LCSH Section X
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary of Place Names for the Chinese Australian Hometown Heritage Tour, January 2018
Glossary of place names for the Chinese Australian Hometown Heritage Tour, January 2018 Chinese English name or characters Mandarin (pinyin) Cantonese (Yale) ‘Chinese postal romanisation’ (traditional) HONG KONG Hong Kong 香港 Xiānggǎng Hēunggóng Wan Chai 灣仔 Wānzǐ Wāanjái Hong Kong Cemetery 香港墳場 Xiānggǎng féncháng Hēunggóng fàhnchèung Happy Valley 跑馬地 Pǎomǎdì Paaúmàhdeí Hong Kong China Ferry Terminal 中港碼頭 Zhōnggǎng mǎtóu Jūnggóng máhtàuh GUANGDONG Canton [province], Kwangtung 廣東 Guǎngdōng Gwóngdūng Canton [city], Kwangchow (Foo) 廣州(府) Guǎngzhōu(fǔ) Gwóngjāu(fú) Pearl River Delta 珠江三角洲 Zhūjiāng sānjiǎo zhōu Jyūgōng sāamgok jāu Sze Yap, See Yup, Four Counties 四邑 Sìyì Seiyāp Wuyi, Five Counties 五邑 Wǔyì Ńghyāp Sam Yap, Three Counties 三邑 Sānyì Sāamyāp JIANGMEN Kongmoon, Jiangmen 江門 Jiāngmén Gōngmùhn Jiangmen Port 江門港 Jiāngméngǎng Gōngmùhngóng Xi River, West River 西江 Xījiāng Sāigōng Gōngmùhn Ńghyāp Wuyi Museum of Overseas Chinese, 江門五邑華僑華人博 Jiāngmén Wǔyì huàqiáo wahkìuh wahyàhn Jiangmen Museum 物馆 huàrén bówùguǎn bokmahtgún KAIPING Hoiping, Kaiping 開平 Kāipíng Hōipèhng Kaiping diaolou (watchtowers) 開平碉樓 Kāipíng diāolóu Hōipèhng dīulàuh Tangkou 塘口 Tángkǒu Tòhngháu Cangdong [Tse village] 倉東 Cāngdōng Chōngdūng Chōngdūng gāauyuhk Cangdong Heritage Education Centre 倉東教育基地 Cāngdōng jiàoyu jīdì gēideih Li Yuan, Li Garden 立園 Lìyuán Laahpyùhn Chek Ham, Chikan 赤坎 Chìkǎn Chekhām Tan River 潭江 Tán Jiāng Tàahm gōng Zili 自力 Zìlì Jihlihk Dik Hoy, Dihai 荻海 Díhǎi Dihkhói Fengcai Hall 風采堂 Fēngcǎitáng Fūngchóitòhng Majianglong 馬降龍 Mǎjiànglóng Máhgonglùhng Yueshan -
Human-Nature Relationships in the Tungus Societies of Siberia and Northeast China Alexandra Lavrillier, Aurore Dumont, Donatas Brandišauskas
Human-nature relationships in the Tungus societies of Siberia and Northeast China Alexandra Lavrillier, Aurore Dumont, Donatas Brandišauskas To cite this version: Alexandra Lavrillier, Aurore Dumont, Donatas Brandišauskas. Human-nature relationships in the Tungus societies of Siberia and Northeast China. Études mongoles et sibériennes, centrasiatiques et tibétaines, Centre d’Etudes Mongoles & Sibériennes / École Pratique des Hautes Études, 2018, Human-environment relationships in Siberia and Northeast China. Knowledge, rituals, mobility and politics among the Tungus peoples, 49, pp.1-26. 10.4000/emscat.3088. halshs-02520251 HAL Id: halshs-02520251 https://halshs.archives-ouvertes.fr/halshs-02520251 Submitted on 26 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Études mongoles et sibériennes, centrasiatiques et tibétaines 49 | 2018 Human-environment relationships in Siberia and Northeast China. Knowledge, rituals, mobility and politics among the Tungus peoples, followed by Varia Human-nature relationships in the Tungus societies of Siberia -
List 3. Headings That Need to Be Changed from the Machine- Converted Form
LIST 3. HEADINGS THAT NEED TO BE CHANGED FROM THE MACHINE- CONVERTED FORM The data dictionary for the machine conversion of subject headings was prepared in summer 2000 based on the systematic romanization of Wade-Giles terms in existing subject headings identified as eligible for conversion before detailed examination of the headings could take place. When investigation of each heading was subsequently undertaken, it was discovered that some headings needed to be revised to forms that differed from the forms that had been given in the data dictionary. This occurred most frequently when older headings no longer conformed to current policy, or in the case of geographic headings, when conflicts were discovered using current geographic reference sources, for example, the listing of more than one river or mountain by the same name in China. Approximately 14% of the subject headings in the pinyin conversion project were revised differently than their machine- converted forms. To aid in bibliographic file maintenance, the following list of those headings is provided. In subject authority records for the revised headings, Used For references (4XX) coded Anne@ in the $w control subfield for earlier form of heading have been supplied for the data dictionary forms as well as the original forms of the headings. For example, when you see: Chien yao ware/ converted to Jian yao ware/ needs to be manually changed to Jian ware It means: The subject heading Chien yao ware was converted to Jian yao ware by the conversion program; however, that heading now -
Bibliography
BIBLIOGRAPHY An Jingfu (1994) The Pain of a Half Taoist: Taoist Principles, Chinese Landscape Painting, and King of the Children . In Linda C. Ehrlich and David Desser (eds.). Cinematic Landscapes: Observations on the Visual Arts and Cinema of China and Japan . Austin: University of Texas Press, 117–25. Anderson, Marston (1990) The Limits of Realism: Chinese Fiction in the Revolutionary Period . Berkeley: University of California Press. Anon (1937) “Yueyu pian zhengming yundong” [“Jyutpin zingming wandung” or Cantonese fi lm rectifi cation movement]. Lingxing [ Ling Sing ] 7, no. 15 (June 27, 1937): no page. Appelo, Tim (2014) ‘Wong Kar Wai Says His 108-Minute “The Grandmaster” Is Not “A Watered-Down Version”’, The Hollywood Reporter (6 January), http:// www.hollywoodreporter.com/news/wong-kar-wai-says-his-668633 . Aristotle (1996) Poetics , trans. Malcolm Heath (London: Penguin Books). Arroyo, José (2000) Introduction by José Arroyo (ed.) Action/Spectacle: A Sight and Sound Reader (London: BFI Publishing), vii-xv. Astruc, Alexandre (2009) ‘The Birth of a New Avant-Garde: La Caméra-Stylo ’ in Peter Graham with Ginette Vincendeau (eds.) The French New Wave: Critical Landmarks (London: BFI and Palgrave Macmillan), 31–7. Bao, Weihong (2015) Fiery Cinema: The Emergence of an Affective Medium in China, 1915–1945 (Minneapolis: University of Minnesota Press). Barthes, Roland (1968a) Elements of Semiology (trans. Annette Lavers and Colin Smith). New York: Hill and Wang. Barthes, Roland (1968b) Writing Degree Zero (trans. Annette Lavers and Colin Smith). New York: Hill and Wang. Barthes, Roland (1972) Mythologies (trans. Annette Lavers), New York: Hill and Wang. © The Editor(s) (if applicable) and The Author(s) 2016 203 G. -
PRC: Anhui Chao Lake Environmental Rehabilitation Project
Due Diligence Report of Environment Project Number: 44036 September 2015 PRC: Anhui Chao Lake Environmental Rehabilitation Project Prepared by Anhui Provincial Project Management Office (APPMO) For Subproject H1 Hefei City Binhu New District Beilaowei Environment Improvement Subproject L1 Chao Lake Basin Lu’an Eastern New Town District Water Environment Improvement Subproject WW1 Wuwei County Wucheng Water Environment (Wuwei Section of Xi River) Integrated Improvement This due diligence report of environment is a document of the borrower. The views expressed herein do not necessarily represent those of ADB’s Board of Directors, Management, or staff, and may be preliminary in nature. In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area. CURRENCY EQUIVALENT $1 = CNY6.3549 (on 3 September 2015) ABBREVIATIONS ADB - Asian Development Bank A2/0 - Anaerobic-anoxic-oxic AP - Affected Person APG - Anhui Provincial Government As - Arsenic BOD5 - 5-day biochemical oxygen demand Cd - Cadmium CLMA - Chao Lake Management Authority CNY - Chinese Yuan COD - Chemical oxygen demand Cr - Chromium DFR - Draft final report DMF - Design and Monitoring Framework DRC - Development and Reform Commission EA - Executing Agency EFS - Engineering Feasibility Study EHS - Environmental Health and Safety EIA - Environmental -
Mercury Accumulation in Vegetable Houttuynia Cordata Thunb. from Two
www.nature.com/scientificreports OPEN Mercury accumulation in vegetable Houttuynia cordata Thunb. from two diferent geological areas in southwest China and implications for human consumption Qingfeng Wang1,2*, Zhonggen Li1,2, Xinbin Feng2, Ao Wang4, Xinyu Li2,3, Dan Wang1 & Leilei Fan1 Houttuynia cordata Thunb. (HCT) is a common vegetable native to southwest China, and grown for consumption. The results suggested that THg contents in all parts and MeHg in underground parts of HCT in Hg mining areas were much higher than those in non-Hg mining areas. The highest THg and MeHg content of HCT were found in the roots, followed by the other tissues in the sequence: roots > leaves > rhizomes > aboveground stems (THg), and roots > rhizomes > aboveground stems > leaves (MeHg). The average THg bioaccumulation factor (BCF) of HCT root in the Hg mining area and in non-Hg mining areas could reach 1.02 ± 0.71 and 0.99 ± 0.71 respectively, indicating that HCT is a Hg accumulator. And the THg and MeHg contents in all tissues of HCT, including the leaves, were signifcantly correlated with THg and MeHg content in the soil. Additionally, preferred dietary habits of HCT consumption could directly afect the Hg exposure risk. Consuming the aboveground parts (CAP) of HCT potentially poses a high THg exposure risk and consuming the underground parts (CUP) may lead to a relatively high MeHg exposure risk. Only consuming the rhizomes (OCR) of the underground parts could signifcantly reduce the exposure risk of THg and to some extent of MeHg. In summary, HCT should not be cultivated near the Hg contaminated sites, such as Hg tailings, as it is associated with a greater risk of Hg exposure and high root Hg levels, and the roots should be removed before consumption to reduce the Hg risk. -
From Tsonga to Mozambicanidade
FROM TSONGA TO MOÇAMBICANIDADE: CIVIL RELIGIOUS DYNAMICS IN MOZAMBICAN NATIONALISM Samuel Joina Ngale Town Supervisor: Professor David Chidester Cape Thesis Presentedof for the Degree of DOCTOR OF PHILOSOPHY Department of Religious Studies UniversityUNIVERSITY OF CAPE TOWN December 2011 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University ABSTRACT The relationship between the Romande Mission and the Liberation Front of Mozambique (FRELIMO) has been the subject of study by a number of Mozambicanists. Most of them agree that the Romande Mission played a key role in educating nationalist elites and in shaping political consciousness among the Africans. Notwithstanding the relevance of this approach, the current study argues that the Tsonga tribal and Mozambican national identities are civil religious constructs. They resulted from sacrificial ritual performances, the expropriation of traditions and symbols, and the creation of sacred spaces. Formed as a linguistic, cultural, religious and tribal unity, the Tsonga provided a historical genealogy and structural template for the emergence of Moçambicanidade as a civil religion. Drawing upon postcolonial theory and discourse analysis, the thesis uses the analytical -
EAAFP MOP8 Agenda Documents Version 4
East Asian – Australasian Flyway Partnership 8th Meeting of Partners, Kushiro, Japan 16-21 January 2015 AGENDA DOCUMENTS VERSION 4 Please note the following changes from the Agenda Documents Version 3. Doc 3.2.1 Partner Report: China, Cambodia, WWF Doc 3.3.1 Task Force Report: SBS TF Doc 6.1.2 Partner Workplan: China Doc 5.2.7 Shorebird Working Group Informal meeting (16:00 – 16:50 on Monday 19 Jan) NOTES ON STATUS OF DOCUMENTS This is the first version of the Agenda Documents, circulated to Partners and to registered participants for the 8th Meeting of Partners (MoP8) before the Meeting date. It is also available on the MoP8 web page at http://www.eaaflyway.net/mop-8/. Additional material may be provided at registration or during the Meeting. ANNEX There are additional supporting documents for some agenda items. These supporting documents are attached to the same email as separate documents. • Annex. Doc 3.3.1.2_Scientific Task Force on Avian Influenza and Wild Birds statement (19th December 2014) • Annex. Doc 3.3.2.1_Input of Asian Waterbird Census and Waterbird Population Estimates • Annex. Doc 4.3.3_Review International Policy Framework EAAF • Annex. Doc 4.5.2_CMS COP PROGRAMME OF WORK ON MIGRATORY BIRDS AND FLYWAYS (Annex 1 to Resolution 11.14) • Annex. Doc 4.5.4_CAFF Strategy Series Report No. 5, May 2014_Arctic Migratory Birds Initiative (AMBI) • Annex. Doc 5.1.5 _FAO EMPRES animal health 360 No.44(2)/2014 INSTRUCTIONS In order to save paper and reduce impacts on our environment, no paper copies of the final agenda document for the MoP8 will be printed or provided. -
Impact of Changes in Land Use and Climate on the Runoff in Dawen River Basin Based on SWAT Model - 2849
Zhao et al.: Impact of changes in land use and climate on the runoff in Dawen River Basin based on SWAT model - 2849 - IMPACT OF CHANGES IN LAND USE AND CLIMATE ON THE RUNOFF BASED ON SWAT MODEL IN DAWEN RIVER BASIN, CHINA ZHAO, Q.* – GAO, Q. – ZOU, C. H. – YAO, T. – LI, X. M. School of Water Conservancy and Environment, University of Jinan 336 Nanxinzhuang West Road, Jinan 250022, Shandong Province, China (phone: +86-135-8910-8827) *Corresponding author e-mail: [email protected]; phone: +86-135-8910-8827 (Received 8th Oct 2018; accepted 25th Jan 2019) Abstract. A distributed hydrological model (SWAT), which is widely used both domestically and internationally, was selected to quantitatively analyze the impact of land use and climate change on runoff in this paper in Dawen River Basin, China. The calibration and validation results obtained at Daicunba and Laiwu hydrological stations yield R2 values of 0.83 and 0.80 and 0.73 and 0.69 and the Ens values of 0.79 and 0.76 and 0.71 and 0.72, respectively. Taking 1980-1990 as the reference period, the annual runoff increased by 288 million m3, which was caused by changes in the land use of basin from 1991 to 2004, whereas the annual runoff decreased by 132 million m3 due to climate change. Land use changed from 2005 to 2015, which resulted in an increase in annual runoff of 13 million m3, and annual changes in climate caused a decrease in annual runoff of 61 million m3. An extreme land use scenario simulation analysis shows that, compared to the current land use simulation in 2000, the runoff of cultivated land scenarios and forest land scenarios was reduced by 38.3% and 19.8%, respectively, and the runoff of grassland scenarios increased by 4.3%. -
Print This Article
97 Flyway structure, breeding, migration and wintering distributions of the globally threatened Swan Goose Anser cygnoides in East Asia IDERBAT DAMBA1,2,3, LEI FANG1,4, KUNPENG YI1, JUNJIAN ZHANG1,2, NYAMBAYAR BATBAYAR5, JIANYING YOU6, OUN-KYONG MOON7, SEON-DEOK JIN8, BO FENG LIU9, GUANHUA LIU10, WENBIN XU11, BINHUA HU12, SONGTAO LIU13, JINYOUNG PARK14, HWAJUNG KIM14, KAZUO KOYAMA15, TSEVEENMYADAG NATSAGDORJ5, BATMUNKH DAVAASUREN5, HANSOO LEE16, OLEG GOROSHKO17,18, QIN ZHU1,4, LUYUAN GE19, LEI CAO1,2 & ANTHONY D. FOX20 1State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. 2University of Chinese Academy of Sciences, Beijing 100049, China. 3Ornithology Laboratory, Institute of Biology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia. 4Life Sciences, University of Science and Technology of China, Hefei, China. 5Wildlife Science and Conservation Center of Mongolia, Union Building B701, Ulaanbaatar 14210, Mongolia. 6Planning and Design Team of Datian Forestry Investigation, Fujian 366100, China. 7Animal and Plant Quarantine Agency, Gimcheon 39660, Korea. 8National Institute of Ecology, Seocheon 33657, Korea. 9Fujian Wildlife Conservation Center, Fuzhou 350003, China. 10Jiangxi Poyang Lake National Reserve Authority, Nanchang, Jiangxi 330038, China. 11Shengjin Lake National Nature Reserve, Dongzhi, Anhui, China. 12Nanji Wetland National Nature Reserve Agency, Nanchang, China. 13Inner Mongolia Hulun Lake National Nature Reserve Administration, Hulunbeir 021008, China. 14Migratory Bird Research Center National Institute of Biological Research, Incheon, Korea. 15Japan Bird Research Association, Tokyo, Japan. 16Korea Institute of Environmental Ecology, 62-12 Techno 1-ro, Yuseong-gu, Daejeon 34014, Korea. 17Daursky State Nature Biosphere Reserve, Zabaykalsky Krai, 674480, Russia. 18Chita Institute of Nature Resources, Ecology and Cryology, Zabaykalsky Krai 672014, Russia. -
Two Distinct Flyways with Different Population Trends Of
13 Two distinct flyways with different population trends of Bewick’s Swan Cygnus columbianus bewickii in East Asia LEI FANG1, JUNJIAN ZHANG2,3, QINGSHAN ZHAO2, DIANA SOLOVYEVA4, DIDIER VANGELUWE5, SONIA B. ROZENFELD6, THOMAS LAMERIS7, ZHENGGANG XU8, INGA BYSYKATOVA-HARMEY9, NYAMBAYAR BATBAYAR10, KAN KONISHI11, OUN-KYONG MOON12 , BU HE13, KAZUO KOYAMA14, SACHIKO MORIGUCHI15,16, TETSUO SHIMADA17, JINYOUNG PARK18, HWAJUNG KIM18, GUANHUA LIU19, BINHUA HU20, DALI GAO21, LUZHANG RUAN22, TSEVEENMYADAG NATSAGDORJ10, BATMUNKH DAVAASUREN10, ALEXEY ANTONOV23, ANASTASIA MYLNIKOVA4, ALEXANDER STEPANOV4,9, GEORGE KIRTAEV6, DMYTRY ZAMYATIN6, SAVAS KAZANTZIDIS24, TSUNEO SEKIJIMA15, IDERBAT DAMBA2,3, HANSOO LEE25, BEIXI ZHANG2,3, YANBO XIE26, EILEEN C. REES27, LEI CAO2,3,* & ANTHONY D. FOX28 1Life Sciences, University of Science and Technology of China, Hefei, China. 2State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China. 3School of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China. 4Laboratory of Ornithology, Institute of Biological Problems of the North, Magadan, Russia. 5Royal Belgian Institute of Natural Sciences, Brussels, Belgium. 6Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia. 7Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands. 8Key Laboratory of Forestry Remote Sensing Based on Big Data & Ecological Security of Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China. 9Institute of Biological Problems of Cryolitozone, Siberian Branch of the Russian Academy of Sciences, Yakutsk, Russia. 10Wildlife Sciences and Conservation Center of Mongolia, Union Building, B-701, UNESCO Str., Ulaanbaatar 14210, Mongolia. 11Hamatonbetsu Lake Kutcharo Waterfowl Observatory, Kutcharo-kohan, Hamatonbetsu-cho, Esashi-gun, Hokkaido 098-5739, Japan. -
Distribution and Fate of Halogenated Flame Retardants (Hfrs)
Science of the Total Environment 621 (2018) 1370–1377 Contents lists available at ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv From headwaters to estuary: Distribution and fate of halogenated flame retardants (HFRs) in a river basin near the largest HFR manufacturing base in China Xiaomei Zhen a,b,c, Jianhui Tang a,⁎, Lin Liu a,c, Xinming Wang b,YananLia,c, Zhiyong Xie d a Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, CAS, Yantai 264003, China b State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China c University of Chinese Academy of Sciences, Beijing 100049, China d Helmholtz-ZentrumGeesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Max-Planck-Strasse 1, Geesthacht 21502,Germany HIGHLIGHTS GRAPHICAL ABSTRACT • Halogenated flame retardants (HFRs) were investigated in a river near the largest manufacturing base in Asia. • Dechlorane plus and decabromodiphenylethane (DBDPE) were the dominant compounds in water samples. • DBDPE was the predominant compound in the sediment samples • Point sources, atmospheric deposition and land runoff are the major sources for HFRs in River. • Estuarine maximum turbidity zone (MTZ) plays important roles on the dis- tributions of HFRs in estuary. article info abstract Article history: With the gradual phasing out of polybrominated diphenyl ethers (PBDEs), market demands for alternative halo- Received 13 August 2017 genated flame retardants (HFRs) are increasing. The Laizhou Bay area is the biggest manufacturing base for bro- Received in revised form 7 October 2017 minated flame retardants (BFRs) in China, and the Xiaoqing River is the largest and most heavily contaminated Accepted 10 October 2017 river in this region.