Salmon Gum Country (Eucalyptus Salmonophloia)

Total Page:16

File Type:pdf, Size:1020Kb

Salmon Gum Country (Eucalyptus Salmonophloia) This publication is designed to assist land Contents managers to identify the different vegetation and soil types that make up the Central and 2 Introduction Eastern Wheatbelt and enable them to best 3 Using This Guide decide the most suitable species when Find out how planning biodiverse revegetation. to prepare 4 Preparation and your site for Establishment Of Your Site regeneration 7 Revegetation Timeline 8 Red Morell Country 10 Gimlet Country 12 Salmon Gum Country Choose your soil type 14 Jam or York Gum Country 16 Tammar Country 18 White Gum Country 20 Mallee Country All flower, tree and landscape Introductory pages written Thanks to all Shire Natural 22 Sandplain or Wodjil photographs have been by Tracey Hobbs, Natural Resource Management kindly donated by Stephen Resource Management Officers in the Central Fry, Natural Resource Officer, Kellerberrin. and Eastern Wheatbelt for 24 Sandy Saline Systems Management Officer, Revegetation pages written edits and advice throughout Bruce Rock. by Stephen Fry, Natural the publishing process of Resource Management this book. Officer, Bruce Rock For further information This publication has been Publication designed Ken Hodgkiss & or assistance please contact funded by the Australian by Juliette Dujardin. friend, John Butcher, the Natural Resource Government’s Clean Energy Lawry Keeler & Management Officer Future Biodiversity Fund. Merrilyn Temby at your local Shire. 1 This publication has been written from a practical The Avon Catchment of WA has less than on-ground perspective for landholders to identify 10% of its original vegetation remaining. their own soil/vegetation types and the best species to use for their revegetation project. This extremely fragmented remnant This collaboration is essential in This publication describes the different vegetation is of high conservation value achieving maximum NRM outcomes soil types, their associated vegetation TIP because of its high level of genetic on-ground across the farming community type, and what defines them. This variation and endemism, and as habitat and NRM resources and services have includes the dominant vegetation and Several photos of defining for threatened and endangered fauna been able to cover an area of 71,480 km.2 other plants that make up the unique flowering shrub species and flora species. This has created a greater opportunity character of this area. for landholders and local government have been included as a The Central Wheatbelt of WA also For each soil/vegetation type there is a to work together to achieve large-scale has 41 Beard and Hopkins Vegetation suggested list of species to be used for reference guide for what environmental gains. Associations (BHVA) identified by the revegetation of that area. Some of the WA Department of Environment and species of the original vegetation have you might see in the Conservation as priority vegetation. not been included in this list as they original vegetation type. Priority vegetation is recognised as are difficult or even impossible to grow having less than 10% remnant horticulturally and therefore unable Generally these are vegetation existing. to be sourced through local nurseries. plants that you will We are a collaboration of fifteen Shire Councils working together not be able to find at to provide Natural Resource Management (NRM) services farm tree nurseries. for the central and eastern regions of the Wheatbelt The in Western Australia. project Perth area Mt Stirling WA 2 3 There are many different methods of revegetation but the one outlined below is the most common and successful process for the Central and Eastern Wheatbelt. Site Preparation TIP Planning Ripping Planting If your site has a hard pan it may be The most common method of planting There are specialist necessary to rip 4-6 months prior to in the area is with a one pass Chatfield’s To ensure the availability of the preferred planting as this will allow the moisture Tree Planter. This machine will allow seedlings you will need to place an order biodiversity nurseries to penetrate the soil and enable the you to rip and scalp the site at the same with your chosen nursery by November where difficult to source seedling roots to spread. time you are planting the seedlings. the year before you plan to revegetate. species can be ordered. These machines can usually be hired Pre-planting Weed Control from your local Shire or Landcare group. Weed control is important to conserve Contact your local Natural For the best success rate it is important the available soil moisture and avoid that the seedlings are planted in the Resource Management competition with your seedlings. best possible conditions. This is usually This can be done using a knockdown Officer for further details. in July when there is soil moisture (Glyphosphate) herbicide. Your local and potential rain to help establish agronomist can assist you with the seedlings. further recommendations. Hand Planting Pest Control Hand planting can be just as quick If rabbits are abundant in the area it and more successful than machine would be advisable to carry out some planting, if the preparation is well done. form of rabbit control in the summer/ A Chatfield Tree Planting machine with autumn prior to planting. This could the press wheels removed creates the be in the form of baiting, warren perfect hand planting environment. ripping or fumigation. It affords you the opportunity to return to the site and replant or seed Sandalwood in subsequent years. 4 5 First Second Third Order seedlings Year Year Year from nursery January Rabbit control February Weed control Post-Planting March Site preparation April Pest Control Stock Restriction Post planting rabbit control may be It is essential to restrict stock from the required if rabbits pose a threat to site until the seedlings have properly Planting May seedlings. You will first notice this where established. For a biodiverse site this the site is close to existing vegetation. will be at least four years. If you are Monitor & revegetating with fodder shrubs as part June survival count of a grazing system this time frame can be reduced to 18 months. When stock are July TIP allowed access to the site, seedlings will need to be closely monitored for signs of Rabbit control will be more grazing damage. August important in dry years when they are seeking food. September In these circumstances October kangaroos may also pose a threat to seedlings. November Claudia Kirby December planting Sandal wood hosts in 2009 6 7 Morell is probably the most difficult Characteristics Standard Nursery Species Morell has very saline subsoil. soil to work with, apart from heavy Acacia hemetiles Tan Wattle Once the topsoil erodes, salinity clays, which are usually close by. is sure to follow. Atriplex amnicola River Saltbush Morells are often associated The soil is structureless, fine and dusty Old Man Saltbush with saline landscapes. Atriplex nummularia with a propensity to erode easily. The understory is sparse and Atriplex semibaccatta Creeping Saltbush dominated by saltbush species. Atriplex vesicaria - As many as 10 saltbush species can be identified under morell canopies. Casuarina obesa Swamp Sheoak Melaleuca pauperiflora is the most Eucalyptus longicornis Red Morell common mid story species associated with Morell. Eucalyptus Oil Mallee York Gimlet often interacts at the margins loxophleba-lissophloia to heavy clays and if Salmon Gum is Eucalyptus myriadena - present, double check to make sure that it isn’t Eucalyptus urna, which Eucalyptus salubris Gimlet grows with Morell and looks very Enchylaena tomentosa Ruby Saltbush similar to Salmon Gum. Morell (Eucalyptus longicornis) Maireana brevifolia Bluebush can survive in saline margins Boree and heavy clays and performs Melaleuca pauperiflora well in revegetation projects. Things you may see in Morell country but won’t be able to get from the nursery... Acacia Frankenia sp intricata Hakea preissii Darwinia sp 8 9 Gimlet country is characterised by clay. Characteristics Standard Nursery Species Whether red cracking clays or grey Tan Wattle Gimlet soils will be hard, sticky, grey clays, Eucalyptus salubris will dominate Acacia hemetiles on valley floor environments. to red clays. You will need plenty of Atriplex semibaccatta Creeping Saltbush Gimlet is often joined by Salmon Gum, horsepower to ensure that it is ripped Morell or Eucalyptus urna. Atriplex vesicaria - well for a good revegetation outcome. The soils are generally in the valley Eucalyptus longicornis Red Morell floor and as the soil slope rises, other species will take over. Eucalyptus loxophleba York Gum ssp lissophloia Oil Mallee Gimlet can also grade to Eucalyptus capillosa or to York Gum. Eucalyptus myriadena - Eucalyptus loxophleba ssp lissophloia Eucalyptus salubris Gimlet can also be associated with Gimlet. Ruby Saltbush It is common to see all of the Enchylaena tomentosa mentioned Eucalypts growing Melaleuca pauperiflora - together where the soil structures are constantly changing. Maireana brevifolia Bluebush Things you may see in clay but won’t be able to get from the nursery... Acacia hemetiles Pit tosporum P tilotus angustifloia spathulatus Grevillea huegellii 10 11 Salmon Gum country (Eucalyptus Characteristics Standard Nursery Species With loamy or sandy topsoils Jam salmonophloia) is perhaps the most and deep loamy clays beneath, Acacia acuminata reliable and productive soil in this soil will support many other Acacia hemetiles Tan Wattle Eucalypts and understory and the Wheatbelt. mid story species. Acacia
Recommended publications
  • ENRICH Booklet2.Indd
    Perennial forage shrubs — from principles to practice for Australian farms A companion publication to Perennial forage shrubs providing profi table and sustainable grazing: Key fi ndings from the Enrich project Contents Introduction and overview .............................................. .3 Ruby saltbush (Enchylaena tomentosa) ............................ .30 1. The value of diversity to the grazing system ...................8 Sandhill wattle (Acacia ligulata) ....................................... .32 Tar bush (Eremophila glabra) ........................................... .34 2. Selecting shrub species for profitable and sustainable farming systems .........................................12 Thorny saltbush (Rhagodia spinescens) ........................... .36 3. Plant species profiles ................................................... .16 4. Forage quality of shrub species ....................................40 Bluebush, small leaved bluebush, yanga bush 5. Designing a shrub-based system (Maireana brevifolia) .........................................................16 — practical considerations .............................................51 Nitre goosefoot (Chenopodium nitrariaceum) ................... .18 6. Establishing forage shrubs .......................................... ..59 Old man saltbush (Atriplex nummularia) .......................... .20 7. Getting the best from shrub-based systems Rhagodia, Mallee saltbush (Rhagodia preissii) ................. .24 — grazing management ................................................64
    [Show full text]
  • Devonian Plant Fossils a Window Into the Past
    EPPC 2018 Sponsors Academic Partners PROGRAM & ABSTRACTS ACKNOWLEDGMENTS Scientific Committee: Zhe-kun Zhou Angelica Feurdean Jenny McElwain, Chair Tao Su Walter Finsinger Fraser Mitchell Lutz Kunzmann Graciela Gil Romera Paddy Orr Lisa Boucher Lyudmila Shumilovskikh Geoffrey Clayton Elizabeth Wheeler Walter Finsinger Matthew Parkes Evelyn Kustatscher Eniko Magyari Colin Kelleher Niall W. Paterson Konstantinos Panagiotopoulos Benjamin Bomfleur Benjamin Dietre Convenors: Matthew Pound Fabienne Marret-Davies Marco Vecoli Ulrich Salzmann Havandanda Ombashi Charles Wellman Wolfram M. Kürschner Jiri Kvacek Reed Wicander Heather Pardoe Ruth Stockey Hartmut Jäger Christopher Cleal Dieter Uhl Ellen Stolle Jiri Kvacek Maria Barbacka José Bienvenido Diez Ferrer Borja Cascales-Miñana Hans Kerp Friðgeir Grímsson José B. Diez Patricia Ryberg Christa-Charlotte Hofmann Xin Wang Dimitrios Velitzelos Reinhard Zetter Charilaos Yiotis Peta Hayes Jean Nicolas Haas Joseph D. White Fraser Mitchell Benjamin Dietre Jennifer C. McElwain Jenny McElwain Marie-José Gaillard Paul Kenrick Furong Li Christine Strullu-Derrien Graphic and Website Design: Ralph Fyfe Chris Berry Peter Lang Irina Delusina Margaret E. Collinson Tiiu Koff Andrew C. Scott Linnean Society Award Selection Panel: Elena Severova Barry Lomax Wuu Kuang Soh Carla J. Harper Phillip Jardine Eamon haughey Michael Krings Daniela Festi Amanda Porter Gar Rothwell Keith Bennett Kamila Kwasniewska Cindy V. Looy William Fletcher Claire M. Belcher Alistair Seddon Conference Organization: Jonathan P. Wilson
    [Show full text]
  • Enabling the Market: Incentives for Biodiversity in the Rangelands
    Enabling the Market: Incentives for Biodiversity in the Rangelands: Report to the Australian Government Department of the Environment and Water Resources by the Desert Knowledge Cooperative Research Centre Anita Smyth Anthea Coggan Famiza Yunus Russell Gorddard Stuart Whitten Jocelyn Davies Nic Gambold Jo Maloney Rodney Edwards Rob Brandle Mike Fleming John Read June 2007 Copyright and Disclaimers © Commonwealth of Australia 2007 Information contained in this publication may be copied or reproduced for study, research, information or educational purposes, subject to inclusion of an acknowledgment of the source. The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Australian Government or the Minister for the Environment and Water Resources. While reasonable efforts have been made to ensure that the contents of this publication are factually correct, the Australian Government does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication. Contributing author information Anita Smyth: CSIRO Sustainable Ecosystems Anthea Coggan: CSIRO Sustainable Ecosystems Famiza Yunus: CSIRO Sustainable Ecosystems Russell Gorddard: CSIRO Sustainable Ecosystems Stuart Whitten: CSIRO Sustainable Ecosystems Jocelyn Davies: CSIRO Sustainable Ecosystems Nic Gambold: Central Land Council Jo Maloney Rodney Edwards: Ngaanyatjarra Council Rob Brandle: South Austalia Department for Environment and Heritage Mike Fleming: South Australia Department of Water, Land and Biodiversity Conservation John Read: BHP Billiton Desert Knowledge CRC Report Number 18 Information contained in this publication may be copied or reproduced for study, research, information or educational purposes, subject to inclusion of an acknowledgement of the source.
    [Show full text]
  • Origin and Age of Australian Chenopodiaceae
    ARTICLE IN PRESS Organisms, Diversity & Evolution 5 (2005) 59–80 www.elsevier.de/ode Origin and age of Australian Chenopodiaceae Gudrun Kadereita,Ã, DietrichGotzek b, Surrey Jacobsc, Helmut Freitagd aInstitut fu¨r Spezielle Botanik und Botanischer Garten, Johannes Gutenberg-Universita¨t Mainz, D-55099 Mainz, Germany bDepartment of Genetics, University of Georgia, Athens, GA 30602, USA cRoyal Botanic Gardens, Sydney, Australia dArbeitsgruppe Systematik und Morphologie der Pflanzen, Universita¨t Kassel, D-34109 Kassel, Germany Received 20 May 2004; accepted 31 July 2004 Abstract We studied the age, origins, and possible routes of colonization of the Australian Chenopodiaceae. Using a previously published rbcL phylogeny of the Amaranthaceae–Chenopodiaceae alliance (Kadereit et al. 2003) and new ITS phylogenies of the Camphorosmeae and Salicornieae, we conclude that Australia has been reached in at least nine independent colonization events: four in the Chenopodioideae, two in the Salicornieae, and one each in the Camphorosmeae, Suaedeae, and Salsoleae. Where feasible, we used molecular clock estimates to date the ages of the respective lineages. The two oldest lineages both belong to the Chenopodioideae (Scleroblitum and Chenopodium sect. Orthosporum/Dysphania) and date to 42.2–26.0 and 16.1–9.9 Mya, respectively. Most lineages (Australian Camphorosmeae, the Halosarcia lineage in the Salicornieae, Sarcocornia, Chenopodium subg. Chenopodium/Rhagodia, and Atriplex) arrived in Australia during the late Miocene to Pliocene when aridification and increasing salinity changed the landscape of many parts of the continent. The Australian Camphorosmeae and Salicornieae diversified rapidly after their arrival. The molecular-clock results clearly reject the hypothesis of an autochthonous stock of Chenopodiaceae dating back to Gondwanan times.
    [Show full text]
  • Ecological Character Description of Toolibin Lake, Western Australia
    ECOLOGICAL CHARACTER DESCRIPTION OF TOOLIBIN LAKE, WESTERN AUSTRALIA January 2006 Prepared for Department of Conservation and Land Management Prepared by Gary McMahon Ecosystem Solutions Pty Ltd PO Box 685 Dunsborough WA 6281 Ph: 08 9759 1960 Fax: 08 9759 1920 Limitations Statement This report has been exclusively drafted for the DEPARTMENT OF CONSERVATION & LAND MANAGEMENT. No express or implied warranties are made by Ecosystem Solutions Pty Ltd regarding the findings and data contained in this report. No new research or field studies were conducted. All of the information details included in this report are based upon the research provided and obtained at the time Ecosystem Solutions Pty Ltd conducted its analysis. In undertaking this work the authors have made every effort to ensure the accuracy of the information used. Any conclusions drawn or recommendations made in the report are done in good faith and the consultants take no responsibility for how this information and the report are used subsequently by others. Please note that the contents in this report may not be directly applicable towards another organisation’s needs or any other specific land area requiring management strategies. Ecosystem Solutions Pty Ltd accepts no liability whatsoever for a third party’s use of, or reliance upon, this specific report. Disclaimer The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Australian Government or the Minister for the Environment, or the Administrative Authority for Ramsar in Australia. While reasonable efforts have been made to ensure the contents of this publication are factually correct, the Commonwealth does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication.
    [Show full text]
  • Functional Role of Betalains in Disphyma Australe Under Salinity Stress
    FUNCTIONAL ROLE OF BETALAINS IN DISPHYMA AUSTRALE UNDER SALINITY STRESS BY GAGANDEEP JAIN A thesis submitted to the Victoria University of Wellington In fulfillment of the requirements for the degree of Doctor of Philosophy Victoria University of Wellington (2016) i “ An understanding of the natural world and what’s in it is a source of not only a great curiosity but great fulfillment” -- David Attenborough ii iii Abstract Foliar betalainic plants are commonly found in dry and exposed environments such as deserts and sandbanks. This marginal habitat has led many researchers to hypothesise that foliar betalains provide tolerance to abiotic stressors such as strong light, drought, salinity and low temperatures. Among these abiotic stressors, soil salinity is a major problem for agriculture affecting approximately 20% of the irrigated lands worldwide. Betacyanins may provide functional significance to plants under salt stress although this has not been unequivocally demonstrated. The purpose of this thesis is to add knowledge of the various roles of foliar betacyanins in plants under salt stress. For that, a series of experiments were performed on Disphyma australe, which is a betacyanic halophyte with two distinct colour morphs in vegetative shoots. In chapter two, I aimed to find the effect of salinity stress on betacyanin pigmentation in D. australe and it was hypothesised that betacyanic morphs are physiologically more tolerant to salinity stress than acyanic morphs. Within a coastal population of red and green morphs of D. australe, betacyanin pigmentation in red morphs was a direct result of high salt and high light exposure. Betacyanic morphs were physiologically more tolerant to salt stress as they showed greater maximum CO2 assimilation rates, water use efficiencies, photochemical quantum yields and photochemical quenching than acyanic morphs.
    [Show full text]
  • Vegetation Survey of Three Rehabilitated Sites for Kalgoorlie Consolidated Gold Mines (KCGM) Pty Ltd
    Vegetation Survey of Three Rehabilitated Sites For Kalgoorlie Consolidated Gold Mines (KCGM) Pty Ltd 2006 Final Prepared by: Jim’s Seeds, Weeds & Trees Pty Ltd PO Box 2027 Boulder WA 6432 Contents Page # 1 Introduction............................................................................................1 1.1 Topography, Climate and Soils..............................................................1 1.2 Vegetation..............................................................................................1 2 Methods..................................................................................................2 2.1 Objectives ..............................................................................................3 3 Results....................................................................................................4 3.1 Area 1: Proposed Location of the Northwest Waste Rock Dump .........4 3.1.1 Flora .......................................................................................................4 3.1.2 Vegetation..............................................................................................5 3.2 Area 2: Location of the proposed Northeast Waste Rock Dump...........6 3.2.1 Flora .......................................................................................................6 3.2.2 Vegetation..............................................................................................7 3.3 Area 3: Location of the proposed Golden Pyke Cutback ......................8 3.3.1 Flora .......................................................................................................8
    [Show full text]
  • Potential Agroforestry Species and Regional Industries for Lower Rainfall
    PotentialPotential agroforestryagroforestry speciesspecies andand regionalregional industriesindustries forfor lowerlower rainfall rainfall southernsouthern AustraliaAustralia FLORASEARCHFLORASEARCH 2 2 Australia Australia Potential agroforestry species and regional industries for lower rainfall southern Australia FLORASEARCH 2 Australia A report for the RIRDC / L&WA / FWPA / MDBC Joint Venture Agroforestry Program Future Farm Industries CRC by Trevor J. Hobbs, Mike Bennell, Dan Huxtable, John Bartle, Craig Neumann, Nic George, Wayne O’Sullivan and David McKenna January 2009 © 20092008 Rural Industries Research and Development Corporation. All rights reserved. ISBN 1 74151 479 7 ISSN 1440-6845 Please cite this report as: Hobbs TJ, Bennell M, Huxtable D, Bartle J, Neumann C, George N, O’Sullivan W and McKenna D (2008). Potential agroforestry species and regional industries for lower rainfall southern Australia: FloraSearch 2. Report to the Joint Venture Agroforestry Program (JVAP) and the Future Farm Industries CRC*. Published by RIRDC, Canberra Publication No. 07/082 Project No. UWA-83A The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia
    [Show full text]
  • [Cover Page with Artwork]
    Adaptation to climate in widespread eucalypt species Final Report Margaret Byrne, Suzanne Prober, Liz McLean, Dorothy Steane, William Stock, Brad Potts and Rene Vaillancourt Adaptation to climate in widespread eucalypt species Climate-resilient revegetation of multi-use landscapes: Exploiting genetic variability in widespread species AUTHORS Margaret Byrne – Department of Environment and Conservation Suzanne Prober – CSIRO Ecosystem Sciences Liz McLean – Department of Environment and Conservation Dorothy Steane – University of Tasmania William Stock – Edith Cowan University Brad Potts – University of Tasmania Rene Vaillancourt – University of Tasmania Published by the National Climate Change Adaptation Research Facility ISBN: 978-1-921609-98-5 NCCARF Publication 27/13 © 2013 The State of Western Australia This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the copyright holder. Please cite this report as: Byrne, M, Prober, SM, McLean, EH, Steane, DA, Stock, WD, Potts, BM & Vaillancourt, RE 2013, Adaptation to climate in widespread eucalypt species, National Climate Change Adaptation Research Facility, Gold Coast, 86 pp. Acknowledgement This work was carried out with financial support from the Australian Government (Department of Climate Change and Energy Efficiency) and the National Climate Change Adaptation Research Facility (NCCARF). The role of NCCARF is to lead the research community in a national interdisciplinary effort to generate the information needed by decision-makers in government, business and in vulnerable sectors and communities to manage the risk of climate change impacts. We thank the Reference Group for their engagement and advice in regard to the operation and effectiveness of this work undertaken in this project: Gary Howling (Great Eastern Ranges Initiative), David Freudenberger (Greening Australia), Neil Riches (WA State NRM), Richard Mazanec (DEC WA).
    [Show full text]
  • State-Wide Seed Conservation Strategy for Threatened Species, Threatened Communities and Biodiversity Hotspots
    State-wide seed conservation strategy for threatened species, threatened communities and biodiversity hotspots Project 033146a Final Report South Coast Natural Resource Management Inc. and Australian Government Natural Heritage Trust July 2008 Prepared by Anne Cochrane Threatened Flora Seed Centre Department of Environment and Conservation Western Australian Herbarium Kensington Western Australia 6983 Summary In 2005 the South Coast Natural Resource Management Inc. secured regional competitive component funding from the Australian Government’s Natural Heritage Trust for a three-year project for the Western Australian Department of Environment and Conservation (DEC) to coordinate seed conservation activities for listed threatened species and ecological communities and for Commonwealth identified national biodiversity hotspots in Western Australia (Project 033146). This project implemented an integrated and consistent approach to collecting seeds of threatened and other flora across all regions in Western Australia. The project expanded existing seed conservation activities thereby contributing to Western Australian plant conservation and recovery programs. The primary goal of the project was to increase the level of protection of native flora by obtaining seeds for long term conservation of 300 species. The project was successful and 571 collections were made. The project achieved its goals by using existing skills, data, centralised seed banking facilities and international partnerships that the DEC’s Threatened Flora Seed Centre already had in place. In addition to storage of seeds at the Threatened Flora Seed Centre, 199 duplicate samples were dispatched under a global seed conservation partnership to the Millennium Seed Bank in the UK for further safe-keeping. Herbarium voucher specimens for each collection have been lodged with the State herbarium in Perth, Western Australia.
    [Show full text]
  • Gosper Gimlet Ageing Ms Pre-Publication Versionx
    1 Estimating the time since fire of long-unburnt Eucalyptus salubris (Myrtaceae) stands in 2 the Great Western Woodlands 3 4 Carl R. Gosper A,B,C , Suzanne M. Prober B, Colin J. Yates A and Georg Wiehl B 5 6 AScience Division, Department of Environment and Conservation, Locked Bag 104, Bentley 7 Delivery Centre, WA 6983, Australia. 8 BCSIRO Ecosystem Sciences, Private Bag 5, Wembley WA 6913 Australia 9 CCorresponding author. Email: [email protected] 10 11 This is a pre-publication version. The definitive version of the paper has been published 12 in the Australian Journal of Botany on the CSIRO PUBLISHING website. The definitive 13 version can be found here: 14 Gosper, C.R., Prober, S.M., Yates, C.J. and Wiehl, G. (in press) Estimating the time since fire 15 of long-unburnt Eucalyptus salubris stands in the Great Western Woodlands. Australian 16 Journal of Botany doi: 10.1071/BT12212 17 http://www.publish.csiro.au/paper/BT12212.htm 18 19 1 For the definitive version of this paper, go to: http://www.publish.csiro.au/paper/BT12212.htm 20 Abstract. Establishing the time since fire in infrequently burnt, yet fire-prone, 21 communities is a significant challenge. Until this can be resolved for >50 year timeframes, 22 our capacity to understand important ecological processes, such as the periods required for 23 development of habitat features, will remain limited. We characterised the relationship 24 between observable tree growth rings, plant age and plant size in Eucalyptus salubris F. 25 Muell. in the globally significant Great Western Woodlands in south-western Australia.
    [Show full text]
  • Reconnaissance Flora and Vegetation Assessment Part Lots 3060, 4869 and 29259 Great Southern Highway, Saint Ronans Project No: EP19-091(01)
    Reconnaissance Flora and Vegetation Assessment Part Lots 3060, 4869 and 29259 Great Southern Highway, Saint Ronans Project No: EP19-091(01) Prepared for Alkina Holdings Pty Ltd February 2020 Prepared for Alkina Holdings Pty Ltd Doc No.: EP19-091(01)--003C RAW| Version: C Reconnaissance Flora and Vegetation Assessment Part Lots 3060, 4869 and 29259 Great Southern Highway, Saint Ronans Document Control Doc name: Reconnaissance Flora and Vegetation Assessment Part Lots 3060, 4869 and 29259 Great Southern Highway, Saint Ronans Doc no.: EP19-091(01)--003C RAW Version Date Author Reviewer October 2019 Rachel Weber RAW Tom Atkinson TAA 1 Report prepared for client review October 2019 Rachel Weber RAW Tom Atkinson TAA A Minor updates following client review January 2020 Rachel Weber RAW Ashley Bird ALB B Minor updates due to changes to site boundary February 2020 Rachel Weber RAW Ashley Bird ALB C Minor updates following client review © 2020 Emerge Associates All Rights Reserved. Copyright in the whole and every part of this document belongs to Emerge Associates and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person without the prior written consent of Emerge Associates. Project number: EP19-091(01)|February 2020 Page i Prepared for Alkina Holdings Pty Ltd Doc No.: EP19-091(01)--003C RAW| Version: C Reconnaissance Flora and Vegetation Assessment Part Lots 3060, 4869 and 29259 Great Southern Highway, Saint Ronans Executive Summary Alkina Holdings Pty Ltd engaged Emerge Associates (Emerge) to undertake a reconnaissance flora and vegetation survey within part of Lots 3060, 4869 and 29259 Great Southern Highway and a portion of Great Southern Highway classified as ‘road’ in Saint Ronans (referred to herein as ‘the site’).
    [Show full text]