Heaviest Nuclei 2019.Pptx
Total Page:16
File Type:pdf, Size:1020Kb
Passion for Science 2019 The discovery of new heavy elements Mikhail ITKIS, Yuri OGANESSIAN November 06-07, 2019 Bologna, Italy 1%+,,"(' 10 :(!+ ::!%+ CKEK U 92 CKFB 5 ::%+(2 UP 0 CBCH5+,=4):> Potential energy (MeV)Potential energy MB CB<CK, Nuclear deformation NCBB ::-+6!$ 3&-.#&&.( /#@'"$(3'-.A Spontaneous Fission (1-EBBB'1%" +$'(3'-(5 208Pb Z=82 126 protons 100Sn Now let us consider the nuclei heavier than lead 50 56 82 Ni &(' -!& 40Ca 132Sn K'1%"+(1%5& " 28 50 20 78Ni “doubly magic” 8 28 nuclei 48 2 20 Ca neutrons 8 2 16O 4He The Nobel Prize in Physics 1975 :"'3-+ :(!+ : (0%,(' "for the discovery of the connection between collective motion a motion in atomic nuclei and the development of the theory of the of the atomic nucleus based on this connection". !%%-"'-!'1%+ +(1',--,=&,,-> Nilsson, Thompson, and Tsang, 1969 Experiment 208Pb Theory Z=108 N=162 Z=114 N=184 Z=82 Sobiczewski A, Gareev F A and Kalinkin B N N=126 1966 Phys. Lett. 22, 500 10 1967 92U 5 Shell "*1"+()'+ 5 effect 16 0 10 Potential(MeV) energy *-'0*( Z=108 Macro-microscopic theory d d d (E )Tot = (E )LD + (E )Shell macro micro : :-+1.',$"CKHI Uranium ELD -2 -4 -6 -8 EShell Isomeric0 -2 state -4 -6 -8 Ground state ELD+ Eshell ?'*&)83%=#7.?4?OPEKSSQFRKL +.%)('-'(1, ",,"(' %< "2, SHE 20 Z=112 114 116 с 10 SF B.*(. LogT / 0 *" -10 МЖКLDM -20 0.70 0.75 0.80 0.85 0.90 0.95 Параметр -'/-* делимости ..$&$/76 x &C&$4. -*.*+$/#*-7 LogT s -5NewNew landslands0 5 10 15 1/2 1μs 1s 1h d 1Myear Island of 120 StabilityIsland of Stability A limit of SHE Shoal existence 110 shoal -14 T1/2 ≤ 10 s Proton number Peninsula 100 peninsula Sea of Instability 90 Continentcontinent 80 70 100 110 120 130 140 150 160 170 180 190 Neutron number $./($6 EKSQLF "*-/# K7 (-3+/&? K. EKSQNF K<. UKKN *"*/#+*(/(*3.$..$*( & $4.E7-.F 3/-*((3'- 15-year long assault on the “Islands of Stability” 1970-1985 Los Alamos (USA) Berkeley (USA) Dubna (JINR) Oak Ridge (USA) Mainz (Germany) Darmstadt (Germany) Orsay (France) Würenlingen (Switzerland) Tokyo (Japan) some later The task of every laboratory was: To find the method of producing +!"''-1+9 +-!;%1'+(#-,8(,&"+5,8 +."%,5'-!,",9 !" !<14+-(+8 '1%+4)%(,"('8 )(3+1%%+-(+ To develop setups: ,)+-(+;--(+8 ,)-+(&-+,8 !&"%&-!(,8-: Unfortunately in all attempts super heavy elements were not found The problem of artificial synthesis of SHE is related with reaction of synthesis Reactions of synthesis Act.+48Ca Cold fusion 114 r island of e b Nh stabilitys of ssuperheavy m nuclei u Light ions n n o t o shoal of r deformed p nuclei 108 target from N Th U“peninsula” 90 Pu WN NE W peninsula Pb SW continent Neutron capture 126142 146162 neutronneutron number 184 Reaction channels in the collisions of heavy ions Double arm Time-of-Flight spectrometer CORSET The study of binary channel of heavy-ion-induced reactions (fusion-fission, quasifission and deep-inelastic processes). Time resolution 150-180 ps ToF base 10-30 cm ToF arm rotation 15°-165° range Solid angle 100 -200 msr Angular resolution 0.3° Mass resolution 2-4 u Cold fusion reactions 208 50 258 208 58 266 208 86 294 208 136 344 Pb + Ti → Rf Pb + Fe → Hs Pb + Kr → 118 Pb + Xe → 136 E /E = 1.03 E /E = 1.05 E /E = 1.09 E /E = 1.00 c.m. Bass c.m. Bass c.m. Bass c.m. Bass Z Z = 1804 Z Z = 2132 400 Z Z = 2952 500 Z Z = 4428 300 1 2 1 2 1 2 1 2 350 450 250 300 400 200 250 350 TKE (MeV) 150 200 300 50 100 150 200 50 100 150 200 50 100 150 200 100 150 200 Fragment mass (u) Hot fusion reactions 48 232 280 48 238 286 48 244 292 48 248 296 Ca + Th → Ds Ca + U → Cn Ca + Pu → Fl Ca + Cm → Lv E /E = 1.06 E /E = 1.02 E /E = 1.03 E /E = 1.00 c.m. Bass c.m. Bass c.m. Bass c.m. Bass Z Z = 1800 Z Z = 1840 Z Z = 1880 Z Z = 1920 300 1 2 1 2 1 2 1 2 250 200 TKE (MeV) 150 100 50 100 150 200 250 50 100 150 200 250 50 100 150 200 250 50 100 150 200 250 Fragment mass (u) Reaction of synthesis artificial element made in high flux nuclear reactor n target 48 292288 from 244 to separator accelerator Ca Pu FlFl projectiles rare and very n n expensive isotope of Ca fusion & cooling Isotope Isotope Facility Targets enrichment (%) 233U SM-3 99.97 238U - 237 48 Np SM-3 99.3 Ca -beam 242Pu SM-3 99.98 Energy: 244Pu HFIR 98.6 235-250 MeV 243Am SM-3 / HFIR 99.9 Intensity: 1.0-1.2 pμA 245Cm SM-3 / HFIR 98.7 248Cm HFIR 97.4 Consumption: 0.5 mg/h 249Bk HFIR 97.3 249Cf SM-3 / HFIR 97.3 BEAM 100,000 hours beam time of Ca-48 Heavy Ion Accelerator U-400 Joint Institute for Nuclear Research (Dubna, Ru TARGET 0 anessian 201 Og Yu. Oganessian 2010 Yu. Yu. 50 Ci High Flux Isotope Reactor Oak Ridge National Laboratory (USA 22 mg of 249Bk have been produced in 250 days irradiation at HFIR (ORNL) Experimental l technique ε=0.5 mm·mrad position sensitive strip detectors “veto”ΔE=0.5 detectors eV TOF-detectors Dubna side Gas detectors Filled SH Recoil recoils recoils Separator 48Ca-ions gas-filled detector chamber station beam 48Ca rotating entrance target window Decay chains CKKK<DBBB 48 248Cm + Ca O MCCH 0.06 s 48 244Pu + Ca OCCF 2.5 s 114 0.7 ms CCD 0.5 min 170 μs CCB 11s 184 3''-77+-*+-0.*/#C4($.*/*+.*.-4 $(DEJ8DFB8DFD8DFF18DFG8DFJ&(DFKTFJ-0*(. DBCG Yu Ts Oganessian and V K Utyonkov, % Rep. Prog. Phys. 78 (2015) 036301 $ """ % "%&" % % % $!# # # " !" $ $! $" &! $# ! $$ &# $% & $% # %" $ ! %% %$ & & & % $$ $ ! $ $ & $ $! ! $ "" &# % % & %! & %% %$ %% ## & #% %"$% # $ &% & $" # !! %# $# # &# #! & ## & #! %! % &! "% &# # &$ #" " $!" $! $ "! &# "# &! "! & & ! Alpha - decay TheoryTheory: I. Muntian, Z. Patyk, and A. Sobiczewski 12.0 Phys. At. Nucl. 66, (2003) Z-evenZ-even 118 11.0 116 10.0 114 108 9.0 112 106 110 Alpha decay energy (MeV) Exp:Exp. 8.0 Z-evenZ-even 7.0 260 270 280 29 0 300 Atomic mass number Spontaneous fission even-even isotopes 16 Th. 14 N=152 N84=1 R. Smolańczuk, PR. C 56 (1997) 12 812 10 SHN N6=1 2 8 SF 6 Z=112 Log T (s) 4 2 0 -2 -4 -$0& -6 8*( -8 145 150 155 160 165 170 175 180 185 Neutron number 3''-77+-*+-0.*/#$.*/*+.*&'(/.KKM=KKO=(KKQ *.-4$(DEI)=DFE&(DFK$TFJ-0*(. % % # # DBCB<DBCF " $# $# $$ $% &$ % &$ ! ! ! ! !" "! "# !! %#$ $ $ & $ & $! & $" & % # # $ $ "$ % % #$ %"%#! #$ & #% &" $ $ & $ &" #% #! %# $ %!# "%$ $" %%# %$! $$"%! # &#! #! %&# #" &" ## #&" #$ &# # &% $! ! %$%!! # %#" # # ! &! # !&! &$ # # $%$ %$# $!!% $#$$ "" &% "# !&$ "$ "&" "$ " &! &" & & ! $" ! ('+&.(',(-DBBI<DBCF A/Z Setup Laboratory Publications 283112 SHIP GSI Darmstadt Eur. Phys. J. A32, 251 (2007) 283112 COLD PSI-FLNR (JINR) NATURE 447, 72 (2007) 286, 287114 BGS LBNL (Berkeley) P.R. Lett. 103, 132502 (2009) 288, 289114 TASCA GSI – Mainz P.R. Lett. 104, 252701 (2010) 292, 293116 SHIP GSI Darmstadt Eur. Phys. J. A48, 62 (2012) 287, 288115 TASCA GSI – Mainz P.R. Lett. 111, 112502 (2013) 293, 294117 TASCA GSI – Mainz P.R. Lett. 112, 172501 (2014) 292, 293116 GARIS RIKEN Tokyo Accelerator Progress Rep. (2013) Super heavy islanders and their daughter products are a large family of the 55 new neutron-rich isotopes with unique properties. $%## $$+ 2015 $$) %#+ %#, $$' $$' -(# % $$% α α &+ $+ α & #$+ #$ $ #$, α α α $* %$ #), α #'( + %& (% α α α $% +# #'' $* $* #'+ #%& #, α %# $, $( '& #($ $( $+ () %* $) )%&, $% &#%$ *+ %$ $$ $(# $(' $() $(+ $)# $) $) $) $ $ $ $ $ $ $ $) $(% $)% $ 0*(.*7(/#.$.0*(.*7(/#.$. :("63,$"8 :(&(+,$"8GJ8DKD8DBBI 120 T#&&*--0*(. =CB5>H%&: CKKK<DBCB -7 110 *&3.$*(*&3.$*( NRNR -6 =EJ5>H%&: CKIF<DBCD /?T/?T +-*/*(.V -6 -5 */ -4 3.$*(3.$*( 100 -55 CKGG<CKIG =DB5>H%&:-3 3/-*(3/-*(+/3--4 +/3- -3 CKFB<CKGG =CG5>J%&: -2 U -2 ",-(+"%$ +(1'9 90 -4 Th !-$.*4-7*(3&- ..$*(RJC 7-."*CLP(5#'$&&'(/. Pb -14Bi #4$-/#(3-($3'5..7(/#.$8 (3/-*(.V 80 120 130140150 160 170 180 190 ith Z > 40% larger than that of Bi, the heaviest stable element, we see an impressive extension in nuclear survivability. Although SHN are at the limits of Coulomb stability, • shell stabilization lowers ground-state energy, • creates a fission barrier, • and thereby enables SHN to exist. The fundamentals of the modern theory concerning the mass limits of nuclear matter have obtained experimental verification '3!"%8-!",(2+5(-! 8 %"$-!()'"' (-!'(+?,(48 !,)(1+(1-&'51'4)-)+(%&,: &(' -!&9 • Where are the super heavy elements located in the Periodic Table? • Are they similar to their light homologues? • Where is the boundary of the Periodic Table and how many elements can it contain? Where are the super heavy elements located in the Periodic Table? Are they similar to their light homologues? Where is the boundary of the Periodic Table and how many elements can it contain? Decay modes and the half-lives of the isotopes with Z ≥ 110 ! available for chemical studies N=162 ! Symbols: open – ; decay filled – spontaneous fission "$!# #!"% SHE #!!!#!"! +"("%MC<CEJ C D %1%-"''('<+%.2",. "+<($))+(4"&.(' E F Sir G William H 86 Rn 1904 (&)%.('( 113 114 115 116 117 118FlFl Ramsay -!I<-!+(3 Nh Fl Ms Lv Ts Og 2004 Does element 118 look like a noble gas? P L A N T A N I D E S N Q A C T I N I D E S O R P J FLNR, JINR (Dubna) ORNL (Oak-Ridge, USA) Collaboration LLNL (Livermore, USA) ANL (Argonne, USA) GSI (Darmstadt, Germany) TAMU Cyclotron Institute (Texas, USA) GANIL (Caen, France) RIAR (Dimitrovgrad, Russia) Vanderbilt University (Nashville, USA) Knoxville University (Knoxville, USA) CDH PRESENT # Z CCJ 3+!+ FJ<-+.(' CCD CIB CIG CJB CJF * Search for superheavies What is the next step? Ti, Cr, Ni,Z Fe = 120 ?0 Still far from the “island of stability” !!! What is the next double magic Z = 114 superheavy nucleus? 184 “Inverse” quasifission can be used to produce new neutron-rich SHE FUTURE SHE Superheavy Elements (SHE) Factory – the Goals Experiments at the extremely low (σ<100 fb) cross sections: • Synthesis of new SHE in reactions with 50Ti, 54Cr ...(119, 120); • Shaping of the region of SHE (synthesis of new isotopes of SHE); • Study of decay properties of SHE; • Study of excitation functions.