Pliocene Frogs from Langebaanweg, Western Cape Province, South Africa

Total Page:16

File Type:pdf, Size:1020Kb

Pliocene Frogs from Langebaanweg, Western Cape Province, South Africa CORE Metadata, citation and similar papers at core.ac.uk Provided by Stellenbosch University SUNScholar Repository News & Views South African Journal of Science 99, March/April 2003 123 ers, are difficult to distinguish from those of the more slender of the Ranidae. How- Pliocene frogs from Langebaanweg, ever, several bones at Langebaanweg (comprising femur, humerus, ilium frag- Western Cape Province, South Africa ment, scapula, and sacrum) indicate either a third, gracile ranid genus or, more likely, a hyperoliid (compare Figs 2e and D. Eduard van Dijk* 2f). A very slender, nearly straight femur with a distinct, but short, posterior proxi- mal ridge is probably hyperoliid. The HE VARSWATER FORMATION AT LANGE- Ranoidea). Both families are present as femora of Pipidae, Bufonidae, Brevicipi- Tbaanweg, Western Cape Province, South fossils at Langebaanweg. tidae and most Ranidae have distinct Africa, is known particularly for its Late In the Pipidae (Fig. 1a), the transverse curvature; a ridge is rare in ranids, except Miocene–Early Pliocene mammalian and processes (diapophyses) are much ex- abundant avian fossils. Amphibian bones the genera of very small size. Bones of from the site are, like the avian bones, notable panded, with parallel lateral edges (rarely frogs of the only genus of the hyloidean for their variety, surpassed in numbers of fam- intact in fossils), and the paired facets family Heleophrynidae in southern ilies and genera by no site in Africa and few (prezygapophyses), which articulate with Africa are mostly similar to those of sites in the world. The bones were transported the presacral vertebrae, have longitudinal the Bufonidae. However, a distinctive by a river system from a variety of habitats and grooves. In the Brevicipitidae (Fig. 1b), the humerus has, proximally, a groove and include those of swimmers, hoppers, leapers, diapophyses are less expanded and have complex ridges seen only in the genus burrowers and probably also climbers and curved lateral edges, and the prezygapo- Heleophryne among African frogs studied torrent-associated climbers/swimmers. The (Fig. 2b). The anterior vertebrae are bones fossil evidence indicates the presence of at physes are flat. Other bones at Lange- least four anuran families and possibly as baanweg confirm the presence of a pipid with good preservation potential which, many as seven genera in six families. frog similar to the aquatic genus Xenopus, if found, could provide definite proof of and a brevicipitid frog similar to the the presence of the Hyperoliidae and/or Rich1 in 1980 wrote: ‘Langebaanweg is by borrowing genus Breviceps. the Heleophrynidae. far the richest pre-Pleistocene avian site The other sacra (those not fused to In both Hyperoliidae and Heleophryni- yet discovered.’ Amphibian bones from urostyles) at Langebaanweg can be dae the cotyles for articulation with the the same site were known to be numerous divided into two groups on the basis of cranium are well separated, whereas they as early as 19722 but were not mentioned the articulation of the sacrum with the are close in Pipidae, Bufonidae, Brevicipi- in a 1976 overview.3 Two decades later, a centrum of the eighth vertebra (presacral): tidae and most ranoids.† In Heleophry- review of southern African anuran fossil in the one group (suborder Neobatrachia, nidae, the first two vertebrae are fused, a 4 sites drew attention to the Langebaan- superfamily Hyloidea), the sacrum has a condition normal only in brevicipitids, weg site, and an examination of sieved socket (procoelous condition, similar to with close cotyles, and Hemisidae, with a material that had been sorted as anuran at that of the other vertebrae), in the other highly characteristic dorsal ridge. In the South African Museum in Cape Town (suborder Neobatrachia, superfamily Hyperoliidae, the neural ridge of the first showed that various taxa were present. A Ranoidea) the sacrum has a boss vertebra usually articulates distinctively poster illustrating this variety was pre- (diplasiocoelous condition, in which the with that of the second. pared in September 1998, when a labora- other vertebrae are procoelous, except An ilium, of which there are several tory and museum were opened at the for the amphicoelous presacral). The specimens, unlike that of any extant Langebaanweg site. An updated version procoelous sacra (Fig. 1c) are mainly or southern African anuran observed of this material may be viewed at entirely those of Bufonidae (toads) and (Fig. 3), is characterized by a strong dorsal http://www.sun.ac.za/zoology. have somewhat expanded diapophyses process at the base of the shaft, but The anuran bones at Langebaanweg are associated with walking and hopping without the crest (ala), which is associated almost invariably isolated elements. with a strong dorsal process in ranids. locomotion.5,6 The diplasiocoelous sacra Fortunately, the sacral bones of southern There are thus at least four anuran (Figs 1d and 1e) are ranoid, with more or African anurans may be diagnostic at families at Langebaanweg: Pipidae, less cylindrical diapophyses usually subordinal, superfamily, family or generic Bufonidae, Brevicipitidae and Ranidae. associated with leaping.5,6 There is much level and are robust enough for many to There are probably two more families variation, however, and at least two survive transport without losing their represented, Hyperoliidae and Heleo- genera are represented — one robust important characteristics. Two types of phrynidae. Taking the reasonable view sacrum (Fig. 1e) falls outside the variation sacral configurations can be distin- that the ilium with the strong basal of any extant South African (and probably guished in the Langebaanweg fossil process is bufonid or brevicipitid, there sub-Saharan also) genus of the Ranidae, fauna: one in which the sacrum is an are probably six families present, with one Hyperoliidae and Rhacophoridae. Two isolated bone, the other where there is fu- additional, ranoid genus, giving a total of ranid genera (family Ranidae) would sion with the urostyle (consisting of seven genera in six families. With more mean that there are, on the basis of sacra united post-sacral vertebral elements). A specimens likely to be revealed in contin- fused sacrum and urostyle occurs in two only, at least five genera in all. The world- uing research, there are only three com- 8 extant African anuran families, the wide review of fossil Salientia of Sanchez includes more than 1200 sites known in Pipidae (suborder Mesobatrachia, super- †The degree of proximity of atlantal cotyles has proved to be family Pipoidea) and the Brevicipitidae 1998, and fewer than 2% of these are a useful criterion at about subfamilial level.8 However, when (suborder Neobatrachia, superfamily Pliocene or older and have five or more Heleophryne was included in an analysis, it was placed in a genera. group with narrowly spaced cotyles (ref. 9, p. 54), although examination of the cotyles of all Heleophryne species indi- *Department of Zoology, University of Stellenbosch, The bones of frogs of the family Hyper- Private Bag X1, Matieland 7602, South Africa. cates that they would be more appropriately placed in the E-mail: [email protected] roliidae, which are mainly climber/leap- widely spaced category illustrated on the same page. 124 South African Journal of Science 99, March/April 2003 News & Views Dates from Sterkfontein indicate greater age for hominids The discoveries made continually over the past half-century in the limestone caves at Sterkfontein, northwest of Johannesburg, give good reason to be- lieve this to be the richest hominid fossil site in the world. In spite of decades of close study, however,it has been impossi- ble to date the fossils directly. Instead, specimen ages have been inferred by comparison with fossils accurately dated elsewhere — such as animal remains and artifacts enveloped in volcanic sediments of known radiometric age in East Africa — and in relation to how the cave system records reversals in the Earth's magnetic field. Researchers at the University of the Witwatersrand and in the United States have now published the first results of a radiometric method that purports to give absolute dates for Sterkfontein.1 The method, which has been tested on cave deposits in Kentucky and Virginia, depends on measuring the ratio of cosmogenic 26Al and 10Be in quartz parti- cles adjacent to the fossils of interest. Knowing the respective rates of radioac- tive decay, and on the assumption that the indicator isotopes of aluminium and beryllium did not accumulate after burial (which means in practice that the sam- ples must be relatively deeply buried and thus shielded from cosmic rays), it is possible to derive the time since burial. Five burial samples were so tested; three adjacent to the nearly complete Little Foot skeleton (designated StW 573), and two from Jacovec Cavern, some 50 metres distant, where hominid and faunal re- mains, also described in the Science paper, have been newly discovered. On this basis, Granger determined the burial age of the skeleton to be 4.17 ± 0.14 million years (Myr), corresponding to the Lower Pliocene. This is substantially older than the 3.3 Myr first proposed by Figs 1–3. X-ray images of fossil anuran bones from Langebaanweg. 1, Sacra (a, pipid; b, brevicipitid; c, Clarke et al.2 and even more so than the procoelan (bufonid?); d and e, ranoid). 2, Humeri [a, pipid; b, heleophrynid; c, bufonid; d, brevicipitid; e, gracile less than 3 Myr argued last year by Berger ranid; f, hyperoliid(?)]. 3, Ilium with strong basal process. All images were taken with X-rays (25 kV, 7 mA) on 3 Fujicolor ASA 100 film, with standard colour processing. et al. At 4 million years, StW 573 and the Jacovec specimens are of a similar age parable Pliocene or older sites in the rences in ‘E’ Quarry, Langebaanweg, South Africa. to Australopithecus anamensis from East Ann. S. Afr. Mus. 69, 215–247.
Recommended publications
  • Genetic Analysis of Signal Peptides in Amphibian Antimicrobial Secretions
    Journal of Genetics, Vol. 97, No. 5, December 2018, pp. 1205–1212 © Indian Academy of Sciences https://doi.org/10.1007/s12041-018-1018-5 RESEARCH ARTICLE Genetic analysis of signal peptides in amphibian antimicrobial secretions L. O. PÉREZ1, N. L. CANCELARICH2, S. AGUILAR2,3,N.G.BASSO4 and M. M. MARANI2∗ 1Instituto Patagónico de Ciencias Sociales y Humanas (IPCSH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Puerto Madryn, Argentina 2Instituto Patagónico para el Estudio de Ecosistemas Continentales (IPEEC),Puerto Madryn, Argentina 3Facultad de Ciencias Naturales, Sede Puerto Madryn, Universidad Nacional de la Patagonia San Juan Bosco, 3051 Brown Boulevard, Puerto Madryn, Argentina 4Instituto de Diversidad y Evolución Austral (IDEAus), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 2915 Brown Boulevard, Puerto Madryn, Argentina *For correspondence. E-mail: [email protected]. Received 22 February 2018; accepted 1 May 2018; published online 7 November 2018 Abstract. Amphibian secretion is an important source of bioactive molecules that naturally protect the skin against noxious microorganisms. Collectively called antimicrobial peptides (AMPs), these molecules have a wide spectrum of action, targeting viruses, bacteria and fungi. Like many membrane and secreted proteins, AMPs have cleavable signal sequences that mediate and translocate the nascent polypeptide chains into the endoplasmic reticulum. Although it is accepted that the signal peptides (SPs) are simple and interchangeable, there is neither sequence nor structure that is conserved among all gene families. They derived from a common ancestor but developed different traits as they adapt to distinct environmental pressures. The aim of this study was to provide an overview of the diversity of SPs of the frog, taking into account reported cDNA sequences and the evolutionary relationship among them.
    [Show full text]
  • Early Tetrapod Relationships Revisited
    Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria
    [Show full text]
  • A Review of Neusibatrachus Wilferti, an Early Cretaceous Frog from the Montsec Range, Northeastern Spain
    A review of Neusibatrachus wilferti, an Early Cretaceous frog from the Montsec Range, northeastern Spain ANA M. BÁEZ and BORJA SANCHIZ Báez, A.M. and Sanchiz, B. 2007. A review of Neusibatrachus wilferti, an Early Cretaceous frog from the Montsec Range, northeastern Spain. Acta Palaeontologica Polonica 52 (3): 477–487. Neusibatrachus wilferti is an anuran from the late Berriasian–early Valanginian fossiliferous lacustrine limestones that are exposed in the eastern part of the Montsec Range, province of Lleida, Spain. It was originally described by Seiffert in 1972 and its phylogenetic position has since been discussed. Neusibatrachus has been considered an undeterminable fos− sil, an abnormal individual, or a primitive palaeobatrachid. Here we redescribe the only available specimen, and clarify features, such as absence of palatines, nine presacrals, and procoelous vertebral centra, that have been the subject of previ− ous debates. We consider the specimen to be a postmetamorphic individual and make developmental interpretations of some of its characters. In particular, we provide evidence of a living anuran (Rana iberica) that resembles Neusibatrachus in the development of intervertebral articulations. Neusibatrachus is considered a valid genus, which differs from other anurans, except for the pipoids, in the joint presence of an azygous frontoparietal and a parasphenoid lacking the subotic alae, although it differs from the pipoids in having nine presacral vertebrae. Morphological evidence indicates that Neusi− batrachus is related to Xenoanura, the pipoid branch in the living Amphibia Tree of Life based on molecular data. More− over, it might be a member of the pipoid clade proper, which presently includes the Pipidae, Rhinophrynidae, and several fossil taxa, including the Palaeobatrachidae, although the evidence is not conclusive.
    [Show full text]
  • A Possible 150 Million Years Old Cirripede Crustacean Nauplius and the Phenomenon of Giant Larvae
    Contributions to Zoology, 86 (3) 213-227 (2017) A possible 150 million years old cirripede crustacean nauplius and the phenomenon of giant larvae Christina Nagler1, 4, Jens T. Høeg2, Carolin Haug1, 3, Joachim T. Haug1, 3 1 Department of Biology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, 82152 Planegg- Martinsried, Germany 2 Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark 3 GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Straße 10, 80333 Munich, Germany 4 E-mail: [email protected] Key words: nauplius, metamorphosis, palaeo-evo-devo, Cirripedia, Solnhofen lithographic limestones Abstract The possible function of giant larvae ................................ 222 Interpretation of the present case ....................................... 223 The larval phase of metazoans can be interpreted as a discrete Acknowledgements ....................................................................... 223 post-embryonic period. Larvae have been usually considered to References ...................................................................................... 223 be small, yet some metazoans possess unusually large larvae, or giant larvae. Here, we report a possible case of such a giant larva from the Upper Jurassic Solnhofen Lithographic limestones (150 Introduction million years old, southern Germany), most likely representing an immature cirripede crustacean (barnacles and their relatives). The single specimen was documented with up-to-date
    [Show full text]
  • Paleontological Discoveries in the Chorrillo Formation (Upper Campanian-Lower Maastrichtian, Upper Cretaceous), Santa Cruz Province, Patagonia, Argentina
    Rev. Mus. Argentino Cienc. Nat., n.s. 21(2): 217-293, 2019 ISSN 1514-5158 (impresa) ISSN 1853-0400 (en línea) Paleontological discoveries in the Chorrillo Formation (upper Campanian-lower Maastrichtian, Upper Cretaceous), Santa Cruz Province, Patagonia, Argentina Fernando. E. NOVAS1,2, Federico. L. AGNOLIN1,2,3, Sebastián ROZADILLA1,2, Alexis M. ARANCIAGA-ROLANDO1,2, Federico BRISSON-EGLI1,2, Matias J. MOTTA1,2, Mauricio CERRONI1,2, Martín D. EZCURRA2,5, Agustín G. MARTINELLI2,5, Julia S. D´ANGELO1,2, Gerardo ALVAREZ-HERRERA1, Adriel R. GENTIL1,2, Sergio BOGAN3, Nicolás R. CHIMENTO1,2, Jordi A. GARCÍA-MARSÀ1,2, Gastón LO COCO1,2, Sergio E. MIQUEL2,4, Fátima F. BRITO4, Ezequiel I. VERA2,6, 7, Valeria S. PEREZ LOINAZE2,6 , Mariela S. FERNÁNDEZ8 & Leonardo SALGADO2,9 1 Laboratorio de Anatomía Comparada y Evolución de los Vertebrados. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina - fernovas@yahoo. com.ar. 2 Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina. 3 Fundación de Historia Natural “Felix de Azara”, Universidad Maimonides, Hidalgo 775, C1405BDB Buenos Aires, Argentina. 4 Laboratorio de Malacología terrestre. División Invertebrados Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 5 Sección Paleontología de Vertebrados. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 6 División Paleobotánica. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 7 Área de Paleontología. Departamento de Geología, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria (C1428EGA) Buenos Aires, Argentina. 8 Instituto de Investigaciones en Biodiversidad y Medioambiente (CONICET-INIBIOMA), Quintral 1250, 8400 San Carlos de Bariloche, Río Negro, Argentina.
    [Show full text]
  • Rampant Tooth Loss Across 200 Million Years of Frog Evolution
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.04.429809; this version posted February 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Rampant tooth loss across 200 million years of frog evolution 2 3 4 Daniel J. Paluh1,2, Karina Riddell1, Catherine M. Early1,3, Maggie M. Hantak1, Gregory F.M. 5 Jongsma1,2, Rachel M. Keeffe1,2, Fernanda Magalhães Silva1,4, Stuart V. Nielsen1, María Camila 6 Vallejo-Pareja1,2, Edward L. Stanley1, David C. Blackburn1 7 8 1Department of Natural History, Florida Museum of Natural History, University of Florida, 9 Gainesville, Florida USA 32611 10 2Department of Biology, University of Florida, Gainesville, Florida USA 32611 11 3Biology Department, Science Museum of Minnesota, Saint Paul, Minnesota USA 55102 12 4Programa de Pós Graduação em Zoologia, Universidade Federal do Pará/Museu Paraense 13 Emilio Goeldi, Belém, Pará Brazil 14 15 *Corresponding author: Daniel J. Paluh, [email protected], +1 814-602-3764 16 17 Key words: Anura; teeth; edentulism; toothlessness; trait lability; comparative methods 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.04.429809; this version posted February 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.
    [Show full text]
  • From the Early Cretaceous Crato Formation
    Journal of South American Earth Sciences 92 (2019) 222–233 Contents lists available at ScienceDirect Journal of South American Earth Sciences journal homepage: www.elsevier.com/locate/jsames A new genus of pipimorph frog (Anura) from the Early Cretaceous Crato T Formation (Aptian) and the evolution of South American tongueless frogs ∗ ∗∗ Ismar Souza Carvalhoa, , Federico Agnolinb,c, , Mauro A. Aranciaga Rolandob, Fernando E. Novasb, José Xavier-Netod, Francisco Idalécio Freitase, José Artur Ferreira Gomes Andradef a Universidade Federal do Rio de Janeiro, Departamento de Geologia, CCMN/IGEO 21.949-900 Cidade Universitária - Ilha do Fundão, Rio de Janeiro, Brazil b Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, Consejo Nacional de Investigaciones Científicas y Técnicas – CONICET, Buenos Aires, Argentina c Fundación de Historia Natural ‘Félix de Azara’, Universidad Maimónides, Buenos Aires, Argentina d Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília (DF), Brazil e Geopark Araripe, Rua Carolino Sucupira s/n, Pimenta, 105 Centro, 63.100-490 Ceará, Brazil f Departamento Nacional da Produção Mineral, Ceará, Praça da Sé, 105 Centro, 63.100-440 Ceará, Brazil ARTICLE INFO ABSTRACT Keywords: Pipimorpha is a clade of tongueless anurans with a wide fossil record. Furthermore, the oldest South American Crato Formation fossils come from the Late Cretaceous (Cenomanian) of Patagonia, Argentina. The aim of the present con- Lower Cretaceous tribution is to describe a new genus and species of Pipimorpha from the Crato Formation (Aptian, Early Pipimorpha Cretaceous), Araripe Basin, Brazil. The new specimen consists of a nearly complete skeleton that shows several Brazil anatomical similarities with other fossils from South America.
    [Show full text]
  • BOA5.1-2 Frog Biology, Taxonomy and Biodiversity
    The Biology of Amphibians Agnes Scott College Mark Mandica Executive Director The Amphibian Foundation [email protected] 678 379 TOAD (8623) Phyllomedusidae: Agalychnis annae 5.1-2: Frog Biology, Taxonomy & Biodiversity Part 2, Neobatrachia Hylidae: Dendropsophus ebraccatus CLassification of Order: Anura † Triadobatrachus Ascaphidae Leiopelmatidae Bombinatoridae Alytidae (Discoglossidae) Pipidae Rhynophrynidae Scaphiopopidae Pelodytidae Megophryidae Pelobatidae Heleophrynidae Nasikabatrachidae Sooglossidae Calyptocephalellidae Myobatrachidae Alsodidae Batrachylidae Bufonidae Ceratophryidae Cycloramphidae Hemiphractidae Hylodidae Leptodactylidae Odontophrynidae Rhinodermatidae Telmatobiidae Allophrynidae Centrolenidae Hylidae Dendrobatidae Brachycephalidae Ceuthomantidae Craugastoridae Eleutherodactylidae Strabomantidae Arthroleptidae Hyperoliidae Breviceptidae Hemisotidae Microhylidae Ceratobatrachidae Conrauidae Micrixalidae Nyctibatrachidae Petropedetidae Phrynobatrachidae Ptychadenidae Ranidae Ranixalidae Dicroglossidae Pyxicephalidae Rhacophoridae Mantellidae A B † 3 † † † Actinopterygian Coelacanth, Tetrapodomorpha †Amniota *Gerobatrachus (Ray-fin Fishes) Lungfish (stem-tetrapods) (Reptiles, Mammals)Lepospondyls † (’frogomander’) Eocaecilia GymnophionaKaraurus Caudata Triadobatrachus 2 Anura Sub Orders Super Families (including Apoda Urodela Prosalirus †) 1 Archaeobatrachia A Hyloidea 2 Mesobatrachia B Ranoidea 1 Anura Salientia 3 Neobatrachia Batrachia Lissamphibia *Gerobatrachus may be the sister taxon Salientia Temnospondyls
    [Show full text]
  • Herpetology 101 Aims to Teach Students the Basics of Reptile and Amphibian Biology While Instilling an Interest in Life and Animal Sciences
    Splash Herpetology Goals: Herpetology 101 aims to teach students the basics of reptile and amphibian biology while instilling an interest in life and animal sciences. Materials Requested: We’re requesting a frog life cycle replica, a coral snake replica, and a red eared slider replica. These will cost $29.97, but it is expected to be a little over $30 with tax and shipping included (we will pay the rest if we need to). We would like to use these replicas to teach about animals we don’t have—for example, we obviously do not have a venomous, deadly coral snake, so we would like to have a replica to show people what to look for. We would also like a replica aquatic turtle to demonstrate the differences between terrestrial and aquatic chelonians, and a series of frog/tadpole replicas to demonstrate the amphibian life cycle. Class outline is below. We’ll spend our time going over the below information and observing and handling live reptiles and amphibians! ● Introduction to us and WISE ○ Who we are on campus ○ What animals we work with (herps and inverts) ● Introduction to reptiles and amphibians ○ Similarities: ectotherms, no fur or feathers, oviparous ○ Differences: amphibians have an aquatic larval stage, skin versus scales, some ovoviviparous reptiles versus all oviparous amphibs, amphibs poisonous while reptiles generally venomous, reptile eggs are leathery ● Amphibian biology ○ Study of amphibians: “Batrachology” ○ 7,000 species, 90% of which are frogs ○ Ecological indicator species ■ Skin is a secondary/primary respiratory organ ■
    [Show full text]
  • Chondrocranial and Oral Morphology of Pipoid Frogs Charles Christopher Swart
    University of Richmond UR Scholarship Repository Master's Theses Student Research 1998 Chondrocranial and oral morphology of pipoid frogs Charles Christopher Swart Follow this and additional works at: http://scholarship.richmond.edu/masters-theses Part of the Biology Commons Recommended Citation Swart, Charles Christopher, "Chondrocranial and oral morphology of pipoid frogs" (1998). Master's Theses. Paper 1065. This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It has been accepted for inclusion in Master's Theses by an authorized administrator of UR Scholarship Repository. For more information, please contact [email protected]. Chondrocranial and Oral Morphology of Pipoid Frogs by Charles Christopher Swart I certify that I have read this thesis and find that, in scope and quality, it satisfies the requirements for the degree of Master of Science. Dr.Joi<rlttayden Dr.G~;?j_~ T Other Faculty Members: TT Chondrocranial and Oral Morphology of Pipoid Frogs Charles Christopher Swart Masters of Science in Biology University of Richmond, 1998 Thesis Director: Rafael 0. de Sa Abstract. The Pipoidea are a diverse group of frogs. Their diversity is demonstrated in their morphology, ecology, and behavior. One pipoid species, Xenopus laevis, has been used as a model system of developmental, physiological, and molecular studies of vertebrates. My work has focused on the developmental morphology of the chondrocranium and oral morphology of four pipoid taxa: Hymenochirus boettgeri, Rhinophrynus dorsalis, Pipa carvalhoi, and Xenopus laevis. Previous studies have suggested that the Anura may be diphyletic based on the unique characteristics of the chondrocanial morphology of pipoids.
    [Show full text]
  • 1704632114.Full.Pdf
    Phylogenomics reveals rapid, simultaneous PNAS PLUS diversification of three major clades of Gondwanan frogs at the Cretaceous–Paleogene boundary Yan-Jie Fenga, David C. Blackburnb, Dan Lianga, David M. Hillisc, David B. Waked,1, David C. Cannatellac,1, and Peng Zhanga,1 aState Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China; bDepartment of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611; cDepartment of Integrative Biology and Biodiversity Collections, University of Texas, Austin, TX 78712; and dMuseum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720 Contributed by David B. Wake, June 2, 2017 (sent for review March 22, 2017; reviewed by S. Blair Hedges and Jonathan B. Losos) Frogs (Anura) are one of the most diverse groups of vertebrates The poor resolution for many nodes in anuran phylogeny is and comprise nearly 90% of living amphibian species. Their world- likely a result of the small number of molecular markers tra- wide distribution and diverse biology make them well-suited for ditionally used for these analyses. Previous large-scale studies assessing fundamental questions in evolution, ecology, and conser- used 6 genes (∼4,700 nt) (4), 5 genes (∼3,800 nt) (5), 12 genes vation. However, despite their scientific importance, the evolutionary (6) with ∼12,000 nt of GenBank data (but with ∼80% missing history and tempo of frog diversification remain poorly understood. data), and whole mitochondrial genomes (∼11,000 nt) (7). In By using a molecular dataset of unprecedented size, including 88-kb the larger datasets (e.g., ref.
    [Show full text]
  • Phylogenetics, Classification, and Biogeography of the Treefrogs (Amphibia: Anura: Arboranae)
    Zootaxa 4104 (1): 001–109 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Monograph ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4104.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:D598E724-C9E4-4BBA-B25D-511300A47B1D ZOOTAXA 4104 Phylogenetics, classification, and biogeography of the treefrogs (Amphibia: Anura: Arboranae) WILLIAM E. DUELLMAN1,3, ANGELA B. MARION2 & S. BLAIR HEDGES2 1Biodiversity Institute, University of Kansas, 1345 Jayhawk Blvd., Lawrence, Kansas 66045-7593, USA 2Center for Biodiversity, Temple University, 1925 N 12th Street, Philadelphia, Pennsylvania 19122-1601, USA 3Corresponding author. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by M. Vences: 27 Oct. 2015; published: 19 Apr. 2016 WILLIAM E. DUELLMAN, ANGELA B. MARION & S. BLAIR HEDGES Phylogenetics, Classification, and Biogeography of the Treefrogs (Amphibia: Anura: Arboranae) (Zootaxa 4104) 109 pp.; 30 cm. 19 April 2016 ISBN 978-1-77557-937-3 (paperback) ISBN 978-1-77557-938-0 (Online edition) FIRST PUBLISHED IN 2016 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/j/zt © 2016 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use.
    [Show full text]