The Expression and Distributions of ANP32A in the Developing Brain

Total Page:16

File Type:pdf, Size:1020Kb

The Expression and Distributions of ANP32A in the Developing Brain Hindawi Publishing Corporation BioMed Research International Volume 2015, Article ID 207347, 8 pages http://dx.doi.org/10.1155/2015/207347 Research Article The Expression and Distributions of ANP32A in the Developing Brain Shanshan Wang,1 Yunliang Wang,2 Qingshan Lu,3 Xinshan Liu,1 Fuyu Wang,4 Xiaodong Ma,4 Chunping Cui,5 Chenghe Shi,5 Jinfeng Li,2 and Dajin Zhang5 1 Weifang Medical University, Weifang 261042, China 2 Department of Neurology, The 148th Hospital, Zibo 255300, China 3 Zhengzhou University, Zhengzhou 450001, China 4 Department of Neurosurgery, PLA 301 Hospital, Beijing 100853, China 5 Center for Basic Medical Sciences, Navy General Hospital of Chinese PLA, Beijing 100048, China Correspondence should be addressed to Jinfeng Li; [email protected] and Dajin Zhang; [email protected] Received 9 July 2014; Revised 20 August 2014; Accepted 20 August 2014 Academic Editor: Hongwei Wang Copyright © 2015 Shanshan Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Acidic (leucine-rich) nuclear phosphoprotein 32 family, member A (ANP32A), has multiple functions involved in neuritogenesis, transcriptional regulation, and apoptosis. However, whether ANP32A has an effect on the mammalian developing brain is still in question. In this study, it was shown that brain was the organ that expressed the most abundant ANP32A by human multiple tissue expression (MTE) array. The distribution of ANP32A in the different adult brain areas was diverse dramatically, with high expression in cerebellum, temporal lobe, and cerebral cortex and with low expression in pons, medulla oblongata, and spinal cord. The expression of ANP32A was higher in the adult brain than in the fetal brain of not only humans but also mice in a time-dependent manner. ANP32A signals were dispersed accordantly in embryonic mouse brain. However, ANP32A was abundant in the granular layer of the cerebellum and the cerebral cortex when the mice were growing up, as well as in the Purkinje cells of the cerebellum. The variation of expression levels and distribution of ANP32A in the developing brain would imply that ANP32A may playan important role in mammalian brain development, especially in the differentiation and function of neurons in the cerebellum and the cerebral cortex. 1. Introduction LRRs shape a globular head domain. LRRs, belonging to a superfamilywithdiversebioactivity,maypotentiallyfunction ANP32A is a member of acidic nuclear phosphoprotein in mediating protein-protein interaction [8]. The extended 32 kDa (ANP32) family [1, 2]. The nomenclature of ANP32A and hydrophilic C-terminal domain is highly unusual in its familymembersisconfusingbecausethesameproteinhas amino acid composition, containing abundant aspartic and beengivenmorethanonenamebasedonthecontextof glutamic acid residues, and a putative nuclear localization isolation. The family members are comprised of ANP32A signal (NLS) [9]. According to the structure characteristic, it (also known as PP32, LANP, HPPCn, I1PP2A, MAPM, or is not surprising to find ANP32 proteins involved in a variety PHAPIa), ANP32B (PAL31, APRIL, or PHAPIb) [3], ANP32C of cellular processes in both nucleus and cytoplasm, including (PP32r1) [4], ANP32D (PP32r2) [5], and ANP32E (Cpd1, signaling, apoptosis, protein degradation, and morphogene- LANP-L, or PHAPIII) [6]. sis. All ANP32 proteins share two highly conserved regions: More studies have focused on ANP32A, the founding the N-terminal leucine-rich repeats (LRRs) sequence and the member of the ANP32 family. ANP32A (PP32) was orig- C-terminal acidic tail [7]. For ANP32A, the hydrophobic inally found as a tumor suppressor [10], associated with 2 BioMed Research International cancer cell survival and drug efficacy. Meanwhile its closely 2. Materials and Methods related homologue PP32r1 is oncogenic and is overexpressed in breast cancer and prostate cancer [11]. Family member 2.1. Animals. Adult C57 BL/6 mice were kept with free ANP32B was indicated as a potential prognostic marker of accesses to food and water. The day of insemination was human breast cancer [2]. In fact, ANP32A has also been designated as embryonic day 0 (E0). The day of birth was identified having a potential oncogenic and drug-resistant designated as postnatal day 0 (P0). Brains from different function in hepatocellular carcinoma [12], colorectal can- embryonic period (E12 and E16), early time points after birth cer [13], and pancreatic tumor [14]. The confused role in (P0, P5, and P12), pubescent male mice (approximately 5-6 tumorigenesis of ANP32A may be due to its functions and weeks old), and adult male mice (approximately 8–10 weeks − ∘ subcellular localizations being almost bewildering in variety. old) were frozen quickly and stored at 80 Cuntilrequired ANP32A is known to be a key component of the inhibitor for experiments. E12 and E16 brains were collected under of acetyltransferase (INHAT) complex in the nucleus, the dissection microscope and the mesenchymal tissues involved in regulating chromatin remodeling or transcription were removed with fine forceps as much as possible. For initiation [15]. ANP32A forms a multisubunit heterocomplex immunohistochemistry preparation, brains were fixed in × with HuR, regulating the nucleocytoplasmic shuttling of formalin (4% formaldehyde in 1 PBS, pH7.4) for 24 hours HuR, which is essential for RNA stability and transport [16]. and then embedded in paraffin. Serial sections (4 m) were In the cytoplasm, ANP32A (mapmodulin) is positioned to mounted onto silane-coated slides (Dako, Denmark). microtubule associated proteins (MAPs), involved in regu- lating microtubule function and microtubule-based vesicular 2.2. Human Multiple Tissue Expression (MTE) Array Analysis. trafficking17 [ ]. ANP32A may control enzymatic activities by The human MTE array (BD, America) was a positively + inhibition of protein phosphatase 2A (PP2A) or activation charged nylon membrane to which poly A RNAs from dif- of caspases [18]. ANP32A (LANP) and SET were observed ferent human tissues had been normalized and immobilized attheinnersurfaceoftheplasmamembraneoflympho- in separate dots, along with several controls. The MTE array cytesandsupposedlyplayaroleinsignaltransduction made it possible to determine the relative expression levels [19]. ANP32A (HPPCn) was the first factor that it could of a target mRNA in different tissues and developmental + transport to the extracellular space and act as an autocrine stages [26]. To this end, poly A RNA samples on each MTE factor to promote DNA synthesis and suppress apoptosis by array had been normalized to the mRNA expression levels of upregulating myeloid cell leukemia-1 [20]. These functions eight different “housekeeping” genes, which minimized the taken together suggest that ANP32A could therefore be an small tissue-specific variations in expression of any single important regulator of cellular homeostasis. housekeeping gene [27]. The human MTE array gave a ANP32A plays essential roles in a variety of neural relative convenient and convincing way to demonstrate the pathophysiology processes. The level of ANP32A (I1PP2A) is levels of ANP32A mRNA in 20 different areas of the human increasedinAlzheimer’sdisease(AD)andmaybeinvolvedin brain, as well as adult whole brain and fetal brain. regulatory mechanism of affecting Tau phosphorylation and A750bpANP32A probe was amplified from human impairing the microtubule network and neurite outgrowth ANP32A gene (Gene ID: 8125) in the pET-24a(+) plas- [21]. ANP32A (LANP) regulates neuronal differentiation by mid (kept by our laboratory) with primers 5 -CGG- epigenetic modulating expression of the neurofilament light GATCCATGGAGATGGGCAGACGGATT-3 (forward) chain, an important neuron-specific cytoskeletal gene [22]. and 5 -AACTGCAGGTCAT-CATCTTCTCCCTCATC-3 ANP32A can interact with the retinoblastoma protein Rb in (reverse). Probe used for the human MTE assay was radioac- both young and mature neurons and is implicated in the 32 tively labeled with -[ P]dCTP using the DNA labeling kit regulation of neuronal survival by CXCL12/CXCR4 [23]. The (Promega, America) as described by the operation manual. decreased levels of ANP32A, as a potent and selective PP2A ∘ Prehybridization of the MTE array was performed at 68 C inhibitor, may contribute to abnormal neuritic morphology for 2 hours in ExpressHyb hybridization (Clontech, America) in a dominantly inherited neurodegenerative disorder of the with sheared salmon testis DNA added to a final con- spinocerebellar ataxia type 1 [24]. centration of 0.1 mg/mL. The denatured radiolabeled probe The expression characteristic of ANP32A in the devel- was mixed directly into the prehybridization solution and oping brain, especially details on the expression and distri- ∘ hybridized overnight at 68 C. After hybridization, the array butions of ANP32A in the human brain, had rarely been ∘ was washed three times at 37 Cinsolution2× SSC with reported [25]. In this study, the distribution of ANP32A in ∘ 0.1% SDS for 10min each time, repeated at 65 Cinsolution different human brain areas, as well as ANP32A abundance 0.1× SSC with 0.1% SDS for 20 min each time. Array was in the human fetal and adult brain, was identified. For more ∘ exposed to X-ray film at −70 C for 48 hours. ANP32A details of the expression and localization of ANP32A in mRNA levels were determined by densitometric scanning of the developing
Recommended publications
  • ANP32A and ANP32B Are Key Factors in the Rev Dependent CRM1 Pathway
    bioRxiv preprint doi: https://doi.org/10.1101/559096; this version posted February 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 ANP32A and ANP32B are key factors in the Rev dependent CRM1 pathway 2 for nuclear export of HIV-1 unspliced mRNA 3 Yujie Wang1, Haili Zhang1, Lei Na 1, Cheng Du1, Zhenyu Zhang1, Yong-Hui Zheng1,2, Xiaojun Wang1* 4 1State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese 5 Academy of Agricultural Sciences, Harbin 150069, China 6 2Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, 7 USA. 8 * Address correspondence to Xiaojun Wang, [email protected]. 9 10 11 12 13 14 15 16 17 18 19 20 21 1 bioRxiv preprint doi: https://doi.org/10.1101/559096; this version posted February 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 22 Abstract 23 The nuclear export receptor CRM1 is an important regulator involved in the shuttling of various cellular 24 and viral RNAs between the nucleus and the cytoplasm. HIV-1 Rev interacts with CRM1 in the late phase of 25 HIV-1 replication to promote nuclear export of unspliced and single spliced HIV-1 transcripts. However, the 26 knowledge of cellular factors that are involved in the CRM1-dependent viral RNA nuclear export remains 27 inadequate. Here, we identified that ANP32A and ANP32B mediate the export of unspliced or partially spliced 28 viral mRNA via interacting with Rev and CRM1.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • A. Cellular Senescence
    Generation of antisense RNAs at convergent gene loci in cells undergoing senescence Maharshi Krishna Deb To cite this version: Maharshi Krishna Deb. Generation of antisense RNAs at convergent gene loci in cells undergo- ing senescence. Human genetics. Université Paul Sabatier - Toulouse III, 2016. English. NNT : 2016TOU30274. tel-03209213 HAL Id: tel-03209213 https://tel.archives-ouvertes.fr/tel-03209213 Submitted on 27 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 5)µ4& &OWVFEFMPCUFOUJPOEV %0$503"5%&-6/*7&34*5²%&506-064& %ÏMJWSÏQBS Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) 1SÏTFOUÏFFUTPVUFOVFQBS DEB Maharshi Krishna -F mercredi 30 mars 2016 5Jtre : Generation of antisense RNAs at convergent gene loci in cells undergoing senescence École doctorale et discipline ou spécialité : ED BSB : Génétique moléculaire 6OJUÏEFSFDIFSDIF CNRS-UMR5088; LBCMCP %JSFDUFVS T EFʾÒTF Dr. TROUCHE Didier Co-Directeur/trice(s) de Thèse : Dr. NICOLAS Estelle 3BQQPSUFVST Prof. GILSON Eric, Dr. LIBRI Domenico, Dr. VERDEL Andre "VUSF T NFNCSF T EVKVSZ Prof. GLEIZES Pierre Emmanuel, President of Jury Dr. TROUCHE Didier, Thesis Supervisor This thesis is dedicated to any patients who may get cured with treatments manifesting from this work.
    [Show full text]
  • Supplementary Data
    SUPPLEMENTARY DATA A cyclin D1-dependent transcriptional program predicts clinical outcome in mantle cell lymphoma Santiago Demajo et al. 1 SUPPLEMENTARY DATA INDEX Supplementary Methods p. 3 Supplementary References p. 8 Supplementary Tables (S1 to S5) p. 9 Supplementary Figures (S1 to S15) p. 17 2 SUPPLEMENTARY METHODS Western blot, immunoprecipitation, and qRT-PCR Western blot (WB) analysis was performed as previously described (1), using cyclin D1 (Santa Cruz Biotechnology, sc-753, RRID:AB_2070433) and tubulin (Sigma-Aldrich, T5168, RRID:AB_477579) antibodies. Co-immunoprecipitation assays were performed as described before (2), using cyclin D1 antibody (Santa Cruz Biotechnology, sc-8396, RRID:AB_627344) or control IgG (Santa Cruz Biotechnology, sc-2025, RRID:AB_737182) followed by protein G- magnetic beads (Invitrogen) incubation and elution with Glycine 100mM pH=2.5. Co-IP experiments were performed within five weeks after cell thawing. Cyclin D1 (Santa Cruz Biotechnology, sc-753), E2F4 (Bethyl, A302-134A, RRID:AB_1720353), FOXM1 (Santa Cruz Biotechnology, sc-502, RRID:AB_631523), and CBP (Santa Cruz Biotechnology, sc-7300, RRID:AB_626817) antibodies were used for WB detection. In figure 1A and supplementary figure S2A, the same blot was probed with cyclin D1 and tubulin antibodies by cutting the membrane. In figure 2H, cyclin D1 and CBP blots correspond to the same membrane while E2F4 and FOXM1 blots correspond to an independent membrane. Image acquisition was performed with ImageQuant LAS 4000 mini (GE Healthcare). Image processing and quantification were performed with Multi Gauge software (Fujifilm). For qRT-PCR analysis, cDNA was generated from 1 µg RNA with qScript cDNA Synthesis kit (Quantabio). qRT–PCR reaction was performed using SYBR green (Roche).
    [Show full text]
  • UNIVERSITY of CALIFORNIA RIVERSIDE Investigations Into The
    UNIVERSITY OF CALIFORNIA RIVERSIDE Investigations into the Role of TAF1-mediated Phosphorylation in Gene Regulation A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Cell, Molecular and Developmental Biology by Brian James Gadd December 2012 Dissertation Committee: Dr. Xuan Liu, Chairperson Dr. Frank Sauer Dr. Frances M. Sladek Copyright by Brian James Gadd 2012 The Dissertation of Brian James Gadd is approved Committee Chairperson University of California, Riverside Acknowledgments I am thankful to Dr. Liu for her patience and support over the last eight years. I am deeply indebted to my committee members, Dr. Frank Sauer and Dr. Frances Sladek for the insightful comments on my research and this dissertation. Thanks goes out to CMDB, especially Dr. Bachant, Dr. Springer and Kathy Redd for their support. Thanks to all the members of the Liu lab both past and present. A very special thanks to the members of the Sauer lab, including Silvia, Stephane, David, Matt, Stephen, Ninuo, Toby, Josh, Alice, Alex and Flora. You have made all the years here fly by and made them so enjoyable. From the Sladek lab I want to thank Eugene, John, Linh and Karthi. Special thanks go out to all the friends I’ve made over the years here. Chris, Amber, Stephane and David, thank you so much for feeding me, encouraging me and keeping me sane. Thanks to the brothers for all your encouragement and prayers. To any I haven’t mentioned by name, I promise I haven’t forgotten all you’ve done for me during my graduate years.
    [Show full text]
  • GENOME EDITING in AFRICA’S AGRICULTURE 2021 an EARLY TAKE-OFF TABLE of CONTENTS Abbreviations and Acronyms 3
    GENOME EDITING IN AFRICA’S AGRICULTURE 2021 AN EARLY TAKE-OFF TABLE OF CONTENTS Abbreviations and Acronyms 3 1. Introduction 4 1.1 Milestones in Plant Breeding 5 1.2 How CRISPR genome editing works in agriculture 6 2 . Genome editing projects and experts in eastern Africa 7 2.1 Kenya 8 2.2 Ethiopia 14 2.3 Uganda 15 3 . Gene editing projects and experts in southern Africa 17 3.1 South Africa 18 4. Gene editing projects and experts in West Africa 19 4.1 Nigeria 20 5. Gene editing projects and experts in Central Africa 21 5.1 Cameroon 22 6. Gene editing projects and experts in North Africa 23 6.1 Egypt 24 7. Conclusion 25 8. CRISPR genome editing: inside a crop breeder’s toolkit 26 9. Regulatory Approaches for Genome Edited Products in Various Countries 27 10. Communicating about Genome Editing in Africa 28 2 ABBREVIATIONS AND ACRONYMS CRISPR Clustered Regularly Interspaced Short Palindromic Repeats DNA Deoxyribonucleic acid GM Genetically Modified GMO Genetically Modified Organism HDR Homology Directed Repair ISAAA International Service for the Acquisition of Agri-biotech Applications NHEJ Non Homologous End Joining PCR Polymerase Chain Reaction RNA Ribonucleic Acid LGS1 Low germination stimulant 1 3 1.0 INTRODUCTION Genome editing (also referred to as gene editing) comprises a arm is provided with the CRISPR-Cas9 cassette, homology-directed group of technologies that give scientists the ability to change an repair (HDR) will occur, otherwise the cell will employ non- organism’s DNA. These technologies allow addition, removal or homologous end joining (NHEJ) to create small indels at the cut site alteration of genetic material at particular locations in the genome.
    [Show full text]
  • Identification of Differentially Methylated Cpg
    biomedicines Article Identification of Differentially Methylated CpG Sites in Fibroblasts from Keloid Scars Mansour A. Alghamdi 1,2 , Hilary J. Wallace 3,4 , Phillip E. Melton 5,6 , Eric K. Moses 5,6, Andrew Stevenson 4 , Laith N. Al-Eitan 7,8 , Suzanne Rea 9, Janine M. Duke 4, 10 11 4,9,12 4, , Patricia L. Danielsen , Cecilia M. Prêle , Fiona M. Wood and Mark W. Fear * y 1 Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; [email protected] 2 Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia 3 School of Medicine, The University of Notre Dame Australia, Fremantle 6959, Australia; [email protected] 4 Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth 6009, Australia; andrew@fionawoodfoundation.com (A.S.); [email protected] (J.M.D.); fi[email protected] (F.M.W.) 5 Centre for Genetic Origins of Health and Disease, Faculty of Health and Medical Sciences, The University of Western Australia, Perth 6009, Australia; [email protected] (P.E.M.); [email protected] (E.K.M.) 6 School of Pharmacy and Biomedical Sciences, Faculty of Health Science, Curtin University, Perth 6102, Australia 7 Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan; [email protected] 8 Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110,
    [Show full text]
  • ANP32B Deficiency Impairs Proliferation and Suppresses Tumor Progression by Regulating AKT Phosphorylation
    Citation: Cell Death and Disease (2016) 7, e2082; doi:10.1038/cddis.2016.8 OPEN & 2016 Macmillan Publishers Limited All rights reserved 2041-4889/16 www.nature.com/cddis ANP32B deficiency impairs proliferation and suppresses tumor progression by regulating AKT phosphorylation S Yang1,6, L Zhou2,6, PT Reilly3, S-M Shen1,PHe1, X-N Zhu1, C-X Li1, L-S Wang4, TW Mak5, G-Q Chen*,1 and Y Yu*,1 The acidic leucine-rich nuclear phosphoprotein 32B (ANP32B) is reported to impact normal development, with Anp32b-knockout mice exhibiting smaller size and premature aging. However, its cellular and molecular mechanisms, especially its potential roles in tumorigenesis, remain largely unclear. Here, we utilize 'knockout' models, RNAi silencing and clinical cohorts to more closely investigate the role of this enigmatic factor in cell proliferation and cancer phenotypes. We report that, compared with Anp32b wild- type (Anp32b+/+) littermates, a broad panel of tissues in Anp32b-deficient (Anp32b− / −) mice are demonstrated hypoplasia. Anp32b− / − mouse embryo fibroblast cell has a slower proliferation, even after oncogenic immortalization. ANP32B knockdown also significantly inhibits in vitro and in vivo growth of cancer cells by inducing G1 arrest. In line with this, ANP32B protein has higher expression in malignant tissues than adjacent normal tissues from a cohort of breast cancer patients, and its expression level positively correlates with their histopathological grades. Moreover, ANP32B deficiency downregulates AKT phosphorylation, which involves its regulating effect on cell growth. Collectively, our findings suggest that ANP32B is an oncogene and a potential therapeutic target for breast cancer treatment. Cell Death and Disease (2016) 7, e2082; doi:10.1038/cddis.2016.8; published online 4 February 2016 The acidic leucine-rich nuclear phosphoprotein 32 kDa lethality and reduced body weight,22–25 indicating a greater (ANP32) protein family are characterized by a N-terminal importance of Anp32b in normal development.
    [Show full text]
  • Nuclear PTEN Safeguards Pre-Mrna Splicing to Link Golgi Apparatus for Its Tumor Suppressive Role
    ARTICLE DOI: 10.1038/s41467-018-04760-1 OPEN Nuclear PTEN safeguards pre-mRNA splicing to link Golgi apparatus for its tumor suppressive role Shao-Ming Shen1, Yan Ji2, Cheng Zhang1, Shuang-Shu Dong2, Shuo Yang1, Zhong Xiong1, Meng-Kai Ge1, Yun Yu1, Li Xia1, Meng Guo1, Jin-Ke Cheng3, Jun-Ling Liu1,3, Jian-Xiu Yu1,3 & Guo-Qiang Chen1 Dysregulation of pre-mRNA alternative splicing (AS) is closely associated with cancers. However, the relationships between the AS and classic oncogenes/tumor suppressors are 1234567890():,; largely unknown. Here we show that the deletion of tumor suppressor PTEN alters pre-mRNA splicing in a phosphatase-independent manner, and identify 262 PTEN-regulated AS events in 293T cells by RNA sequencing, which are associated with significant worse outcome of cancer patients. Based on these findings, we report that nuclear PTEN interacts with the splicing machinery, spliceosome, to regulate its assembly and pre-mRNA splicing. We also identify a new exon 2b in GOLGA2 transcript and the exon exclusion contributes to PTEN knockdown-induced tumorigenesis by promoting dramatic Golgi extension and secretion, and PTEN depletion significantly sensitizes cancer cells to secretion inhibitors brefeldin A and golgicide A. Our results suggest that Golgi secretion inhibitors alone or in combination with PI3K/Akt kinase inhibitors may be therapeutically useful for PTEN-deficient cancers. 1 Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China. 2 Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and SJTU-SM, Shanghai 200025, China.
    [Show full text]
  • Open Full Page
    Published OnlineFirst February 10, 2017; DOI: 10.1158/2159-8290.CD-16-1045 RESEARCH ARTICLE Interaction Landscape of Inherited Polymorphisms with Somatic Events in Cancer Hannah Carter 1 , 2 , 3 , 4 , Rachel Marty 5 , Matan Hofree 6 , Andrew M. Gross 5 , James Jensen 5 , Kathleen M. Fisch1,2,3,7 , Xingyu Wu 2 , Christopher DeBoever 5 , Eric L. Van Nostrand 4,8 , Yan Song 4,8 , Emily Wheeler 4,8 , Jason F. Kreisberg 1,3 , Scott M. Lippman 2 , Gene W. Yeo 4,8 , J. Silvio Gutkind 2 , 3 , and Trey Ideker 1 , 2 , 3 , 4 , 5,6 Downloaded from cancerdiscovery.aacrjournals.org on September 27, 2021. © 2017 American Association for Cancer Research. Published OnlineFirst February 10, 2017; DOI: 10.1158/2159-8290.CD-16-1045 ABSTRACT Recent studies have characterized the extensive somatic alterations that arise dur- ing cancer. However, the somatic evolution of a tumor may be signifi cantly affected by inherited polymorphisms carried in the germline. Here, we analyze genomic data for 5,954 tumors to reveal and systematically validate 412 genetic interactions between germline polymorphisms and major somatic events, including tumor formation in specifi c tissues and alteration of specifi c cancer genes. Among germline–somatic interactions, we found germline variants in RBFOX1 that increased incidence of SF3B1 somatic mutation by 8-fold via functional alterations in RNA splicing. Similarly, 19p13.3 variants were associated with a 4-fold increased likelihood of somatic mutations in PTEN. In support of this associ- ation, we found that PTEN knockdown sensitizes the MTOR pathway to high expression of the 19p13.3 gene GNA11 .
    [Show full text]
  • Multiple Routes to Oncogenesis Are Promoted by the Human Papillomavirus–Host Protein Network
    Published OnlineFirst September 12, 2018; DOI: 10.1158/2159-8290.CD-17-1018 RESEARCH ARTICLE Multiple Routes to Oncogenesis Are Promoted by the Human Papillomavirus–Host Protein Network Manon Eckhardt 1 , 2 , 3 , Wei Zhang 4 , Andrew M. Gross 4 , John Von Dollen 1 , 3 , Jeffrey R. Johnson 1 , 2 , 3 , Kathleen E. Franks-Skiba1 , 3 , Danielle L. Swaney 1 , 2 , 3 , 5 , Tasha L. Johnson 3 , Gwendolyn M. Jang 1 , 3 , Priya S. Shah1 , 3 , Toni M. Brand 6 , Jacques Archambault 7 , Jason F. Kreisberg 4 , 5 , Jennifer R. Grandis 5 , 6 , Trey Ideker4 , 5 , and Nevan J. Krogan 1 , 2 , 3 , 5 ABSTRACT We have mapped a global network of virus–host protein interactions by purifi cation of the complete set of human papillomavirus (HPV) proteins in multiple cell lines followed by mass spectrometry analysis. Integration of this map with tumor genome atlases shows that the virus targets human proteins frequently mutated in HPV − but not HPV + cancers, providing a unique opportunity to identify novel oncogenic events phenocopied by HPV infection. For example, we fi nd that the NRF2 transcriptional pathway, which protects against oxidative stress, is activated by interaction of the NRF2 regulator KEAP1 with the viral protein E1. We also demonstrate that the L2 HPV protein physically interacts with the RNF20/40 histone ubiquitination complex and promotes tumor cell inva- sion in an RNF20/40-dependent manner. This combined proteomic and genetic approach provides a systematic means to study the cellular mechanisms hijacked by virally induced cancers. SIGNIFICANCE : In this study, we created a protein–protein interaction network between HPV and human proteins.
    [Show full text]
  • Downloaded 18 July 2014 with a 1% False Discovery Rate (FDR)
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Chemical glycoproteomics for identification and discovery of glycoprotein alterations in human cancer Permalink https://escholarship.org/uc/item/0t47b9ws Author Spiciarich, David Publication Date 2017 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Chemical glycoproteomics for identification and discovery of glycoprotein alterations in human cancer by David Spiciarich A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Chemistry in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Carolyn R. Bertozzi, Co-Chair Professor David E. Wemmer, Co-Chair Professor Matthew B. Francis Professor Amy E. Herr Fall 2017 Chemical glycoproteomics for identification and discovery of glycoprotein alterations in human cancer © 2017 by David Spiciarich Abstract Chemical glycoproteomics for identification and discovery of glycoprotein alterations in human cancer by David Spiciarich Doctor of Philosophy in Chemistry University of California, Berkeley Professor Carolyn R. Bertozzi, Co-Chair Professor David E. Wemmer, Co-Chair Changes in glycosylation have long been appreciated to be part of the cancer phenotype; sialylated glycans are found at elevated levels on many types of cancer and have been implicated in disease progression. However, the specific glycoproteins that contribute to cell surface sialylation are not well characterized, specifically in bona fide human cancer. Metabolic and bioorthogonal labeling methods have previously enabled enrichment and identification of sialoglycoproteins from cultured cells and model organisms. The goal of this work was to develop technologies that can be used for detecting changes in glycoproteins in clinical models of human cancer.
    [Show full text]