<<

Passion for Science 2019

The discovery of new heavy elements

Mikhail ITKIS, Yuri OGANESSIAN

November 06-07, 2019 Bologna, Italy 1%+,,"('

10 :(!+ ::!%+ CKEK U 92 CKFB 5 ::%+(2

 UP 

0 CBCH5+,=4):>

Potential energy (MeV)Potential energy  MB CB

Nuclear deformation NCBB

::-+6!$ 3&-.#&&.( /#@'"$(3'-.A (1-EBBB'1%" +$'(3'-(5 208Pb

Z=82 126

100Sn Now let us consider the nuclei heavier than lead 50 56 82 Ni &(' -!& 40Ca 132Sn K'1%"+(1%5& " 28 50 20 78Ni “doubly magic” 8 28 nuclei 48 2 20 Ca 8 2 16O 4He The Nobel Prize in Physics 1975

:"'3-+

:(!+ : (0%,('

"for the discovery of the connection between collective motion a motion in atomic nuclei and the development of the theory of the of the based on this connection". !%%-"'-!'1%+ +(1',--,=&,,->

Nilsson, Thompson, and Tsang, 1969

Experiment 208Pb

Theory

Z=108 N=162 Z=114 N=184

Z=82 Sobiczewski A, Gareev F A and Kalinkin B N N=126 1966 Phys. Lett. 22, 500 10 1967 92U 5 Shell "*1"+()'+ 5 effect 16 0 10 Potential(MeV) energy

 *-'0*( Z=108

Macro-microscopic theory d d d (E )Tot = (E )LD + (E )Shell macro micro

: :-+1.',$"CKHI Uranium

ELD

      -2 -4

    -6 -8 EShell 0Isomeric state -2 -4 -6   -8     Ground state ELD + E shell      ?'*&)83%=#7.?4?OPEKSSQFRKL +.%)('-'(1, ",,"(' %< "2, SHE 20 Z=112 114 116 с 10 SF B.*(. LogT /  0 *" -10

МЖКLDM -20 0.70 0.75 0.80 0.85 0.90 0.95 Параметр -'/-*  делимости ..$&$/76 x & C&$4. -*.*+$/#*-7 LogT s -5NewNew landslands0 5 10 15 1/2 1μs 1s 1h d 1Myear Island of 120 StabilityIsland of Stability A limit of SHE

Shoal existence 110 shoal

-14 T1/2 ≤ 10 s

Proton number Peninsula 100 peninsula

Sea of Instability 90 Continentcontinent

80

70 100 110 120 130 140 150 160 170 180 190 number $./($6 EKSQLF

"* -/#

K7

(-3+/&? K. EKSQNF

K<. UKKN *"* /#+*(/(*3.$..$*( &  $4.E7-.F

3/-*((3'- 15-year long assault on the “Islands of Stability” 1970-1985

Los Alamos (USA) Berkeley (USA) Dubna (JINR) Oak Ridge (USA) Mainz (Germany) Darmstadt (Germany) Orsay (France) Würenlingen (Switzerland) Tokyo (Japan) some later The task of every laboratory was:

To find the method of producing

+!"''-1+9  +-!;%1'+(#-,8(,&"+5,8  +."%,5'-!,",9

   !" !< 14+-(+8    '1%+4)%(,"('8 )(3+1%%+-(+ To develop setups:

   ,)+-(+;--(+8    ,)-+(&-+,8    !&"%&-!(,8-: Unfortunately in all attempts super heavy elements were not found

The problem of artificial synthesis of SHE is related with reaction of synthesis Reactions of synthesis

Act.+48Ca

114 r island of

e

b Nh sstability of ssuperheavy m nuclei u Light

n

n

o

t

o shoal of r deformed p nuclei 108 target from N Th U“peninsula” 90 Pu WN NE W peninsula Pb SW continent 126142 146162 nneutroneutron number 184 Reaction channels in the collisions of heavy ions Double arm Time-of-Flight spectrometer CORSET

The study of binary channel of heavy--induced reactions (fusion-fission, quasifission and deep-inelastic processes).

Time resolution 150-180 ps ToF base 10-30 cm ToF arm rotation 15°-165° range Solid angle 100 -200 msr Angular resolution 0.3° resolution 2-4 u Cold fusion reactions

208 50 258 208 58 266 208 86 294 208 136 344 Pb + Ti → Rf Pb + Fe → Hs Pb + Kr → 118 Pb + Xe → 136 E /E = 1.03 E /E = 1.05 E /E = 1.09 E /E = 1.00 c.m. Bass c.m. Bass c.m. Bass c.m. Bass Z Z = 1804 Z Z = 2132 400 Z Z = 2952 500 Z Z = 4428 300 1 2 1 2 1 2 1 2

350 450 250

300 400 200 250 350 TKE (MeV) 150 200 300 50 100 150 200 50 100 150 200 50 100 150 200 100 150 200 Fragment mass (u) Hot fusion reactions 48 232 280 48 238 286 48 244 292 48 248 296 Ca + Th → Ds Ca + U → Cn Ca + Pu → Fl Ca + Cm → Lv E /E = 1.06 E /E = 1.02 E /E = 1.03 E /E = 1.00 c.m. Bass c.m. Bass c.m. Bass c.m. Bass Z Z = 1800 Z Z = 1840 Z Z = 1880 Z Z = 1920 300 1 2 1 2 1 2 1 2

250

200

TKE (MeV) 150

100 50 100 150 200 250 50 100 150 200 250 50 100 150 200 250 50 100 150 200 250 Fragment mass (u) Reaction of synthesis artificial element made in high flux nuclear reactor

n target

48 292288 from 244 to separator accelerator Ca Pu FlFl projectiles rare and very n n expensive of Ca fusion & cooling Isotope Isotope Facility Targets enrichment (%) 233U SM-3 99.97 238U -

237 48 Np SM-3 99.3 Ca -beam 242Pu SM-3 99.98 Energy: 244Pu HFIR 98.6 235-250 MeV 243Am SM-3 / HFIR 99.9 Intensity: 1.0-1.2 pμA 245Cm SM-3 / HFIR 98.7 248Cm HFIR 97.4 Consumption: 0.5 mg/h 249Bk HFIR 97.3

249Cf SM-3 / HFIR 97.3 BEAM

100,000 hours beam time of Ca-48

Heavy Ion Accelerator U-400

Joint Institute for Nuclear Research (Dubna, Ru TARGET have beenproduced in 250 daysirradiation at HFIR (ORNL 22 mgof

50 Ci 249 Bk ) Oak RidgeNationalLaboratory (US High FluxIsotopeReactor

Yu. OgOganessiananessian 20120100 A Experimental l technique ε=0.5 mm·mrad position sensitive strip detectors “veto”ΔE=0.5 detectors eV TOF-detectors Dubna side Gas detectors Filled SH Recoil recoils recoils Separator 48Ca-ions gas-filled detector chamber station

beam 48Ca

rotating entrance target window Decay chains CKKK<DBBB

48 248Cm + Ca O MCCH 0.06 s

48 244Pu + Ca OCCF 2.5 s 114

0.7 ms CCD 0.5 min

170 μs CCB 11s 184 3''-77+-*+-0.* /#C4($.*/*+.*.-4 $(DEJ8DFB8DFD8DFF18DFG8DFJ&(DFKTFJ-0*(.

DBCG Yu Ts Oganessian and V K Utyonkov, % Rep. Prog. Phys. 78 (2015) 036301 $ """ % "%&" % % %      $!# # # "  !" $ $! $" & ! $# ! $$ &# $% & $ %  #     %"   $  !     %%  %$  & & & % $$ $ ! $ $ & $ $!  !     $  ""  &# % %    & %!  & %% %$ %% ## & #% % "$% #  $ &%   & $"   #  !!  %# $#   # & # #! & ## &       #! %!   %  &!  "% &# # &$ #" " $!" $! $ "! & # "# &!    "! & &   ! Alpha - decay

TheoryTheory: I. Muntian, Z. Patyk, and A. Sobiczewski 12.0 Phys. At. Nucl. 66, (2003) Z-evenZ-even 118

11.0

116

10.0 114

108 9.0 112

106 110 energy (MeV) Exp:Exp. 8.0 Z-evenZ-even

7.0 260 270 280 29 0 300 Atomic Spontaneous fission even-even 16 Th. 14 N=152 N84=1 R. Smolańczuk, PR. C 56 (1997) 12 812 10  SHN N6=1 2 8 SF 6  Z=112

Log T (s) 4 2     0     -2    -4    -$0&  -6 8*( -8 145 150 155 160 165 170 175 180 185 3''-77+-*+-0.* /#$.*/*+.* &'(/.KKM=KKO=(KKQ *.-4$(DEI)=DFE&(DFK$TFJ-0*(. % % # # DBCB

A/Z Setup Laboratory Publications

283112 SHIP GSI Darmstadt Eur. Phys. J. A32, 251 (2007)

283112 COLD PSI-FLNR (JINR) 447, 72 (2007)

286, 287114 BGS LBNL (Berkeley) P.R. Lett. 103, 132502 (2009)

288, 289114 TASCA GSI – Mainz P.R. Lett. 104, 252701 (2010)

292, 293116 SHIP GSI Darmstadt Eur. Phys. J. A48, 62 (2012)

287, 288115 TASCA GSI – Mainz P.R. Lett. 111, 112502 (2013)

293, 294117 TASCA GSI – Mainz P.R. Lett. 112, 172501 (2014)

292, 293116 GARIS RIKEN Tokyo Accelerator Progress Rep. (2013)

Super heavy islanders and their daughter products are a large family of the 55 new neutron-rich isotopes with unique properties. $%##

$$+ 2015   $$)     %#+ %#, $$'         $$'

 -(# %  $$% α  α  & + $+



 α    & # $+ # $ $   # $,

α α α   $ * %$ # ),       



 α

  # '(  + % & (%     



 α α α   $% + # # '' $ * $*



   # '+ # %& # , α %#  



$ , $ ( ' & # ($ $ ( $ + () %*

$ ) ) %& , $% & #%$ *+ % $ $$

$(# $(' $() $(+ $)# $) $) $) $ $ $ $ $ $  $  $) $(% $)%   $  0*(.* 7(/#.$.0*(.* 7(/#.$. :("63,$"8 :(&(+,$"8GJ8DKD8DBBI 120  T#&&*--0*(.   =CB5>H%&: CKKK<DBCB -7

110 *& 3.$*(*& 3.$*( NRNR -6 =EJ5>H%&: CKIF<DBCD /?T/?T 

+-*/*(.V -6 -5 */ -4 3.$*( 3.$*( 100 -55 CKGG<CKIG =DB5>H%&:-3 3/-*(3/-*(+/3--4 +/3- -3 CKFB<CKGG =CG5>J%&: -2 U -2 ",-(+"%$ +(1'9 90 -4 Th !-$.*4-7* (3&- ..$*(RJC  7-."*CLP(5#'$&&'(/. Pb -14Bi #4$-/#(3-($3'5..7(/#.$8 (3/-*(.V  80 120 130140150 160 170 180 190 ith Z > 40% larger than that of Bi, the heaviest stable element, we see an impressive extension in nuclear survivability.

Although SHN are at the limits of Coulomb stability, • shell stabilization lowers ground-state energy, • creates a , • and thereby enables SHN to exist. . The fundamentals of the modern theory concerning the mass limits of nuclear have obtained experimental verification

'3!"%8-!",(2+5(-! 8 %"$-!()'"' (-!'(+?,(48 !,)(1+(1-&'51'4)-)+(%&,:  &(' -!&9   • Where are the super heavy elements located  in the ?

• Are they similar to their light homologues?

• Where is the boundary of the Periodic Table and how many elements can it contain? Where are the super heavy elements located in the Periodic Table?

Are they similar to their light homologues?

Where is the boundary of the Periodic Table and how many elements can it contain? Decay modes and the half-lives of the isotopes with Z ≥ 110     ! available for  chemical studies       N=162   ! 

          



  Symbols: open – ; decay  filled – spontaneous fission                    "$!#        #!"%

SHE #!!!#!"!

    +"("%MC

D %1%-"''('<+%.2",. "+<($))+(4"&.(' E

F Sir G William H 86 Rn 1904 (&)%.('( 113 114 115 116 117 118FFll Ramsay -!I<-!+(3 Nh Fl Ms Lv Ts Og 2004

Does element 118 look like a  noble gas? P  L A N T A N I D E S N   Q A C T I N I D E S O  R P 

J FLNR, JINR (Dubna) ORNL (Oak-Ridge, USA) Collaboration LLNL (Livermore, USA) ANL (Argonne, USA) GSI (Darmstadt, Germany) TAMU Institute (Texas, USA) GANIL (Caen, France) RIAR (Dimitrovgrad, Russia) Vanderbilt University (Nashville, USA) Knoxville University (Knoxville, USA)

CDH PRESENT #  

Z

CCJ 3+!+ FJ<-+.('

CCD CIB CIG CJB CJF  * Search for superheavies What is the next step? Ti, Cr, Ni,Z Fe = 120 ?0

Still far from the “” !!!

What is the next double magic Z = 114

superheavy nucleus? 184

“Inverse” quasifission can be used to produce new neutron-rich SHE FUTURE

SHE Superheavy Elements (SHE) Factory – the Goals

 Experiments at the extremely low (σ<100 fb) cross sections: • Synthesis of new SHE in reactions with 50Ti, 54Cr ...(119, 120); • Shaping of the region of SHE (synthesis of new isotopes of SHE); • Study of decay properties of SHE; • Study of excitation functions.

 Experiments requiring high statistics: • Nuclear spectroscopy of SHE; • Precise mass measurements; • Study of chemical properties of SHE.  <-(+5 #("'"' ((+-,

.*/*++-*30*(> 'CLNR %CLNS  CLOK 5&-/*- C-*$&.+-/*- $"#' ,3$++5$/# ./#- To be increased *.* >CNR 10 times (C&$(.+-/*- $COJ Factor 10-20 G.*+#$.0/ $CPN //*-. Depend of target durability Factor 3-5

is closely linked to the intellect March 2012, Dubna 1 August 2017, Dubna

SHE-Factory 1)+ 25%&'-,= >-(+5

 -(+51"%"' 

High-current cyclotron DC-280

New gas-filled separator (&&",,"('"' (-!1)+!25%&'-,-(+5



SHE Factory building

Gas-Filled Recoil Separator 4646 Day-one experiments at SHE Factory

Test experiments I:

Test of functionalities of all the systems of the accelerator and gas-filled separator 40Ar+natDy and 18O+208Pb

Test experiments II: 48Ca+242Pu and 48Ca+243Am 1. Enough material to prepare “big” targets 2. Well-studied in previous experiments 3. Relatively large cross sections

48Ca+242Pu ExistingExisting exexperimentalperimental 48Ca+243AmAm ddataata "+,-4)+"&'-,- -(+5 5'-!,",('3%&'-CCK

249Bk(50Ti,3-4n)295,296119 Descendants 287,288Mc, 282-294Nh are known

2 s=50 fb, ht=0.3 mg/cm , εcoll=0.6, Ibeam=3 pmA → ≈1 event per month "+,-4)+"&'-,- -(+5 5'-!,",('3%&'-CDB

249Cf(50Ti,3-4n)295,296120 251Cf(50Ti,3-4n)297,298120 248Cm(54Cr,3-4n)298,299120 Descendants 294Og, 290,291Lv, 284–286Fl are known

2 s=50 fb, ht=0.3 mg/cm , εcoll=0.6, Ibeam=3 pmA → ≈1 event per month 3($*04 *('&-/*-*- *'+&6E .F

DC-280 U-400 U-400M 51

       

Thank You!

First experiment

Production of the isotope 288Mc (Z=115) in reaction:

243Am + 48Ca.

243 Am – target 30-50 mg 48 Са – beam intensity 5 pµA. Beam time 50 days

April 2019 Demonstration experiment 290 289  Mc   286 285   Nh   Rare reaction 281   Rg  channels Rare decays leading to SHE  289   Mt  EC  SF  289   Bh   289   Db    Super-symmetric spontaneous fission Mass Distribution of the Fission Fragments    

ULQQ   ULNR   UKSQ    UKPR   "   # 

                

Second experiment

Production of the isotope 287Fl (Z=114) in reaction:

242Pu + 48Ca.

242 Pu – target 30-50 mg 48 Са – beam intensity 5 pµA. Beam time 50 days

July 2019

Yuri Oganessian “Heaviest Nuclei”, ENPC-2018, Sep. 02-07, 2018, Bologna, Italy Eka-Mercury and Eka-Lead (relativistic effect) with ~ 500 events of the 283Cn and ~100 events of 287Fl we would like to have a temperature distribution of the [Cn·Au] and [Fl·Au] compounds

 ' temperature July 2019 gradient

4): DBBI

;+ ,#-O B L , CBB 0

Neutron Capture 2'+/./*.7(/#.$8.3+-#47&'(/. 7/#3.* (3&-6+&*.$*(EO2'+/.* OOJ/./.F

-"/>LMR &3(>K?LDKJLO(B'L    *.&'*.= 7O=KSPP

Exp. Calc. 3'-* /*'.

LSRKKN exp.

..(3'- Cold Fusion

Cold fusion: -6 10 208Pb, 209Bi + 48Ca, 54Cr,.... 70Zn 48Ca

-8 10 50Ti 54Cr

-10 10 Cross sections Cross sections (barns) 58 Fe 64Ni exp. -12 10 62Ni

70Zn -14 10

102 104 106 108 110 112 114 116 118 120 U + U  DEJ &  DFJ& DEJ<)+(#.%, U + Cm " 

$ Z=94 98   99 96   100  98    99 101

100 %$

      

 " exp.    $    ! " # $ %         120 119 Og Ts 2010 Lv Z Mc 298Fl Fl Nh Cn a 110 270Hs 110

252 Fm Island of SHE 100

238U 140 90 140 150 160 170 N 180 190      "$!#        #!"%

119

    FLNR + GSI + LBNL Juhee Hong, G. G. Adamian, and N. V. Antonenko PRC

    $ #       

 0     248 48 101 0 Cm+ Ca

         

!      ! "

  

 1y p,2n  48Ca fusion 1d 1h     3n 1s 48Ca fusion 

1n 1ms cold fusion  1µs