Quarterly Newsletter of the Calvert Marine Museum Fossil Club
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Titanosauriform Teeth from the Cretaceous of Japan
“main” — 2011/2/10 — 15:59 — page 247 — #1 Anais da Academia Brasileira de Ciências (2011) 83(1): 247-265 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Titanosauriform teeth from the Cretaceous of Japan HARUO SAEGUSA1 and YUKIMITSU TOMIDA2 1Museum of Nature and Human Activities, Hyogo, Yayoigaoka 6, Sanda, 669-1546, Japan 2National Museum of Nature and Science, 3-23-1 Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan Manuscript received on October 25, 2010; accepted for publication on January 7, 2011 ABSTRACT Sauropod teeth from six localities in Japan were reexamined. Basal titanosauriforms were present in Japan during the Early Cretaceous before Aptian, and there is the possibility that the Brachiosauridae may have been included. Basal titanosauriforms with peg-like teeth were present during the “mid” Cretaceous, while the Titanosauria with peg-like teeth was present during the middle of Late Cretaceous. Recent excavations of Cretaceous sauropods in Asia showed that multiple lineages of sauropods lived throughout the Cretaceous in Asia. Japanese fossil records of sauropods are conformable with this hypothesis. Key words: Sauropod, Titanosauriforms, tooth, Cretaceous, Japan. INTRODUCTION humerus from the Upper Cretaceous Miyako Group at Moshi, Iwaizumi Town, Iwate Pref. (Hasegawa et al. Although more than twenty four dinosaur fossil local- 1991), all other localities provided fossil teeth (Tomida ities have been known in Japan (Azuma and Tomida et al. 2001, Tomida and Tsumura 2006, Saegusa et al. 1998, Kobayashi et al. 2006, Saegusa et al. 2008, Ohara 2008, Azuma and Shibata 2010). -
Storm-Dominated Shelf and Tidally-Influenced Foreshore Sedimentation, Upper Devonian Sonyea Group, Bainbridge to Sidney Center, New York
413 STORM-DOMINATED SHELF AND TIDALLY-INFLUENCED FORESHORE SEDIMENTATION, UPPER DEVONIAN SONYEA GROUP, BAINBRIDGE TO SIDNEY CENTER, NEW YORK DANIEL BISHUK JR. Groundwater and Environmental Services, Inc. (GES) 300 Gateway Park Drive North Syracuse, New York 13212 ROBERT APPLEBAUM and JAMES R. EBERT Dept. of Earth Sciences State University of New York College at Oneonta Oneonta, New York 13820-4015 INTRODUCTION The Upper Devonian paleoshoreline of the Catskill clastic wedge in New York State has been interpreted for nearly a century as a complex deltaic sequence (Barrel, 1913, 1914; Chadwick, 1933; Cooper, 1930; Sutton, Bowen and McAlester, 1970; and many others). Friedman and Johnson (1966) envisioned this deltaic complex as a series of coalescing deltaic lobes that progressively filled the Catskill epeiric sea and existed as an uninterrupted deltaic plain from New York to West Virginia. In addition, some geologists believe that such epeiric seas were tideless owing to rapid tidal wave attenuation (Shaw, 1964; and Mazzullo and Friedman, 1975). Others presume that storm (wave) processes were dominant with little or no tidal influence (Dennison, 1985). This study offers significant departures from these interpretations, by documenting nondeltaic environments with significant tidal influence along the Catskill paleo-shoreline. The purpose of this study (Fig. 1) is to delineate sedimentary environments spanning the nonmarine to marine transition in the Upper Devonian Sonyea Group and to test and challenge previous deltaic models of the Sonyea Group (Sutton, et al., 1970). Recent publications have introduced evidence for non-deltaic shoreline environments within the Catskill clastic wedge (Walker and Harms, 1971 ; 1975; Bridge and Droser, 1985; VanTassel, 1986; also see Seven, 1985, Table 1, p. -
Devonian Brachiopods of the Tamesna Basin (Central Sahara; Algeria and North Niger)
Acta Musei Nationalis Pragae, Series B, Natural History, 60 (3–4): 61–112 issued December 2004 Sborník Národního muzea, Serie B, Přírodní vědy, 60 (3–4): 61–112 DEVONIAN BRACHIOPODS OF THE TAMESNA BASIN (CENTRAL SAHARA; ALGERIA AND NORTH NIGER). PART 1 MICHAL MERGL Department of Biology, University of West Bohemia, Klatovská 51, Plzeň, 30614, Czech Republic; e-mail: [email protected] DOMINIQUE MASSA Universite de Nice 6, Rue J. J. Rousseau, Suresnes, 92150, France Mergl, M., Massa, D. (2004): Devonian Brachiopods of the Tamesna Basin (Central Sahara; Algeria and North Niger). Part 1. – Acta Mus. Nat. Pragae, Ser. B, Hist. Nat. 60 (3-4): 61-112. Praha. ISSN 0036-5343. Abstract. The Devonian brachiopod fauna from samples collected by the late Lionel Lessard in the sixties from several secti- ons of the Lower Palaeozoic bordering the Tamesna Basin (Algeria and North Niger, south of the Ahaggar Massif) is descri- bed. The fauna is preserved in siliciclastic rocks, often lacking fine morphological details that are necessary for the determination of the fauna. Despite this difficulty, in total 40 taxa have been determined to generic, species or subspecies le- vels. One new chonetoid genus Amziella is defined on newly described species A. rahirensis. The new species Arcuaminetes racheboeufi, Montsenetes pervulgatus, Montsenetes ? drotae, Pustulatia lessardi, Pustulatia tamesnaensis, Eleutherokomma mutabilis, Mediospirifer rerhohensis and the new subspecies Tropidoleptus carinatus titanius are described. The Pragian age is suggested for the earliest brachiopod association, with maximum spread and diversity of the brachiopod fauna in Late Em- sian – Early Eifelian interval. The youngest Devonian brachiopod fauna in the available samples is probably of the Givetian age. -
Coevolution of Global Brachiopod Palaeobiogeography and Tectonopalaeogeography During the Carboniferous Ning Li1,2*, Cheng-Wen Wang1, Pu Zong3 and Yong-Qin Mao4
Li et al. Journal of Palaeogeography (2021) 10:18 https://doi.org/10.1186/s42501-021-00095-z Journal of Palaeogeography ORIGINAL ARTICLE Open Access Coevolution of global brachiopod palaeobiogeography and tectonopalaeogeography during the Carboniferous Ning Li1,2*, Cheng-Wen Wang1, Pu Zong3 and Yong-Qin Mao4 Abstract The global brachiopod palaeobiogeography of the Mississippian is divided into three realms, six regions, and eight provinces, while that of the Pennsylvanian is divided into three realms, six regions, and nine provinces. On this basis, we examined coevolutionary relationships between brachiopod palaeobiogeography and tectonopalaeogeography using a comparative approach spanning the Carboniferous. The appearance of the Boreal Realm in the Mississippian was closely related to movements of the northern plates into middle–high latitudes. From the Mississippian to the Pennsylvanian, the palaeobiogeography of Australia transitioned from the Tethys Realm to the Gondwana Realm, which is related to the southward movement of eastern Gondwana from middle to high southern latitudes. The transition of the Yukon–Pechora area from the Tethys Realm to the Boreal Realm was associated with the northward movement of Laurussia, whose northern margin entered middle–high northern latitudes then. The formation of the six palaeobiogeographic regions of Mississippian and Pennsylvanian brachiopods was directly related to “continental barriers”, which resulted in the geographical isolation of each region. The barriers resulted from the configurations of Siberia, Gondwana, and Laurussia, which supported the Boreal, Tethys, and Gondwana realms, respectively. During the late Late Devonian–Early Mississippian, the Rheic seaway closed and North America (from Laurussia) joined with South America and Africa (from Gondwana), such that the function of “continental barriers” was strengthened and the differentiation of eastern and western regions of the Tethys Realm became more distinct. -
Marissa Pitter, “Unearthing the Unknown: the Fossils of The
1 Unearthing the Unknown: The Fossils of the Budden Collection Marissa Pitter Fig. 1. South Gallery Room. Hinckley, Maine: L.C. Bates Museum. Photo: John Meader Photography, ©2020. In the South Gallery Room of the L.C. Bates Museum sit eight fossil display cases. In the cramped sixth case rests a significant fossil, the Pertica quadrifaria—Maine’s state fossil which comes from the rocks of the world-renowned Trout Valley Formation. Alongside the rare fossilized remains of Pertica lies “The Budden Collection,” a group of seven fossils found in northern Maine and donated to the museum in 2013. A label sits below each fossil identifying the name of the specimen (and at times, its genus and species), the geologic period and 2 formation, and the location where the fossil was found. The exact descriptions that the L.C. Bates Museum provides on the labels is given in Table 1. Table 1. The Budden Collection Fossils Fossil Geologic Period Geologic Formation Location Favositid Coral (1) Silurian Hardwood Mountain Hobbstown Township, Maine Favositid Coral (2) Silurian Hardwood Mountain Hobbstown Township, Maine Horn coral with trace Devonian Seboomook Tomhegan Township, fossils Maine Rugose Coral Ordovician/Silurian Formation Unknown Shin Pond, Maine Brachiopod Devonian Seboomook Tomhegan Township, Mucrospirifer? Maine Brachiopods likely Devonian Formation Unknown Big Moose Township, steinkerns (fossilized Maine outlines) Leptostrophia and Devonian likely Seboomook Big Moose Township, Tentaculites Maine The question mark following “Mucrospirifer,” the unknown geologic formations, and the impreciseness of the geologic age of the rugose coral indicate there are some uncertainties among the museum’s identifications. The table also points to some commonalities among the fossil collection. -
The Dinosaurs of North America
FEOM THE SIXTEENTH ANNUAL KEPOKT OF THE U. S, GEOLOGICAL SURVEY THE DINOSAURS OF NORTH AMERICA OTHNIEL CHARLES MARSH TALE UNIVERSITY WASHINGTON 1896 ^33/^, I/BRAKt 4 ,\ . THE DINOSAURS OF NORTH AMERICA. BY OTHNIEL CHARLES MARSH. 133 CONTENTS. Pajje. Introduction 143 Part I. —Triassic dinosaurs 146 Theropoda 146 Anchisaurida? 147 Anchisaurus 147 The skull 148 The fore limbs 149 The hind limbs 149 Anchisaurus solus 149 Amniosaurus rTT 150 Eestoration of Anchisaurus 150 Dinosaurian footprints 151 Distribution of Triassic dinosaurs 152 Part II. —Jurassic dinosaurs 152 Theropoda : 153 Hallopus 153 Fore and hind limbs 154 Coelurus _ 155 The vertebra:- 155 The hind limbs 156 Ceratosaurus 156 The skull 157 The brain 159 The lower iaws 159 The vertebra: 159 The scapular arch 160 The pelvic arch 160 The metatarsals 162 Eestoration of Ceratosaurus 163 Allosaurus 163 European Theropoda 163 Sauropoda 164 Atlantosaurus beds 164 Families of Sauropoda 165 Atlantosauridie 166 Atlantosaurus 166 Apatosaurus 166 The sacral cavity 166 The vertebra- 167 Brontosaurus 168 The scapular arch 168 The cervical vertebra.- 169 The dorsal vertebree 169 The sacrum 170 The caudal vertebra- 171 The pelric arch 172 The fore limbs 173 The hind limbs 173 135 136 CONTENTS. Part II. —Jurassic dinosaurs—Continued. Page. Sauropoda—Continued. Atlantosaurida? —Continued. Restoration of Brontosaurus 173 Barnsaurus 174 Diplodoeida? 175 Diplodocus 175 The skull 175 The brain 178 The lower jaws 178 The teeth 179 The vertebra; 180 The sternal bones 180 The pelvic girdle 180 Size and habits 180 Morosaurida? 181 Morosaurus 181 The skull 181 The vertebra? 181 The fore limbs 182 The pelvis 182 The hind limbs 183 Pleuroccelida? : 183 Pleurocoelus 183 The skull 183 The vertebras 183 Distribution of the Sauropoda 185 Comparison with European forms 185 Predentata ». -
Back Matter (PDF)
Index Note: Page numbers in italic denote figures. Page numbers in bold denote tables. Abel, Othenio (1875–1946) Ashmolean Museum, Oxford, Robert Plot 7 arboreal theory 244 Astrodon 363, 365 Geschichte und Methode der Rekonstruktion... Atlantosaurus 365, 366 (1925) 328–329, 330 Augusta, Josef (1903–1968) 222–223, 331 Action comic 343 Aulocetus sammarinensis 80 Actualism, work of Capellini 82, 87 Azara, Don Felix de (1746–1821) 34, 40–41 Aepisaurus 363 Azhdarchidae 318, 319 Agassiz, Louis (1807–1873) 80, 81 Azhdarcho 319 Agustinia 380 Alexander, Annie Montague (1867–1950) 142–143, 143, Bakker, Robert. T. 145, 146 ‘dinosaur renaissance’ 375–376, 377 Alf, Karen (1954–2000), illustrator 139–140 Dinosaurian monophyly 93, 246 Algoasaurus 365 influence on graphic art 335, 343, 350 Allosaurus, digits 267, 271, 273 Bara Simla, dinosaur discoveries 164, 166–169 Allosaurus fragilis 85 Baryonyx walkeri Altispinax, pneumaticity 230–231 relation to Spinosaurus 175, 177–178, 178, 181, 183 Alum Shale Member, Parapsicephalus purdoni 195 work of Charig 94, 95, 102, 103 Amargasaurus 380 Beasley, Henry Charles (1836–1919) Amphicoelias 365, 366, 368, 370 Chirotherium 214–215, 219 amphisbaenians, work of Charig 95 environment 219–220 anatomy, comparative 23 Beaux, E. Cecilia (1855–1942), illustrator 138, 139, 146 Andrews, Roy Chapman (1884–1960) 69, 122 Becklespinax altispinax, pneumaticity 230–231, Andrews, Yvette 122 232, 363 Anning, Joseph (1796–1849) 14 belemnites, Oxford Clay Formation, Peterborough Anning, Mary (1799–1847) 24, 25, 113–116, 114, brick pits 53 145, 146, 147, 288 Benett, Etheldred (1776–1845) 117, 146 Dimorphodon macronyx 14, 115, 294 Bhattacharji, Durgansankar 166 Hawker’s ‘Crocodile’ 14 Birch, Lt. -
Index of Subjects
Cambridge University Press 978-1-108-47594-5 — Dinosaurs 4th Edition Index More Information INDEX OF SUBJECTS – – – A Zuul, 275 276 Barrett, Paul, 98, 335 336, 406, 446 447 Ankylosauridae Barrick, R, 383–384 acetabulum, 71, 487 characteristics of, 271–273 basal dinosauromorph, 101 acromial process, 271, 273, 487 cladogram of, 281 basal Iguanodontia, 337 actual diversity, 398 defined, 488 basal Ornithopoda, 336 adenosine diphosphate, see ADP evolution of, 279 Bates, K. T., 236, 360 adenosine triphosphate, see ATP ankylosaurids, 275–276 beak, 489 ADP (adenosine diphosphate), 390, 487 anpsids, 76 belief systems, 474, 489 advanced characters, 55, 487 antediluvian period, 422, 488 Bell, P. R., 162 aerobic metabolism, 391, 487 anterior position, 488 bennettitaleans, 403, 489 – age determination (dinosaur), 354 357 antorbital fenestra, 80, 488 benthic organisms, 464, 489 Age of Dinosaurs, 204, 404–405 Arbour, Victoria, 277 Benton, M. J., 2, 104, 144, 395, 402–403, akinetic movement, see kinetic movement Archibald, J. D., 467, 469 444–445, 477–478 Alexander, R. M., 361 Archosauria, 80, 88–90, 203, 488 Berman, D. S, 236–237 allometry, 351, 487 Archosauromorpha, 79–81, 488 Beurien, Karl, 435 altricial offspring, 230, 487 archosauromorphs, 401 bidirectional respiration, 350 Alvarez, Luis, 455 archosaurs, 203, 401 Big Al, 142 – Alvarez, Walter, 442, 454 455, 481 artifacts, 395 biogeography, 313, 489 Alvarezsauridae, 487 Asaro, Frank, 455 biomass, 415, 489 – alvarezsaurs, 168 169 ascending process of the astragalus, 488 biosphere, 2 alveolus/alveoli, -
DINOSAURS Volume 2, Issue 5
[ABCDE] CURRICULUM GUIDE: DINOSAURS Volume 2, Issue 5 e r I n E d u c a p a p t i o w s n P N e r o t g s r a P o m n t o g i n h s T a h e W C e u h r T r i f c u O l u e r m o C A t e T h h T e t C A o r m KLMNO e u l O u An Integrated Curriculum c f i r Resource Program T r h u e C W e a h s T h i n g t o n P m o a s r t g N o r e P w s n p o a i p t a e c r u I d n E INSIDE 2 Washington, B.C. 7 Official Dinosaur 9 A Look at Dinosaur Did Dinosaurs Live Capitalsaurus and Crossword in the Washington, Astrodon 5 D.C., area? 8 10 June 10 , 2003 © 2003 THE WASHINGTON POST COMPANY Volume 2, Issue 5 KLMNO An Integrated Curriculum For The Washington Post Newspaper In Education Program Is Capitalsaurus the Real Thing? Official Words KidsPost Article: “Washington, B.C.” Asteroid: Rocky and metallic objects that orbit Read and Discuss Lesson: Use original documents the Sun but are too small to be considered and multiple sources to form an Give students more information opinion. about dinosaurs in the D.C. planets. Asteroids that are likely to collide Level: Mid- to High metropolitan area: “Did Dinosaurs Subjects: Science, Reading Ever Live in the Washington, D.C., with Earth are called meteoroids. -
A Comparison of Environments
8-1 Trip B A COMPARISON OF ENVIRONMENTS by Thomas X. Grasso, Chairman Department of Geosciences Monroe Community College The Middle Devonian Hamilton Group ~ the Genesee Valley The Devonian System of New York State varies from carbonates at the bottom (Helderbergian and Ulsterian Sex'ies) to coarse con- tinental clastics at the top ("Chautauquan Series) and represents a westward migrating deltaic complex built during Middle and Late Devonian time, (Rickard, 1964). This deltaic complex, the Catskill Delta, is today represented by a wedge of sedimentary rock that thickens and coarsens eastward toward the Hudson River. These rocks are highly fossiliferous and structurally simple, thereby, lending themselves to detailed faunal, stratigraphic and paleoecologic studies. Since the Middle and Upper Devonian of New York represents a deltaic complex, at any instant in time during the Devonian there existed a series of transitional environments aligned approximately parallel to the old shoreline from west to east or offshore deep water to onshore shallow water. These contemporaneous environments are not only transitional with one another laterally, but they also succeed each other vertically since the delta prograded westward across New York State. Each environment is today characterized by its own distinctive rock type and fossil assemblage. For example, B-2 the fine shale deposits of the Middle Devonian in the west (Lake Erie) gradually coarsen to siltstones and sandstones eastward (Catskills). The fine shales of the Middle Devonian on Lake Erie are in turn succeeded by the ~oarser siltstones and sandstones of the Upper Devonian. The purpose of this field trip will be to sample and contraet several offshore Devonian biotopes representing two major environ ments; a poorly oxygenated phase of dark shales ("Cleveland" facies), and an oxygenated environment of soft calcareous blue-gray shales and limestones ("Moscow" facies). -
Craniodental Functional Evolution in Sauropodomorph Dinosaurs
Paleobiology, 43(3), 2017, pp. 435–462 DOI: 10.1017/pab.2017.4 Craniodental functional evolution in sauropodomorph dinosaurs David J. Button, Paul M. Barrett, and Emily J. Rayfield Abstract.—Sauropodomorpha included the largest known terrestrial vertebrates and was the first dinosaur clade to achieve a global distribution. This success is associated with their early adoption of herbivory, and sauropod gigantism has been hypothesized to be a specialization for bulk feeding and obligate high-fiber herbivory. Here, we apply a combination of biomechanical character analysis and comparative phylogenetic methods with the aim of quantifying the evolutionary mechanics of the saur- opodomorph feeding apparatus. We test for the role of convergence to common feeding function and divergence toward functional optima across sauropodomorph evolution, quantify the rate of evolution for functional characters, and test for coincident evolutionary rate shifts in craniodental functional characters and body mass. Results identify a functional shift toward increased cranial robustness, increased bite force, and the onset of static occlusion at the base of the Sauropoda, consistent with a shift toward bulk feeding. Trends toward similarity in functional characters are observed in Diplodocoidea and Titanosauriformes. However, diplodocids and titanosaurs retain significant craniodental functional differences, and evidence for convergent adoption of a common “adaptive zone” between them is weak. Modeling of craniodental character and body-mass evolution demonstrates that these functional shifts were not correlated with evolutionary rate shifts. Instead, a significant correlation between body mass and characters related to bite force and cranial robustness suggests a correlated-progression evolutionary mode, with positive-feedback loops between body mass and dietary specializations fueling sauropod gigantism. -
Craniodental Functional Evolution in Sauropodomorph Dinosaurs
Button, D. J. , Barrett, P. M., & Rayfield, E. J. (2017). Craniodental functional evolution in sauropodomorph dinosaurs. Paleobiology, 43(3), 435-462. https://doi.org/10.1017/pab.2017.4 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1017/pab.2017.4 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Cambridge University Press at https://doi.org/10.1017/pab.2017.4 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Paleobiology, 43(3), 2017, pp. 435–462 DOI: 10.1017/pab.2017.4 Craniodental functional evolution in sauropodomorph dinosaurs David J. Button, Paul M. Barrett, and Emily J. Rayfield Abstract.—Sauropodomorpha included the largest known terrestrial vertebrates and was the first dinosaur clade to achieve a global distribution. This success is associated with their early adoption of herbivory, and sauropod gigantism has been hypothesized to be a specialization for bulk feeding and obligate high-fiber herbivory. Here, we apply a combination of biomechanical character analysis and comparative phylogenetic methods with the aim of quantifying the evolutionary mechanics of the saur- opodomorph feeding apparatus. We test for the role of convergence to common feeding function and divergence toward functional optima across sauropodomorph evolution, quantify the rate of evolution for functional characters, and test for coincident evolutionary rate shifts in craniodental functional characters and body mass.