003 Davis et al. (BM) 2003/0027820 A1 2, 2003 Gall (*) Notice: Subject to any disclaimer, the term of this 2003.0053981 A1 3/2003 Davis et al. patent is extended or adjusted under 35 2003, OO60489 A1 3/2003 Buckingham U.S.C. 154(b) by 455 days. 2003, OO69221 A1 4/2003 Kosoglou et al. 2003/0078190 A1* 4/2003 Weinberg ...................... 514f1 (21) Appl. No.: 11/141,235 2003/0078517 A1 4/2003 Kensey 2003/01 19428 A1 6/2003 Davis et al. (22) Filed: May 31, 2005 2003/01 19757 A1 6/2003 Davis 2003/01 19796 A1 6/2003 Strony (65) Prior Publication Data 2003.01.19808 A1 6/2003 LeBeaut et al. US 2005/027281.0 A1 Dec. 8, 2005 2003.01.19809 A1 6/2003 Davis 2003,0162824 A1 8, 2003 Krul Related U.S. Application Data 2003/0175344 A1 9, 2003 Waldet al. (60) Provisional application No. 60/577,423, filed on Jun. -
Catalytic, Theoretical, and Biological Investigation of an Enzyme Mimic Model
Turkish Journal of Chemistry Turk J Chem (2021) 45: 1270-1278 http://journals.tubitak.gov.tr/chem/ © TÜBİTAK Research Article doi:10.3906/kim-2104-51 Catalytic, theoretical, and biological investigation of an enzyme mimic model Gülcihan GÜLSEREN* Department of Molecular Biology and Genetics, Faculty of Agriculture and Natural Sciences, Konya Food and Agriculture University, Turkey Received: 20.04.2021 Accepted/Published Online: 12.06.2021 Final Version: 27.08.2021 Abstract: Artificial catalyst studies were always stayed at the kinetics investigation level, in this work bioactivity of designed catalyst were shown by the induction of biomineralization of the cells, indicating the possible use of enzyme mimics for biological applications. The development of artificial enzymes is a continuous quest for the development of tailored catalysts with improved activity and stability. Understanding the catalytic mechanism is a replaceable step for catalytic studies and artificial enzyme mimics provide an alternative way for catalysis and a better understanding of catalytic pathways at the same time. Here we designed an artificial catalyst model by decorating peptide nanofibers with a covalently conjugated catalytic triad sequence. Owing to the self-assembling nature of the peptide amphiphiles, multiple action units can be presented on the surface for enhanced catalytic performance. The designed catalyst has shown an enzyme-like kinetics profile with a significant substrate affinity. The cooperative action in between catalytic triad amino acids has shown improved catalytic activity in comparison to only the histidine-containing control group. Histidine is an irreplaceable contributor to catalytic action and this is an additional reason for control group selection. This new method based on the self-assembly of covalently conjugated action units offers a new platform for enzyme investigations and their further applications. -
Tetrahydrobiopterin Loading Test in Hyperphenylalaninemia
003 1-399819113005-0435$03.00/0 PEDIATRIC RESEARCH Vol. 30, No. 5, 1991 Copyright 0 199 1 International Pediatric Research Foundation, Inc. Pr~ntc.d in U.S. A Tetrahydrobiopterin Loading Test in Hyperphenylalaninemia ALBERT0 PONZONE, ORNELLA GUARDAMAGNA, SILVIO FERRARIS, GIOVANNI B. FERRERO, IRMA DIANZANI, AND RICHARD G. H. COTTON InstiflifeofPediatric Clinic(A.P., O.G., S.F., G.B.F., I.D.], University of Torino, 10126 Torino, Italy and Olive Miller Laboratory [R.G.H.C.],Murdoch Institute, Royal Children's Hospital, Vicroria,Australia 3052 ABSTRACT. Some cases of primary hyperphenylalanine- PKU to describe some cases clinically unresponsive to a Phe- mia are not caused by the lack of phenylalanine hydroxyl- restricted diet and later shown to be due to BH4 deficiency ase, but by the lack of its cofactor tetrahydrobiopterin. ( 1-4). These patients are not clinically responsive to a phenylal- By analyzing all the essential components of the complex anine-restricted diet, but need specific substitution therapy. hydroxylation system of aromatic amino acids, it became appar- Thus, it became necessary to examine all newborns ent that a defect in the BH4 recycling enzyme DHPR (EC screened as positive with the Guthrie test for tetrahydro- 1.66.99.7) and two defects in BH4 synthetic pathway enzymes, biopterin deficiency. Methods based on urinary pterin or guanosine triphosphate cyclohydrolase I (EC 3.5.4.16) and 6- on specific enzyme activity measurements are limited in PPH4S, may lead to cofactor deficiency resulting in HPA and in their availability, and the simplest method, based on the impaired production of dopamine and serotonin (5-7). -
Mechanistic Studies of Biomimetic Reactions by Synthetic Enzyme Mimics by William Michael Hart-Cooper a Dissertation Submitted I
Mechanistic Studies of Biomimetic Reactions by Synthetic Enzyme Mimics By William Michael Hart-Cooper A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Kenneth N. Raymond, Co-chair Professor Robert G. Bergman, Co-chair Professor Alexander Katz Summer 2015 Abstract Mechanistic Studies of Biomimetic Reactions by Synthetic Enzyme Mimics By William Michael Hart-Cooper Doctor of Philosophy in Chemistry University of California, Berkeley Professor Kenneth N. Raymond, Co-chair Professor Robert G. Bergman, Co-chair Chapter 1. A brief introduction to common synthetic host structures and justification for the work described herein is provided. Chapter 2. The development of 1 and related hosts as a new class terpene synthase mimics that catalyze intramolecular Prins cyclizations. The property of water exclusion is observed. Host 1 is also shown to compensate for the gem-disubstituent effect. Chapter 3. The development of new terephthalamide hosts enabled an investigation of the effect of host structure on the enantio- and diastereoselectivity of these reactions, as well as a simple kinetic analysis. Rate accelerations and turnover numbers are notably high. Chapter 4. The mechanism of proton transfer in an archetypal enzyme mimic is studied using amide hydrogen deuterium exchange (HDX) kinetics. Collectively, these data shed light on the role of acid, base and water-mediated proton transfer in a synthetic active site with relevance to proton-mediated catalysis. Moreover, the emergent mechanism of solvent-occupied proton transfer raises the prospect of designable hosts with properties that are unique to the integration of their parts Chapter 5. -
Proton Affinity Studies of Nickel N2S2 Complexes and Control of Aggregation
JBIC Journal of Biological Inorganic Chemistry https://doi.org/10.1007/s00775-019-01671-4 ORIGINAL PAPER Proton afnity studies of nickel N2S2 complexes and control of aggregation Nicholas A. Arnet1 · Nattamai Bhuvanesh1 · Marcetta Y. Darensbourg1 Received: 1 April 2019 / Accepted: 22 May 2019 © Society for Biological Inorganic Chemistry (SBIC) 2019 Abstract The thiolate ligands of [NiFe]-H2ase enzymes have been implicated as proton-binding sites for the reduction/oxidation of + H /H2. This study examines the ligand efect on reactivity of NiN2S2 complexes with an array of acids in methanol solu- tion. UV–Vis absorption spectroscopy is utilized to observe the transformation from the monomeric species to a trimetallic complex that is formed after proton-induced ligand dissociation. Nickel complexes with a fexible (propyl and ethyl) N to N linker were found to readily form the trimetallic complex with acids as weak as ammonium (pKa = 10.9 in methanol). A more constrained nickel complex with a diazacycloheptane N to N linker required stronger acids such as 2,2-dichloroacetic + acid (pKa = 6.38 in methanol) to form the trimetallic complex and featured the formation of an NiN 2S2H complex with acetic acid (pK a = 9.63 in methanol). The most strained ligand, which featured a diazacyclohexane backbone, readily disso- ciated from the nickel center upon mixture with acids with pKa ≤ 9.63 and showed no evidence of a trimetallic species with any acid. This research highlights the dramatic diferences in reactivity with proton sources that can be imparted by minor alterations to ligand geometry and strain. Graphical abstract Electronic supplementary material The online version of this article (https ://doi.org/10.1007/s0077 5-019-01671 -4) contains supplementary material, which is available to authorized users. -
Coronary Microvascular Dysfunction in CAD: Consequences and Potential Therapeutic Applications
4 Coronary Microvascular Dysfunction in CAD: Consequences and Potential Therapeutic Applications Alan N. Beneze1, Jeffrey M. Gold4 and Betsy B. Dokken1,2,3 1University of Arizona College of Medicine 2University of Arizona Department of Medicine, Section of Endocrinology 3University of Arizona Sarver Heart Center 4Inpatient Physicians Consultants, Tucson, Arizona USA 1. Introduction Substantial research and clinical effort has been directed toward the understanding, identification and management of coronary artery disease (CAD). As a result, the processes of cholesterol accumulation and inflammation that lead to large vessel occlusions have been fully elucidated. In contrast to those with CAD, many patients have symptoms of angina and reductions in coronary flow reserve despite normal coronary angiography of the large epicardial arteries. In this situation the vessels that limit flow to myocardium are the more distal epicardial prearterioles and intramyocardial arterioles – vessels typically too small to be directly visualized by conventional coronary angiography. These vessels comprise the coronary microcirculation. Coronary microvascular dysfunction (CMVD), in contrast to CAD, continues to be poorly understood and difficult to manage. In addition, the presence of CMVD can be a confounding factor in the management of patients with CAD. 2. Anatomy and physiology of the coronary microcirculation The coronary arterial network is generally divided into three sequential morphological zones. The large epicardial coronary arteries decrease in diameter from 2-5 to 500 microns as they branch off of the aorta and travel distally along the epicardium. Distal to the large coronary arteries are epicardial pre-arterioles that decrease in diameter from 500 to 100 microns. Finally, the pre-arterioles give rise to intramyocardial arterioles that measure 100 microns or less in diameter. -
Investigation of Nitrous Oxide
INVESTIGATION OF NITROUS OXIDE BIOSYNTHESIS BY A BACTERIAL NITRIC OXIDE REDUCTASE (NOR) AND AN ENGINEERED NOR MIMIC USING STABLE ISOTOPE RATIO MASS SPECTROMETRY By Clarisse Marie Finders A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Biochemistry and Molecular Biology—Master of Science 2018 ABSTRACT INVESTIGATION OF NITROUS OXIDE BIOSYNTHESIS BY A BACTERIAL NITRIC OXIDE REDUCTASE (NOR) AND AN ENGINEERED NOR MIMIC USING STABLE ISOTOPE RATIO MASS SPECTROMETRY By Clarisse Marie Finders While carbon dioxide (CO2) is the most prevalent greenhouse gas, nitrous oxide (N2O) is far more potent, with a global warming potential ~265 times greater than that of carbon dioxide over 1 a 100-year period. Additionally, N2O is capable of destroying ozone, making it doubly concerning as a greenhouse gas. Approximately half of the N2O produced yearly is from anthropogenic sources. The largest contributor to anthropogenic N2O is the over-fertilization of agricultural soils, which fuels a host of microbial nitrogen cycling processes that produce N2O. One of these processes is denitrification, and N2O is known to be an obligate intermediate in this process. In denitrification, N2O is synthesized by an enzyme known as nitric oxide reductase (NOR). A thorough understanding of the enzymatic mechanisms by which N2O is produced is essential to mitigating anthropogenic N2O emissions. To this end, this thesis contains the examination of N2O produced by a bacterial cytochrome c NOR (cNOR) from Paracoccus dentrificans and a cNOR mimic, I107EFeBMb, using stable isotope ratio mass spectrometry (IRMS). The first chapter provides the reader with an introduction to the nitrogen cycle, the known NORs, and the basics of isotope theory. -
Example of How Amehsi Specification Indicators Can Be Mapped to Health
Example of how Amehsi Specification Indicators can be Mapped to Health Conditions and Health Statuses The information presented here may be covered by copyrights and patents Some of the Amehsi Factors which can be alleviated using Amehsi Specification Recommendations and Demise Oncology Leukemia Lymphoma HIV Information. This document may be protected by copyrights and patents Choline Deficiency or Circumstantial Choline Deficiency from upregulated Choline Kinase Pathway or Kennedy Pathway Factors Causal Causal Causal Causal Causal Homocysteine Required as Symptom, Correlated and Incipiently Causal, inhibits PEMT Required Causal Causal Causal S-Adenosyl Homocysteine Downregulat Required as Symptom, Correlated and Incipiently Causal, inhibits PEMT Required Causal ed PEMT Causal Trimethylamine-N-Oxide Causal, inhibits PEMT Causal Causal Causal Incipient Enabler Choline Kinase Upregulation Causal Required Required uNOS Required Required as both PEMT1 or PEMT2 since Diagnostic Assay sometimes does not report if one of these is inhibited while the other is not. PEMT produces a Monomethylethanolamine that Phosphatidylethanolamine deteriorates PCBs, Dioxins, Aryl Methyltransferase Downregulation Cyclic Hydrocarbons, Alkyl Halides, other Carcinogens and produces Serine Proteases that catabolize Amino acids to thier most basic structures, resulting in purified cellular environment and embryonic Causal cellular plasticity Required Required Required Inducible Nitric Oxide Synthase, Required, inhibits PEMT and upregulated Choline kinase, as well as -
Enos-Uncoupling in Age-Related Erectile Dysfunction
International Journal of Impotence Research (2011) 23, 43–48 & 2011 Macmillan Publishers Limited All rights reserved 0955-9930/11 www.nature.com/ijir ORIGINAL ARTICLE eNOS-uncoupling in age-related erectile dysfunction JM Johnson, TJ Bivalacqua, GA Lagoda, AL Burnett and B Musicki Department of Urology, The Johns Hopkins University, Baltimore, MD, USA Aging is associated with ED. Although age-related ED is attributed largely to increased oxidative stress and endothelial dysfunction in the penis, the molecular mechanisms underlying this effect are not fully defined. We evaluated whether endothelial nitric oxide synthase (eNOS) uncoupling in the aged rat penis is a contributing mechanism. Correlatively, we evaluated the effect of replacement with eNOS cofactor tetrahydrobiopterin (BH4) on erectile function in the aged rats. Male Fischer 344 ‘young’ (4-month-old) and ‘aged’ (19-month-old) rats were treated with a BH4 precursor sepiapterin (10 mg/kg intraperitoneally) or vehicle for 4 days. After 1-day washout, erectile function was assessed in response to electrical stimulation of the cavernous nerve. Endothelial dysfunction (eNOS uncoupling) and oxidative stress (thiobarbituric acid reactive substances, TBARS) were measured by conducting western blot in penes samples. Erectile response was significantly reduced in aged rats, whereas eNOS uncoupling and TBARS production were significantly increased in the aged rat penis compared with young rats. Sepiapterin significantly improved erectile response in aged rats and prevented increase in TBARS -
Effects of Nitric Oxide Synthase Inhibitors on Equine and Bovine Follicular Dynamics and Steroidogenesis
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 2001 Effects of Nitric Oxide Synthase Inhibitors on Equine and Bovine Follicular Dynamics and Steroidogenesis. Carlos Roberto fontes Pinto Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Pinto, Carlos Roberto fontes, "Effects of Nitric Oxide Synthase Inhibitors on Equine and Bovine Follicular Dynamics and Steroidogenesis." (2001). LSU Historical Dissertations and Theses. 430. https://digitalcommons.lsu.edu/gradschool_disstheses/430 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. -
(12) United States Patent (10) Patent No.: US 6,537,992 B2 Parker (45) Date of Patent: Mar
USOO6537992B2 (12) United States Patent (10) Patent No.: US 6,537,992 B2 Parker (45) Date of Patent: Mar. 25, 2003 (54) REGULATION OF ORGANIC NITRATE Erik Stroes, et al., “Tetrahydrobiopterin Restores Endothe TOLERANCE lial Function in Hypercholesterolemia', J. Clin. Invest., vol. 99, No. 1, Jan., 1997, pp. 41–46. (75) Inventor: John D. Parker, 15 Oakly Place, Jørn Bech Laursen, et al., “Nitrate Tolerance Impairs Nitric Toronto, Ontario (CA), M2P 2G3 Oxide-Mediated Vasodilation in Vivo”, Cardiovascular Research, vol. 31, (1996) pp. 814-819. (73) Assignee: John D. Parker (CA) Chao Han, et al., “Pharmacokinetics of Nitroglycerin and Its * Y NotOtice: Subjubject to anyy disclaimer,disclai theh term off thisthi Four Metabolites During Nitroglycerin Transdermal Admin patent is extended or adjusted under 35 istration', Biopharmaceutics & Drug Disposition, Vol. 15, U.S.C. 154(b) by 0 days. (1994) pp. 179–183. Georgette M. Buga, et al., “Negative Feedback Regulation of Endothelial Cell Function by Nitric Oxide', Circulation (21) Appl. No.: 09/754,196 Research, vol. 73, No. 5, Nov., 1993, pp. 808–812. (22) Filed: Jan. 5, 2001 Frank W. Lee, et al., “Pharmacokinetics and Pharmacody namics of Nitroglycerin and Its Dinitrate Metabolites in (65) Prior Publication Data Conscious Dogs: Intravenous Infusion Studies”, J. of Pharm. US 2002/009 1126 A1 Jul. 11, 2002 and Biopharm., vol. 21, No. 5, (1993) pp. 533–550. Walter E. Haefeli, et al., “Comparison of Vasodilatory (51) Int. Cl." .............................................. A61K 31f495 Responses to Nitroglycerin and its Dinitrate Metabolites in (52) U.S. Cl. ....................................................... 514/249 Human Veins”, Clin. Pharmacol. Ther., vol. 52, No. -
Effects of Rosiglitazone on Nitroglycerin
EFFECTS OF ROSIGLITAZONE ON NITROGLYCERIN- INDUCED ENDOTHELIAL DYSFUNCTION by Kumar Perampaladas B.Sc. A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Pharmacology and Toxicology University of Toronto Supervisor: John D. Parker, MD, FRCP(C) © Copyright by Kumar Perampaladas (2010) Effects of Rosiglitazone on Nitroglycerin-Induced Endothelial Dysfunction Kumar Perampaladas, Master of Science, 2010 Graduate Department of Pharmacology and Toxicology, University of Toronto ABSTRACT Sustained nitroglycerin (GTN) therapy impairs endothelial function in healthy volunteers and patients with cardiovascular disease, caused by an increase in vascular oxidative stress. This study aims to estimate the effect of rosiglitazone on vascular endothelial function in healthy volunteers continuously dosed to transdermal GTN (0.6mg/hr) for 7 days. To assess endothelial function, forearm blood flow was measured by venous occlusion strain-gauge plethysmography in response to intra-brachial infusions of acetylcholine. GTN-treated subjects experienced significant attenuation of endothelium-dependent responses to acetylcholine (p<0.05; compared to placebo), but was reversed with vitamin C (p=ns; compared to placebo). Endothelium-dependent responses to acetylcholine were blunted in groups randomized to rosiglitazone alone (p<0.05; compared to placebo) and rosiglitazone + GTN (p<0.05 compared to placebo). Interestingly, this effect was not modified by vitamin C. In conclusion, rosiglitazone impairs endothelial function and concurrent therapy with rosiglitazone does not attenuate the adverse effects of transdermal GTN on the vasculature. ii ACKNOWLEDGEMENTS First and foremost, I would like to thank my supervisor Dr. John Parker for his continuous support during my Master’s Program. Dr.