Kin Recognition in the Parasitic Plant Triphysaria Versicolor Is Mediated Through Root Exudates
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Castilleja Coccinea and C. Indivisa (Orobanchaceae)
Nesom, G.L. and J.M. Egger. 2014. Castilleja coccinea and C. indivisa (Orobanchaceae). Phytoneuron 2014-14: 1–7. Published 6 January 2014. ISSN 2153 733X CASTILLEJA COCCINEA AND C. INDIVISA (OROBANCHACEAE) GUY L. NESOM 2925 Hartwood Drive Fort Worth, Texas 76109 www.guynesom.com J. M ARK EGGER Herbarium, Burke Museum of Natural History and Culture University of Washington Seattle, Washington 98195-5325 [email protected] ABSTRACT Castilleja coccinea and C. indivisa are contrasted in morphology and their ranges mapped in detail in the southern USA, where they are natively sympatric in small areas of Oklahoma, Arkansas, and Louisiana. Castilleja indivisa has recently been introduced and naturalized in the floras of Alabama and Florida. Castilleja ludoviciana , known only by the type collection from southwestern Louisiana, differs from C. coccinea in subentire leaves and relatively small flowers and is perhaps a population introgressed by C. indivisa . Castilleja coccinea and C. indivisa are allopatric except in small areas of Oklahoma, Arkansas, and Lousiana, but assessments of their native distributions are not consistent among various accounts (e.g. Thomas & Allen 1997; Turner et al. 2003; OVPD 2012; USDA, NRCS 2013). Morphological contrasts between the two species, via keys in floristic treatments (e.g., Smith 1994; Wunderlin & Hansen 2003; Nelson 2009; Weakley 2012), have essentially repeated the differences outlined by Pennell (1935). The current study presents an evaluation and summary of the taxonomy of these two species. We have examined specimens at CAS, TEX-LL, SMU-BRIT-VDB, MO, NLU, NO, USF, WS, and WTU and viewed digital images available through Florida herbaria and databases. -
Wild Plants of Round Valley Regional Preserve Common Name Version
Wild Plants of Round Valley Regional Preserve Common Name Version A Photographic Guide Sorted by Form, Color and Family with Habitat Descriptions and Identification Notes Photographs and text by Wilde Legard District Botanist, East Bay Regional Park District New Revised and Expanded Edition - Includes the latest scientific names, habitat descriptions and identification notes Decimal Inches .1 .2 .3 .4 .5 .6 .7 .8 .9 1 .5 2 .5 3 .5 4 .5 5 .5 6 .5 7 .5 8 .5 9 1/8 1/4 1/2 3/4 1 1/2 2 1/2 3 1/2 4 1/2 5 1/2 6 1/2 7 1/2 8 1/2 9 English Inches Notes: A Photographic Guide to the Wild Plants of Round Valley Regional Preserve More than 2,000 species of native and naturalized plants grow wild in the San Francisco Bay Area. Most are very difficult to identify without the help of good illustrations. This is designed to be a simple, color photo guide to help you identify some of these plants. This guide is published electronically in Adobe Acrobat® format so that it can easily be updated as additional photographs become available. You have permission to freely download, distribute and print this guide for individual use. Photographs are © 2014 Wilde Legard, all rights reserved. In this guide, the included plants are sorted first by form (Ferns & Fern-like, Grasses & Grass-like, Herbaceous, Woody), then by most common flower color, and finally by similar looking flowers (grouped by genus within each family). Each photograph has the following information, separated by '-': COMMON NAME According to The Jepson Manual: Vascular Plants of California, Second Edition (JM2) and other references (not standardized). -
Molecular Investigation of the Origin of Castilleja Crista-Galli by Sarah
Molecular investigation of the origin of Castilleja crista-galli by Sarah Youngberg Mathews A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences Montana State University © Copyright by Sarah Youngberg Mathews (1990) Abstract: An hypothesis of hybrid origin of Castilleja crista-galli (Scrophulariaceae) was studied. Hybridization and polyploidy are widespread in Castilleja and are often invoked as a cause of difficulty in defining species and as a speciation model. The putative allopolyploid origin of Castilleja crista-gralli from Castilleja miniata and Castilleja linariifolia was investigated using molecular, morphological and cytological techniques. Restriction site analysis of chloroplast DNA revealed high homogeneity among the chloroplast genomes of species of Castilleja and two Orthocarpus. No species of Castilleia represented by more than one population in the analysis was characterized by a distinctive choroplast genome. Genetic distances estimated from restriction site mutations between any two species or between genera are comparable to distances reported from other plant groups, but both intraspecific and intrapopulational distances are high relative to other groups. Restriction site analysis of nuclear ribosomal DNA revealed variable repeat types both within and among individuals. Qualitative species groupings based on restriction site mutations in the ribosomal DNA repeat units do not place Castilleja crista-galli with either putative parent in a consistent manner. A cladistic analysis of 11 taxa using 10 morphological characters places Castilleja crista-galli in an unresolved polytomy with both putative parents and Castilleja hispida. Cytological analyses indicate that Castilleja crista-gralli is not of simple allopolyploid origin. Both diploid and tetraploid chromosome counts are reported for this species, previously known only as an octoploid. -
The Effects of Hemiparasitism by Castilleja Species on Community Structure in Alpine Ecosystems
Pursuit - The Journal of Undergraduate Research at The University of Tennessee Volume 3 Issue 2 Spring 2012 Article 8 March 2012 The Effects of Hemiparasitism by Castilleja Species on Community Structure in Alpine Ecosystems Johannah Reed University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/pursuit Recommended Citation Reed, Johannah (2012) "The Effects of Hemiparasitism by Castilleja Species on Community Structure in Alpine Ecosystems," Pursuit - The Journal of Undergraduate Research at The University of Tennessee: Vol. 3 : Iss. 2 , Article 8. Available at: https://trace.tennessee.edu/pursuit/vol3/iss2/8 This Article is brought to you for free and open access by Volunteer, Open Access, Library Journals (VOL Journals), published in partnership with The University of Tennessee (UT) University Libraries. This article has been accepted for inclusion in Pursuit - The Journal of Undergraduate Research at The University of Tennessee by an authorized editor. For more information, please visit https://trace.tennessee.edu/pursuit. Pursuit: The Journal of Undergraduate Research at the University of Tennessee Copyright © The University of Tennessee The Effects of Hemiparasitism by Castilleja Species on Community Structure in Alpine Ecosystems JOHANNAH REED Advisor: Nate Sanders Environmental Studies, University of Tennessee, Knoxville There is a long history in ecology of examining how interactions such as competition, predation, and mutualism influence the structure and dynamics of natural communities. However, few studies to date have experimentally as- sessed the role of hemiparasitic plants as a structuring force. Hemiparasitic plants have the potential to shape plant communities because of their ability to photosynthesize and parasitize and because of their abundance in a variety of natural and managed ecosystems. -
Better Alone? a Demographic Case Study of the Hemiparasite Castilleja Tenuiflora (Orobanchaceae): a First Approximation
Received: 18 March 2020 Revised: 17 August 2020 Accepted: 3 November 2020 DOI: 10.1002/1438-390X.12076 ORIGINAL ARTICLE Better alone? A demographic case study of the hemiparasite Castilleja tenuiflora (Orobanchaceae): A first approximation Luisa A. Granados-Hernández1 | Irene Pisanty1 | José Raventós2 | Judith Márquez-Guzmán3 | María C. Mandujano4 1Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Abstract Universidad Nacional Autónoma de Castilleja tenuiflora is a facultative root hemiparasitic plant that has colonized México, Mexico City, Mexico a disturbed lava field in central Mexico. To determine the effects of 2 Departamento de Ecología, Universidad hemiparasitism on the population dynamics of the parasite, we identified a set de Alicante, Alicante, Spain of potential hosts and quantified their effects on the vital rates of C. tenuiflora 3Departamento de Biología Comparada, Facultad de Ciencias, Universidad during 2016–2018. Connections between the roots of the hemiparasite and the Nacional Autónoma de México, Mexico hosts were confirmed with a scanning electron microscope. Annual matrices City, Mexico considering two conditions (with and without potential hosts) were built based 4Departamento de Ecología de la λ Biodiversidad, Instituto de Ecología, on vital rates for each year, and annual stochastic finite rate growth rates ( s) Universidad Nacional Autónoma de were calculated. Plants produced more reproductive structures with hosts than México, Mexico City, Mexico without hosts. A Life Table Response Experiment (LTRE) was performed to Correspondence compare the contributions of vital rates between conditions. We identified Irene Pisanty, Departamento de Ecología 19 species of potential hosts for this generalist hemiparasite. Stochastic lambda y Recursos Naturales, Facultad de with hosts λ = 1.02 (CI = 0.9999, 1.1) tended to be higher than without them Ciencias, Universidad Nacional s Autónoma de México, Av. -
Appendix C. Plant Species Observed at the Yolo Grasslands Regional Park (2009-2010)
Appendix C. Plant Species Observed at the Yolo Grasslands Regional Park (2009-2010) Plant Species Observed at the Yolo Grassland Regional Park (2009-2010) Wetland Growth Indicator Scientific Name Common Name Habitat Occurrence Habit Status Family Achyrachaena mollis Blow wives AG, VP, VS AH FAC* Asteraceae Aegilops cylinricia* Jointed goatgrass AG AG NL Poaceae Aegilops triuncialis* Barbed goat grass AG AG NL Poaceae Aesculus californica California buckeye D T NL Hippocastanaceae Aira caryophyllea * [Aspris c.] Silver hairgrass AG AG NL Poaceae Alchemilla arvensis Lady's mantle AG AH NL Rosaceae Alopecurus saccatus Pacific foxtail VP, SW AG OBL Poaceae Amaranthus albus * Pigweed amaranth AG, D AH FACU Amaranthaceae Amsinckia menziesii var. intermedia [A. i.] Rancher's fire AG AH NL Boraginaceae Amsinckia menziesii var. menziesii Common fiddleneck AG AH NL Boraginaceae Amsinckia sp. Fiddleneck AG, D AH NL Boraginaceae Anagallis arvensis * Scarlet pimpernel SW, D, SS AH FAC Primulaceae Anthemis cotula * Mayweed AG AH FACU Asteraceae Anthoxanthum odoratum ssp. odoratum * Sweet vernal grass AG PG FACU Poaceae Aphanes occidentalis [Alchemilla occidentalis] Dew-cup AG, F AH NL Rosaceae Asclepias fascicularis Narrow-leaved milkweed AG PH FAC Ascepiadaceae Atriplex sp. Saltbush VP, SW AH ? Chenopodiaceae Avena barbata * Slender wild oat AG AG NL Poaceae Avena fatua * [A. f. var. glabrata, A. f. var. vilis] Wild oat AG AG NL Poaceae Brassica nigra * Black mustard AG, D AH NL Brassicaceae Brassica rapa field mustard AG, D AH NL Brassicaceae Briza minor * Little quakinggrass AG, SW, SS, VP AG FACW Poaceae Brodiaea californica California brodiaea AG PH NL Amaryllidaceae Brodiaea coronaria ssp. coronaria [B. -
Stewardship Account for Rosy Owl-Clover Orthocarpus Bracteosus
Stewardship Account for Rosy Owl-clover Orthocarpus bracteosus Prepared for the Garry Oak Ecosystems Recovery Team March, 2002 by Matt Fairbarns British Columbia Conservation Data Centre P.O. Box 9993 STN PROV GOV Victoria, B.C., Canada V8W 9R7 Funding provided by the Habitat Stewardship Program of the Government of Canada and the Nature Conservancy of Canada TABLE OF CONTENTS TABLE OF CONTENTS ……………………………………………………………..2 SPECIES INFORMATION................................................................................................ 3 Name and Classification................................................................................................. 3 Description...................................................................................................................... 3 RANGE AND KNOWN DISTRIBUTION........................................................................ 4 Global Range................................................................................................................... 4 Canadian Range .............................................................................................................. 6 HABITAT........................................................................................................................... 7 Habitat Requirements...................................................................................................... 7 Trends.............................................................................................................................. 8 Protection/Ownership..................................................................................................... -
TAXONOMY Plant Family Species Scientific Name
CAEL7 1 Plant Propagation Protocol for Castilleja elmeri ESRM 412 – Native Plant Production Protocol URL: https://courses.washington.edu/esrm412/protocols/[USDASpeciesCode.pdf] Castilleja elmeri, Wenatchee Indian paintbrush (Source: Walter Siegmund1) TAXONOMY Plant Family Scientific Name Scrophulariaceae Common Name Figwort family Species Scientific Name Scientific Name Castilleja elmeri (Fernald) Varieties N/A Sub-species N/A Cultivar N/A Common Synonym(s) Castilleja angustifolia (G. Don) var. whitedii Piper2 Common Name(s) Wenatchee Indian paintbrush3, Elmer’s paintbrush2 Species Code (as per USDA CAEL7 Plants database) CAEL7 2 GENERAL INFORMATION Geographical range North America Distribution Washington State Distribution Source: USDA Plants Database3 Wenatchee Mountains and the east slope of the Cascades, Kittitas County, Washington; north into British Columbia2 Ecological distribution Moist, open slopes at mid-elevations in the mountains2 Climate and elevation range Mid-elevation4 Local habitat and abundance Found near sedges and fescues, commonly using them as hosts for hemi-parasitic roots5 Plant strategy type / Hemi-parasitic5 (capable of manufacturing their own food and successional stage obtaining water/ nutrients from soil, but also form specialized roots—haustoria roots—that attach to a host plant to take up additional water); herb3 CAEL7 3 Plant characteristics Perennial species; blooms June-August2; some reports that Castilleja seed is difficult to germinate and that chemical exudate from the roots of host species (Castilleja are parasitic) are needed to induce germination, however this pattern is not always observed6; pollinated by insects and hummingbirds5 PROPAGATION DETAILS Ecotype N/A Propagation Goal Plants Propagation Method Seed Product Type Container (plug) Stock Type N/A Time to Grow 16 weeks5 Target Specifications Hardened 16-wk-old plants Propagule Collection Seeds can be collected in midsummer for early spring flowering Instructions species and in late summer for mid-elevation species. -
A Comparative Study of the Floras of China and Canada
Núm. 24, pp. 25-51, ISSN 1405-2768; México, 2007 A COMPARATIVE STUDY OF THE FLORAS OF CHINA AND CANADA Zhiyao Su College of Forestry, South China Agricultural University, Guangzhou 510642 - P. R. China J. Hugo Cota-Sánchez Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2 - Canada E-mail: [email protected] ABSTRACT at the generic and specific levels that are correlated with more recent geological and In this study, we investigated the floristic climatic variations and ecoenvironment relationships between China and Canada diversity, resulting in differences in floristic based on comparative analysis of their composition. Overall, western and eastern spermatophyte floras. Floristic lists were Canada have a similar number of shared compiled from standard floras and then genera, which suggests multiple migration subjected to cluster analysis using UPGMA events of floristic elements via the Atlantic and NMS ordination methods. Our data and Pacific connections and corridors that demonstrate that the Chinese spermatophyte existed in past geological times. flora is considerably more diverse than that of Canada and that the taxonomic richness Keywords: China, Canada, floristic rela- of seed plants in the floras of China and tionships, taxonomic richness, shared taxa, Canada shows significant variation at the intercontinental disjunction. specific and generic levels. China contains 272 families, 3 318 genera, and 27 078 RESUMEN species (after taxonomic standardization), whereas the spermatophyte flora of Canada En este estudio se investigaron la relaciones includes 145 families, 947 genera, and florísticas entre Canadá y China basados 4 616 species. The results indicate that out en análisis comparativos de las floras de of 553 genera shared by the Chinese and espermatofitas de ambos países. -
Haustorium Initiation and Early Development
Chapter 4 1 Haustorium Initiation and Early 2 Development 3 Pradeepa C.G. Bandaranayake and John I. Yoder 4 4.1 Introduction 5 The ability to develop invasive haustoria is the key feature of parasitic angiosperms. 6 The haustorium attaches the parasite to the host, penetrates the host while keeping 7 its own tissues intact, develops a vascular continuity between the host and parasite 8 and ultimately provides the conduit through which host and parasite materials flow. 9 The ability to make haustoria distinguishes parasitic from non-parasitic plants; 10 indeed, ‘the haustorium embodies the very idea of parasitism’ (Kuijt 1969). 11 This chapter reviews the initiation and pre-attachment development of terminal 12 and lateral haustoria in parasitic Orobanchaceae. Haustoria have been described for 13 many genera of Orobanchaceae, but their initiation and development has been 14 investigated in a relatively small number of species. Most of these studies have 15 investigated the development of terminal haustoria in the weedy species Striga 16 asiatica (Saunders 1933; William 1961; Nickrent et al. 1979; Keyes et al. 2007), 17 S. hermonthica (Okonkwo 1966; Olivier et al. 1991), S. gesnerioides (Okonkwo 18 and Nwoke 1978), Phelipanche aegyptiaca (syn. Orobanche aegyptiaca) and 19 O. cumana (Joel and Losner-Goshen 1994; Zhou et al. 2004) and Alectra vogelii 20 (Nwoke and Okonkwo 1978; Visser et al. 1990). Studies in the development of 21 lateral haustoria have primarily focussed on three facultative species: Agalinis 22 purpurea (Riopel and Musselman 1979; Baird and Riopel 1984), Castilleja exserta 23 (previously known as Orthocarpus purpurascens) (Atsatt et al. -
Indian Paintbrush CASTILLEJA SPECIES
PROPAGATION PROTOCOL FOR Indian Paintbrush CASTILLEJA SPECIES | Tara Luna 62 NATIVEPLANTS | SPRING 2005 Indian paintbrush (Castilleja spp. Michx. [Scrophulariaceae]) is a vibrant, beautiful genus of annual, biennial, and perennial wildflowers that are found exclusively in North America. The majority of species grow in the West, but a few species occur in the central portion of the US. There are more than 150 species and many freely hybridize with one another in areas where their ranges overlap. They are found in a wide range of habitats, ranging from low elevation wetlands and riparian areas to dry grasslands, steppe-shrub communities, and rocky slopes to mid- to high eleva- tion mountain meadows and slopes. The inflorescence is a short or elongate terminal spike bearing tubular-shaped Iflowers that are subtended by numerous colorful bracts. Indian paintbrush is appro- priately named as the bracts graduate in color from green leafy stems to the brightly colored tops of the inflorescence, thus giving the appearance that the tops of the plants have been dipped in paint. Both insects and hummingbirds are attracted to these plants and serve as pollinators. The flower and bract color, even within a single species, can range wildly across the color palette from rich reds, scarlet, and fuchsia to orange, salmon, pink, yellow, and cream. It is not unusual to find a single flower with up to 3 contrasting colors on the showy bracts. Because the floral bracts make up most of the color, they tend to remain showy for several weeks through the growing season. The rich, brilliant, pro- longed color of these species is one reason why they are some of the most desired native species for the home landscape, yet they are not widely available for sale as container plants because of their interesting biology. -
Horizontal Gene Transfer Is More Frequent with Increased
Horizontal gene transfer is more frequent with PNAS PLUS increased heterotrophy and contributes to parasite adaptation Zhenzhen Yanga,b,c,1, Yeting Zhangb,c,d,1,2, Eric K. Wafulab,c, Loren A. Honaasa,b,c,3, Paula E. Ralphb, Sam Jonesa,b, Christopher R. Clarkee, Siming Liuf, Chun Sug, Huiting Zhanga,b, Naomi S. Altmanh,i, Stephan C. Schusteri,j, Michael P. Timkog, John I. Yoderf, James H. Westwoode, and Claude W. dePamphilisa,b,c,d,i,4 aIntercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802; bDepartment of Biology, The Pennsylvania State University, University Park, PA 16802; cInstitute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802; dIntercollege Graduate Program in Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802; eDepartment of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061; fDepartment of Plant Sciences, University of California, Davis, CA 95616; gDepartment of Biology, University of Virginia, Charlottesville, VA 22904; hDepartment of Statistics, The Pennsylvania State University, University Park, PA 16802; iHuck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802; and jDepartment of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802 Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved September 20, 2016 (received for review June 7, 2016) Horizontal gene transfer (HGT) is the transfer of genetic material diverse angiosperm lineages (13, 14) and widespread incorpo- across species boundaries and has been a driving force in prokaryotic ration of fragments or entire mitochondrial genomes from algae evolution.