Population Genetic Analyses in the Orchid Genus Gymnadenia – a Conservation Genetic Perspective

Total Page:16

File Type:pdf, Size:1020Kb

Population Genetic Analyses in the Orchid Genus Gymnadenia – a Conservation Genetic Perspective ! "##$ %"&# "" #'($)'"' "*'$#' "*" +,,- Dissertation for the Degree of Doctor of Philosophy in Conservation Biology presented at Uppsala University in 2003 ABSTRACT Gustafsson, S. 2003. Population genetic analyses in the orchid genus Gymnadenia – a conservation genetic perspective. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 799. 43 pp. Uppsala ISBN 91-554-5517-4. Small populations are facing a particular risk of extinction due to a lack of appropriate genetic diversity and associated negative effects, factors dealt with in the discipline of conservation genetics. Many orchid species exhibit characteristics that make them a perfect study object in the scope of conservation genetics. The aim with this thesis was to investigate genetic structure at different levels in two orchid species Gymnadenia conopsea, geographically widespread, although diminishing and G. odoratissima with a long history of being rare. Microsatellite markers, developed in and used in studies of G. conopsea were also used in the study of G. odoratissima. Populations of G. conopsea expressed high levels of genetic variation and a certain amount of gene flow, although investigated mating pattern in a small population indicated non-random mating among individuals, with the majority of pollen exchange between near neighbours, and noticeable levels of geitonogamous pollinations. Further a pronounced year to year variation in flowering frequency among individuals was found. It was also discovered that flowering time variants (early and late) within the species G. conopsea were highly differentiated and seem to have had a more ancient historical separation than the separation between the two different species, G. conopsea and G. odoratissima. Levels of genetic variation in the rare congener, G. odoratissima differed between island and mainland populations where the more numerous island populations expressed larger levels of genetic variation and were less differentiated compared to the few remaining and genetically depauperated mainland populations. Key words: Orchidaceae, Gymnadenia, conservation, microsatellites, genetic structure, mating pattern. Susanne Gustafsson, Department of Conservation Biology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden. © Susanne Gustafsson 2003 ISSN 1104-232X ISBN 91-554-5517-4 Printed in Sweden by Uppsala University, Print & Media, Uppsala 2003 PAPERS INCLUDED IN THE THESIS This thesis is based on the following papers, which will be referred to in the text by their Roman numerals: I Gustafsson, S. and Thorén, P. (2001). Microsatellite loci in the Gymnadenia conopsea, the fragrant orchid. Molecular Ecology Notes, 1:81-82. II Gustafsson, S. Mating pattern in a small population of the Lepidopteran pollinated orchid, Gymnadenia conopsea, as revealed by microsatellites. Manuscript. III Gustafsson, S. (2000). Patterns of genetic variation in the fragrant orchid (Gymnadenia conopsea). Molecular Ecology 9: 1863-1872. IV Gustafsson, S. and Sjögren-Gulve, P. (2002) Genetic diversity in the rare orchid, Gymnadenia odoratissima and a comparison with the more common congener, G. conopsea. Conservation Genetics 3: 225-234. V Gustafsson, S. Flowering frequency and genetic diversity in a small population of Gymnadenia conopsea - a five year study. Manuscript. VI Gustafsson, S. and Lönn, M. Genetic differentiation and habitat preference of flowering-time variants within Gymnadenia conopsea. Manuscript. Papers I and III are reproduced with kind permission of Blackwell Publishing. Paper IV are reproduced with kind permission of Kluwer Academic Publishers. Contents Introduction.....................................................................................................2 Conservation genetics ................................................................................2 Population genetics ....................................................................................3 Mating systems and gene dispersal ............................................................5 Orchids.......................................................................................................6 Material and methods......................................................................................9 Genetic markers, microsatellites ................................................................9 Development of microsatellite loci ..........................................................10 Genetic and statistical analyses................................................................11 Population structure.............................................................................12 ҏAssignment methods ...........................................................................13 Genetic differentiation within species .................................................13 Study species............................................................................................14 The genus Gymnadenia .......................................................................14 Results and discussion ..................................................................................17 Microsatellite loci in Gymnadenia conopsea (I) ......................................17 Mating pattern (II) and flowering frequency (V).....................................20 Genetic structure in rare and diminishing orchid species (III), (IV) .......22 Restricted gene flow within species (VI).................................................26 Conclusions...................................................................................................32 Acknowledgements.......................................................................................34 References.....................................................................................................36 1 Introduction Conservation genetics During the 20Th century, mankind has had a widespread and devastating impact on the survival of many species. Factors directly or indirectly associated to different human activities, like pollution, habitat destruction, over-exploitation and introduced species have, besides a rapid and direct extinction of numerous species, also through fragmentation events and reduced population size, deteriorated the conditions for long-time survival in an even larger number of species. The area of conservation biology, concerning preservation of biodiversity, has therefore been a huge and rapidly growing discipline of research in the last decades. In preserving biodiversity, the strategy of conservation biology has customarily been to treat the species as the unit of conservation. However, even though the emphasis has been and still will be on rare species, more recently the view has widened to also involve other levels of organization, ranging from genes to ecosystems. Together with demographic and environmental factors, one part of conservation biology therefore includes the influences of genetic factors. Even though the significance of the first two is undisputed, the importance of genetic factors in conservation biology has been questioned (Frankham et al, 2002 and references therein). Responsible for raising the subject of conservation genetics was Sir Otto Frankel, who, in the beginning of the 1970s wrote important papers covering the issue (Frankel 1970, 1974). The area of conservation genetics deals with genetic factors affecting a species risk of extinction and with management regimes that could be acquired to minimize these risks (Frankham et al, 2002). Small populations are, due to their reduced population size, supposed to also express reduced genetic diversity (Frankham, 1995). Different studies, both in plants and animals, have found support for the fact that small populations face a particular risk of extinction due to a lack of appropriate genetic diversity and associated negative effects (Young & Clarke, 2000, Frankham et al, 2002 and references therein). A primary element in conservation management has therefore been preservation of genetic diversity and minimizing inbreeding. However, the significance of genetic factors contributing in species extinction has not been without debate and some will instead emphasize demographic and environmental factors whereas genetic factors have been 2 suggested to be more a symptom than a cause to species extinction (Lande, 1988; Caughley, 1994; Holsinger & Vitt, 1997; see also Lande, 2000). As stressed by Hedrick (2000a) genetic processes do not operate in isolation but influence extinction probabilities indirectly by their effect on reproductive success, behaviour, viability, disease resistance etc. Frankham et al (2002) also point at the difficulties in isolating the effects of genetic processes and imply that genetic threats form one component of the endangering process, and population extinction is due to interactions between genetic, demographic and environmental factors. Quite a number of plant species have been studied in the area of conservation genetics and examples of some genera are:– Caesalpinia (Cardoso et al, 1998), Brighamia (Gemmill et al, 1998), Saxifraga (Hollingsworth et al, 1998), Vicia (Black-Samuelsson & Lascoux, 1999), Goodyera (Wong & Sun 1999), Rutidosis (Brown & Young, 2000), Gymnadenia (Gustafsson & Sjögren-Gulve, 2002), Leucopogon (Zawko et al 2001), Triunia (Shapcott, 2002) Epipactis (Squirrell et al, 2002). The studies describe demographic and genetic status
Recommended publications
  • The Structure of the Perennial Growth of Disa Un/Flora Berg
    THE STRUCTURE OF THE PERENNIAL GROWTH OF DISA UN/FLORA BERG. ( ORCHIDACEAE) HONOURS SYSTEMATICS PROJECT JANET THOMAS OCTOBER 1990 SUPERVISOR: DR . .H.P. LINDER University of Cape Town The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town BOLUS LIBRARY 1 ABSTRACT The perennation of orchids is poorly understood, in particular that of the Orchidoidae. The understanding of perennation in the Orchidoidae is important because the root-stem tuberoid .is used as the one character defining the Orchidoidae as a monophyletic group. The root-stem tuberoid has never been examined for variation before. This project focuses on perennial growth in the Diseae in order to study the structbre and function of the root stem tuberoid in relation tp other organs and to contribute to the understanding of Orchidoid phylogeny. , INTRODUCTION Host te1perate monocotyledons have evolved underground resting or perennating organs for the climatically unfavourable season (Holttum 1955). A period of underground existence may allow a plant to escape unfavourable conditions, to counter environmental uncertainty, and to build reserves for flowering episodes (Calvo 1990). This is especially evident in the temperate members of the Orchidaceae and is made possible through sympodial growth· (Withnerj1974). Not .all temperate orchids have a resting period although they do have sympodial growth and do perennate.
    [Show full text]
  • A Phylogenomic Analysis of the Floral Transcriptomes of Sexually Deceptive and Rewarding European Orchids, Ophrys and Gymnadenia
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2019 A phylogenomic analysis of the floral transcriptomes of sexually deceptive and rewarding European orchids, Ophrys and Gymnadenia Pineiro Fernandez, Laura ; Byers, Kelsey J R P ; Cai, Jing ; Sedeek, Khalid E M ; Kellenberger, Roman T ; Russo, Alessia ; Qi, Weihong ; Aquino Fournier, Catharine ; Schlüter, Philipp M Abstract: The orchids (Orchidaceae) constitute one of the largest and most diverse families of flowering plants. They have evolved a great variety of adaptations to achieve pollination by a diverse group of pollinators. Many orchids reward their pollinators, typically with nectar, but the family is also well- known for employing deceptive pollination strategies in which there is no reward for the pollinator, in the most extreme case by mimicking sexual signals of pollinators. In the European flora, two examples of these different pollination strategies are the sexually deceptive genus Ophrys and the rewarding genus Gymnadenia, which differ in their level of pollinator specialization; Ophrys is typically pollinated by pseudo-copulation of males of a single insect species, whilst Gymnadenia attracts a broad range of floral visitors. Here, we present and describe the annotated floral transcriptome of Ophrys iricolor, an Andrena- pollinated representative of the genus Ophrys that is widespread throughout the Aegean. Furthermore, we present additional floral transcriptomes of both sexually deceptive and rewarding orchids, specifi- cally the deceptive Ophrys insectifera, Ophrys aymoninii, and an updated floral transcriptome of Ophrys sphegodes, as well as the floral transcriptomes of the rewarding orchids Gymnadenia conopsea, Gym- nadenia densiflora, Gymnadenia odoratissima, and Gymnadenia rhellicani (syn.
    [Show full text]
  • Flora Protetta (Misure Generali Di Conservazione Di Rete Natura 2000, Protezione Della Flora Spontanea) 2018 Dir
    Flora protetta (Misure Generali di Conservazione di Rete Natura 2000, Protezione della Flora spontanea) 2018 Dir. Rete LR 2/77 Divisione Ordine Famiglia Taxon RER Sinonimie Habitat Natura 2000 Flora All. II-IV MGC spontanea Acarosporales Acarosporaceae Acarospora placodiiformis X Ascomycota Arthoniales Roccellaceae Ingaderia troglodytica Paralecanographa grumulosa X Lecanorales Cladoniaceae Cladonia spp. (group) X Entolomataceae Entoloma bloxamii X Agaricales Psathyrellaceae Psathyrella ammophila X Boletaceae Boletus dupainii X Boletales Paxillaceae Alpova rubescens X Basidiomycota Hymanochaetales Hymenochaetaceae Fomitiporia pseudopunctata Phellinus pseudopunctatus X Pezizales Pezizaceae Peziza pseudoammophila X Russulales Hericiaceae Hericium erinaceus X Xylariales Xylariaceae Poronia punctata X Bryales Bryaceae Bryum warneum Bryum oelandicum X Buxbaumiales Buxbaumiaceae Buxbaumia viridis X X Dicranales Leucobryaceae Leucobryum glaucum X Bryophyta Hypnales Amblystegiaceae Drepanocladus vernicosus Hamatocaulis vernicosus X X Othothrichales Othothrichaceae Orthotrichum rogeri X Pottiales Pottiaceae Tortula revolvens X Sphagnales Sphagnaceae Sphagnum spp. (group) X Diphasiastrum tristachyum Diphasium tristachyum X Diphasiastrum alpinum X Lycopodiales Lycopodiaceae Huperzia selago X Lycopodiophyta Lycopodium annotinum X Lycopodium clavatum X Selaginellales Selaginellaceae Selaginella selaginoides X Caldesia parnassifolia X X Alismataceae Baldellia ranunculoides X Alismatales Sagittaria sagittifolia X Hydrocharitaceae Stratiotes aloides
    [Show full text]
  • View .Pdf of This Issue
    The Hardy Orchid Society Newsletter No. 21 July 2001 The Hardy Orchid Society Committee is… President: Richard M Bateman Vice-Presidents: Paul Harcourt Davies and Norman Heywood Chairman: Richard Manuel, Wye View Cottage, Leys Hill, Ross-on-Wye, Herefordshire, HR9 5QU Secretary: Sarah Marks, 83 Ladysmith, East Gomeldon, Salisbury, Wilts, SP4 6LE Treasurer: Tony Beresford, Pound Farm, Wearne, Langport, Somerset, TA10 0QJ Membership Secretary: Nick Storer, 17 Orchard Close, Lymm, Cheshire, WA13 9HH Show Secretary: Doreen Webster, 25 Highfields Drive, Loughborough, Leics, LE11 3JS Newsletter Editor: Moira Tarrant, Bumby’s, Fox Rd., Mashbury, Chelmsford, CM1 4TJ Meetings Secretary: Colin Clay, 14 Cromwell Place, Lighthorne Heath, Leamington Spa, CV33 9TG Ordinary Member (publicity): Simon Tarrant, Bumby’s, Fox Rd., Mashbury, Chelmsford, CM1 4TJ Ordinary Member (Newsletter Dist.): Bill Temple, Primrose Cottage, Hanney Rd., Ste- venton, Oxon, OX13 6AP Ordinary Member (Seed & Fungus Bank): Ted Weeks, 74 Over Lane, Almondsbury, Bristol, BS32 4BT Co-opted Member (BOC Rep.): Richard Nicol, 1364 Evesham Rd., Astwood Bank, Red- ditch, Worcs, B96 6BD Contents P.3 From the New President, Richard Bateman P.5 Report of the 9th AGM of the Hardy Orchid Society P.7 Publicity Posters, Simon Tarrant P.8 HELP!, Richard Manuel P.8 HOS Plant Show 2001, Tony Hughes P.10 Does DNA reveal All about the Evolution of Terrestrial Orchids? Part 3, Richard Bateman P.14 Getting Started - the Basics of Hardy Orchid Cultivation, Alan Dash P.20 Chemical Warfare, Richard Manuel P.21 AGS Summer South Show - Silver Award, Carol Dash P.22 Seed and Fungus Bank, Ted Weeks Colour Insert between Pages 12 and 13 Cover illustration: Serapias lingua by Carol Dash HOS Newsletter 21, July 2001 From the New President of the HOS Richard Bateman I am of course delighted to accept the Presidency of the Hardy Orchid Society.
    [Show full text]
  • Effects of Floral Display and Plant Abundance on Fruit Production of Ryncholaelia Glauca (Orchidaceae)
    Rev. Biol. Trop. 51(1): 71-78, 2003 www.ucr.ac.cr www.ots.ac.cr www.ots.duke.edu Effects of floral display and plant abundance on fruit production of Ryncholaelia glauca (Orchidaceae) Alejandro Flores-Palacios and José G. García-Franco* Departamento de Ecología Vegetal, Instituto de Ecología A.C., Km 2.5 Antigua Carretera a Coatepec, Apartado Postal 63, Xalapa, Ver., 91000, México, Fax 52(228)8187809, [email protected]; [email protected] * Corresponding author Received 02-II-2001. Corrected 08-VIII-2001. Accepted 19-IX-2002. Abstract: Flowering plant density can increase number of visits and fruit set in multi-flowering plants, howev- er this aspect has not been studied on few flower species. We studied the effects of individual floral display and plant density on the fruit production of the epiphytic, moth-pollinated orchid, Ryncholaelia glauca, in an oak forest of Chavarrillo, Veracruz, Mexico. Species is non-autogamous, and produced one flower per flowering shoot each flowering season. We hypothesized that orchids with more flowering shoots and those on trees with clumps of conspecific should develop more fruits than isolated ones. R. glauca population flowers synchro- nously, and individual flowers last up to 18 days, with flowers closing rapidly after pollination. Individuals pro- duced few flowers per year, although some plants developed flowers in both seasons and fewer of them devel- oped fruits both years. There was no relationship between flower number per orchid, or per host tree, with the number of fruits developed per plant. Host trees with flowering and fruiting orchids were randomly dispersed and the pattern of distribution of flowering and fruiting plants was not related.
    [Show full text]
  • Review Article Conservation Status of the Family Orchidaceae in Spain Based on European, National, and Regional Catalogues of Protected Species
    Hind ile Scientific Volume 2018, Article ID 7958689, 18 pages https://doi.org/10.1155/2018/7958689 Hindawi Review Article Conservation Status of the Family Orchidaceae in Spain Based on European, National, and Regional Catalogues of Protected Species Daniel de la Torre Llorente© Biotechnology-Plant Biology Department, Higher Technical School of Agronomic, Food and Biosystems Engineering, Universidad Politecnica de Madrid, 28140 Madrid, Spain Correspondence should be addressed to Daniel de la Torre Llorente; [email protected] Received 22 June 2017; Accepted 28 December 2017; Published 30 January 2018 Academic Editor: Antonio Amorim Copyright © 2018 Daniel de la Torre Llorente. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Tis report reviews the European, National, and Regional catalogues of protected species, focusing specifcally on the Orchidaceae family to determine which species seem to be well-protected and where they are protected. Moreover, this examination highlights which species appear to be underprotected and therefore need to be included in some catalogues of protection or be catalogued under some category of protection. Te national and regional catalogues that should be implemented are shown, as well as what species should be included within them. Tis report should be a helpful guideline for environmental policies about orchids conservation in Spain, at least at the regional and national level. Around 76% of the Spanish orchid fora are listed with any fgure of protection or included in any red list, either nationally (about 12-17%) or regionally (72%).
    [Show full text]
  • Eugenol Synthase Genes in Floral Scent Variation in Gymnadenia Species
    CORE Metadata, citation and similar papers at core.ac.uk Provided by RERO DOC Digital Library Funct Integr Genomics (2014) 14:779–788 DOI 10.1007/s10142-014-0397-9 ORIGINAL PAPER Eugenol synthase genes in floral scent variation in Gymnadenia species Alok K. Gupta & Ines Schauvinhold & Eran Pichersky & Florian P. Schiestl Received: 9 July 2013 /Revised: 7 August 2014 /Accepted: 31 August 2014 /Published online: 20 September 2014 # Springer-Verlag Berlin Heidelberg 2014 Abstract Floral signaling, especially through floral scent, is activity in Escherichia coli. While G. odoratissima and often highly complex, and little is known about the molecular Gymnadenia conopsea enzymes were found to catalyze the mechanisms and evolutionary causes of this complexity. In formation of eugenol only, the Gymnadenia densiflora pro- this study, we focused on the evolution of “floral scent genes” teins synthesize eugenol, as well as a smaller amount of and the associated changes in their functions in three closely isoeugenol. Finally, we showed that the eugenol and related orchid species of the genus Gymnadenia.Wedevel- isoeugenol producing gene copies of G. densiflora are evolu- oped a benchmark repertoire of 2,571 expressed sequence tags tionarily derived from the ancestral genes of the other species (ESTs) in Gymnadenia odoratissima. For the functional char- producing only eugenol. The evolutionary switch from pro- acterization and evolutionary analysis, we focused on eugenol duction of one to two compounds evolved under relaxed synthase, as eugenol is a widespread and important scent purifying selection. In conclusion, our study shows the mo- compound. We obtained complete coding complementary lecular bases of eugenol and isoeugenol production and sug- DNAs (cDNAs) of two copies of putative eugenol synthase gests that an evolutionary transition in a single gene can lead genes in each of the three species.
    [Show full text]
  • ! Natural Potentials of the Medicinal Plants from the Orchidaceae Family with Mucus As the Main Ingredients from Zlatar Mountain
    BIOLOGICA NYSSANA 1 (1-2) z December 2010: 43-47 Matović, M. et al. z Natural potentials of the medicinal plants… 1 (1-2) • December 2010: 43-47 10th SFSES • 17-20 June 2010, Vlasina lake Original Article ! Natural potentials of the medicinal plants from the Orchidaceae family with mucus as the main ingredients from Zlatar mountain Milić Matović1, Biljana Nikolić2*, Gorica Đelić3, Marija Marković1 1 University of Niš, Faculty of Sciences and Mathematics, Department of Biology and Ecology, Višegradska 33, 18000 Niš, Serbia 2 Institute of Forestry, Kneza Višeslava 3, 11030 Belgrade, Serbia 3Faculty of Sciences, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia * E-mail: [email protected] Abstract: Matović, M., Nikolić, B., Đelić, G., Marković, M.: Natural potentials of the medicinal plants from the Orchidaceae family with mucus as the main ingredients from Zlatar mountain. Biologica Nyssana, 1 (1- 2), December 2010: 43-47. The spontaneous medicinal flora of Zlatar Mountain was studied in the aim of realizing the possibilities of its sustainable use for the needs of the pharmaceutical industry. The special attention was paid to genera Orchis, Ophrys, Plathanthera, Gimnadenia, etc. from the orchid family (Orchidaceae) of which salep is made (Tuber salep). Salep is a typical mucous drug (contains over 50% of mucus), which is very beneficial and useful. The primary role of salep is to heal and strengthen the organism and urge the sexual and every other biological ability. Orchids of which salep is made (Orchis coriophora, Orchis laxiflora, Orchis morio, Orchis mascula, Orchis pallens, Orchis purpurea, Orchis simia, Orchis tridentata and Orchis ustulata) are to be found on numerous habitats of Zlatar (in the bright forests, clearing areas and on forest meadows).
    [Show full text]
  • Phytogeographical Analysis and Ecological Factors of the Distribution of Orchidaceae Taxa in the Western Carpathians (Local Study)
    plants Article Phytogeographical Analysis and Ecological Factors of the Distribution of Orchidaceae Taxa in the Western Carpathians (Local study) Lukáš Wittlinger and Lucia Petrikoviˇcová * Department of Geography and Regional Development, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 94974 Nitra, Slovakia; [email protected] * Correspondence: [email protected]; Tel.: +421-907-3441-04 Abstract: In the years 2018–2020, we carried out large-scale mapping in the Western Carpathians with a focus on determining the biodiversity of taxa of the family Orchidaceae using field biogeographical research. We evaluated the research using phytogeographic analysis with an emphasis on selected ecological environmental factors (substrate: ecological land unit value, soil reaction (pH), terrain: slope (◦), flow and hydrogeological productivity (m2.s−1) and average annual amounts of global radiation (kWh.m–2). A total of 19 species were found in the area, of which the majority were Cephalenthera longifolia, Cephalenthera damasonium and Anacamptis morio. Rare findings included Epipactis muelleri, Epipactis leptochila and Limodorum abortivum. We determined the ecological demands of the abiotic environment of individual species by means of a functional analysis of communities. The research confirmed that most of the orchids that were studied occurred in acidified, calcified and basophil locations. From the location of the distribution of individual populations, it is clear that they are generally arranged compactly and occasionally scattered, which results in ecological and environmental diversity. During the research, we identified 129 localities with the occurrence of Citation: Wittlinger, L.; Petrikoviˇcová, L. Phytogeographical Analysis and 19 species and subspecies of orchids. We identify the main factors that threaten them and propose Ecological Factors of the Distribution specific measures to protect vulnerable populations.
    [Show full text]
  • LENS Wildlife Watch
    LENS LENS Long Eaton Natural Wildlife History Society Watch Autumn 2016 Volume 2 Issue 18 IT’S A DISGRACE! Forbes Hole LNR Inside this issue: LES Eco Day 2 Sustrans Bioblitz BNA Our Garden/Barkers 3 Pond Fay Blackburn Cherry Tree Walk 4 Forbes Hole LNR 6 Shardlow 7 Willington 8 Attenborough 9 Hilton 11 Bradgate 12 Bennerley 14 Trent Lock 16+22 Toton 17 Millersdale 19 Straws Bridge 21 Elvaston 23 Stoney Clouds 27 i-record, invasive 29 species, i-spot The picture says it all. Concerns have been raised with Erewash Borough Council as the site at Forbes Hole Local Nature Reserve is now open to Future events 30 Contact details abuse by all elements of motor vehicle. It is hoped finance can be raised to replace the gate and fencing whilst allowing disabled access. LENS AT Rotary Club Children’s Fun Day Canal side flowers featured in LENS quiz at the Rotary Interact Club Wildlife Children‟s Fun Day. It was a scorcher! The Long Eaton Rotary Interact emergency call group is made up of 11-18 year olds. They ran a Free Family Fun Day police for local families last year, the event was so successful that they 08456 058058 decided to run the event again. The concept is that families in the summer holidays find it difficult to find activities for the whole family E-mail to take part in and when they do, they can be expensive. So they organised a free family fun day, where families can come bring a force.control@derby picnic and have a go at an activity or take part in one of the shire.pnn.police.uk various workshops free of charge.
    [Show full text]
  • Orchids of Suspa-Kshamawoti, Dolakha -An Annotated Checklist
    Banko Janakari, Vol 29 No. 2, 2019 Pp 28‒41 Karki & Ghimire https://doi.org:10.3126/banko.v29i2.28097 Orchids of Suspa-Kshamawoti, Dolakha -An annotated checklist S. Karki1* and S. K. Ghimire1 Suspa-Kshamawoti area of Dolakha district covers diverse vegetation types and harbors many interesting species of orchids. This paper documents 69 species of orchids covering 33 genera based on repeated field surveys and herbarium collections. Of them, 50 species are epiphytic (including lithophytes) and 19 species are terrestrial. Information regarding habit and habitat, phenology, host species and elevational range of distribution of each species are provided in the checklist. Keywords : Bulbophyllum, Nepal, Orchidaceae rchids are one of the most diverse and contributions on documentation of orchid flora are highly evolved groups of flowering made by Bajracharya (2001; 2004); Rajbhandari Oplants, and orchidaceae is the largest and Bhattrai (2001); Bajracharya and Shrestha family comprising 29,199 species and are (2003); Rajbhandari and Dahal (2004); Milleville globally distributed (Govaerts et al., 2017). Out and Shrestha (2004); Subedi et al. (2011); of them, two-third belong to epiphytes (Zotz and Rajbhandari (2015); Raskoti (2015); Raskoti and Winkler, 2013). In Nepal, orchidaceae is one of Ale (2009; 2011; 2012; 2019) and Bhandari et al. the major families amongst the higher flowering (2016 b; 2019). Suspa-Kshamawoti, the northern plants and comprises 502 taxa belonging to 108 part of the Dolakha district covers diverse genera, which forms around 8 percent of our flora vegetation and harbors some interesting species (Raskoti and Ale, 2019). The number of species of orchids. Bhandari et al.
    [Show full text]
  • DEMOGRAFÍA Y GENÉTICA DE POBLACIONES DE LA ORQUÍDEA TERRESTRE Cyclopogon Luteo-Albus (A
    DEMOGRAFÍA Y GENÉTICA DE POBLACIONES DE LA ORQUÍDEA TERRESTRE Cyclopogon luteo-albus (A. Rich. y Galeotti) Schltr. EN FRAGMENTOS DE BOSQUE DE NIEBLA DEL CENTRO DE VERACRUZ TESIS QUE PRESENTA LILIÁN JUÁREZ TÉLLEZ PARA OBTENER EL GRADO DE DOCTOR EN ECOLOGÍA Y MANEJO DE RECURSOS NATURALES Xalapa, Veracruz, México 2013 RECONOCIMIENTO Agradezco al Consejo de Ciencia y Tecnología por la beca de manutención otorgada durante seis años (número de registro ED03007) y por el apoyo financiero para los trabajos de campo y laboratorio a través de un proyecto asignado al Dr. Carlos Montaña Carubelli (número de proyecto 36642 V). Al Consejo de Ciencia y Tecnología por la beca de ayudante de investigador asociada al Dr. Carlos Montaña Carubelli (número de expediente 393166629). A Carlos Montaña Carubelli quien me guió y acompañó durante el camino a la cima y por las amenas charlas. A Miriam Ferrer quien me rescató en un momento de crisis académica, por su disposición y valiosas sugerencias en el manuscrito de genética. A Teresa Valverde por sus valiosas sugerencias y enseñanzas. A María Luisa Martínez quien también me apoyó en un momento de crisis académica. A Danaé Cabrera Toledo, Francisco Reyes Zepeda, Andrew Vovides, Julia Hernández, Sonia Galicia y Julia Hernández, por su ayuda en el laboratorio, a Jorge García Burgos, Antonio López, Carlo Sormani, Alejandro Abundis, Vicky y Mario Márquez por apoyo en campo. A Pablo Carrillo, Claudia Gallardo por su valioso apoyo, Phil Brewster, Carlos Yáñez, Luis Cervantes y Ricardo Ayala en la determinación de abejas y avispas, a Martín Mata por su ayuda en el laboratorio de cultivo in vitro.
    [Show full text]