CHAPTER 2 the Nucleus and Radioactive Decay

Total Page:16

File Type:pdf, Size:1020Kb

CHAPTER 2 the Nucleus and Radioactive Decay 1 CHEMISTRY OF THE EARTH CHAPTER 2 The nucleus and radioactive decay 2.1 The atom and its nucleus An atom is characterized by the total positive charge in its nucleus and the atom’s mass. The positive charge in the nucleus is Ze , where Z is the total number of protons in the nucleus and e is the charge of one proton. The number of protons in an atom, Z, is known as the atomic number and dictates which element an atom represents. The nucleus is also made up of N number of neutrally charged particles of similar mass as the protons. These are called neutrons . The combined number of protons and neutrons, Z+N , is called the atomic mass number A. A specific nuclear species, or nuclide , is denoted by A Z Γ 2.1 where Γ represents the element’s symbol. The subscript Z is often dropped because it is redundant if the element’s symbol is also used. We will soon learn that a mole of protons and a mole of neutrons each have a mass of approximately 1 g, and therefore, the mass of a mole of Z+N should be very close to an integer 1. However, if we look at a periodic table, we will notice that an element’s atomic weight, which is the mass of one mole of its atoms, is rarely close to an integer. For example, Iridium’s atomic weight is 192.22 g/mole. The reason for this discrepancy is that an element’s neutron number N can vary. Nuclides with different neutron numbers but the same atomic number Z are called 191 193 isotopes . Thus, Iridium has two isotopes, 77 Ir and 77 Ir , which are characterized respectively by 114 neutrons and 116 neutrons; a mole of the former weighs 190.960580 g and the latter weighs 192.962917 g. In naturally occurring Iridium, 37.3% of the atoms are 191 Ir and the remaining atoms are 193 Ir. The atomic weights reported in the periodic table represent the average masses of each element. 2.2 The mass of an atom How is the mass of an atom determined? One way to determine the mass of an atom is to use a mass spectrometer. Figure 1 shows schematically how one type of mass spectrometer works. The mass spectrometer begins with an ion source, which produces a beam of ionized atoms or molecules (in Chapter 4, we will discuss the different types of ion sources). This beam of ions passes through a velocity sector, through which only ions with a particular velocity are sampled. The velocity sector makes use of an electric (E) and a magnetic field ( B). The E and B fields are oriented such that the electric and magnetic forces on the ions are equal and opposite, that is, qE = -qv×B 2.2 where q is the charge of the ion. Thus, only ions having a velocity equal to E/B are permitted to continue on their flight paths as ions with any other velocity would be deflected to the walls of the mass spectrometer. Once ions have been selected for their velocities, they enter a magnetic sector, where the magnetic field is uniform and perpendicular to the path of the ions. The magnetic field exerts a force qv×B acting 1 The mass of a proton is approximately 2000 times that of an electron, so electrons contribute only a small part to the mass of an atom. Cin-Ty Lee 2 CHEMISTRY OF THE EARTH rs cto lle co E B B Ion source Velocity Sector Magnetic Sector Modified from Krane 1988 Figure 1. One type of mass spectrometer used for separating isotopes. perpendicular to the ion flight path. This force is balanced by the centripetal force mv 2/r , that is, mv 2/r = qv×B 2.3 where r is the radius of curvature of the ion flight path. Upon rearranging, Eq. 2.3 can be expressed in terms of r r = mv/qB 2.4 It can be seen from Eq. 2.4, that a magnetic sector separates ions based on their momentum mv . However, as q, B, and v are uniquely determined, each different mass appears at a different radius r. If we know the magnitude of the electric and magnetic fields precisely, then obtaining the mass of an atom is trivial. To be useful, the precision of our mass determinations must be on the order of one part in 10 6. Unfortunately, it is not possible to know the magnitude of the electric and magnetic fields to this precision. We can, however, measure relative mass differences very precisely by keeping the electric and magnetic fields constant and measuring the difference in radii of curvature, which we can do more precisely. By convention, the 12 C atom is taken to be exactly 12.000000 units on the atomic mass scale, against which all other masses are calibrated. The masses of other isotopes are determined using the “doublet” approach, which is best explained through an example. If we set up the mass + + spectrometer to collect the molecular ions, C 9H20 (nonane) and C 10 H8 (naphthalene), the difference ∆ in mass units on this scale is 0.09290032±0.00000012 units 2 1 12 ∆ = m(C9 H 20 ) − m(C10 H 8 ) =12 m( H ) − m( C) 2.5 where m(C 9H20 ) is the mass of C 9H20 and so forth. It follows that the mass of Hydrogen, 1H, is given by 2 We neglect molecular binding energies, which are negligible for this treatment. Cin-Ty Lee 3 CHEMISTRY OF THE EARTH 1 m(1H ) = [m(12 C) + ∆] 12 1 = .1 00000000 + ∆ 2.6 12 = .1 00782503 u Using this approach, we can work through the periodic table and obtain the mass of each isotope of interest. We can also determine the masses of isotopes and elementary particles by considering the energies of particles in nuclear reactions by assuming energy and mass are interchangeable ( E=mc 2, where E is energy, m is mass, and c is the speed of light). Regardless of the approach, all masses are calibrated against 12 C. On such a scale the proton is 1.00727647 u, the electron is 0.0005485803 u, and the neutron is 1.00866501 u. One mass unit is defined to be 1.660566×10 -24 g, such that one mole or 6.022045×10 23 atoms (Avogadro’s number) of 12 C weighs exactly 12.000000 g. Nuclide masses are often tabulated in terms of mass defects ( ∆=m - A), which denotes the difference between the actual mass m and the atomic mass number A (Appendix Table 1). Once nuclide weights are known, the atomic weight of an element can be determined by measuring an element’s relative abundances. The atomic weight AW of an element is simply the weighted average of each nuclide AW = ∑ X i mi 2.7 where Xi is the atomic proportion of nuclide i and its mass mi. For most naturally occurring elements, the relative nuclide abundances are constant and their numbers have now been tabulated for convenience. As we will learn later, there are two situations when isotopic abundances in nature vary. For example, isotopic abundances can be fractionated by certain physical processes in nature or in the lab. Another situation occurs when a nuclide is radioactive or is the product of the decay of a radioactive nuclide. Both of these processes yield a variable atomic weight. For example, Pb has 4 naturally occurring isotopes 204 Pb, 206 Pb, 207 Pb, and 208 Pb. The latter three are decay products of 238 U, 235U, and 232 Th, and therefore the relative abundances of the Pb isotopes depends on how much radiogenic Pb has accumulated from U and Th. The non- constancy of the atomic weight of lead was recognized very early on and was one line of evidence suggesting that elements are made up of different isotopes. 2.3 Binding energies and mass defects The astute reader might wonder now that if we know the masses of each elementary particle (proton, neutron, and electron), then it seems trivial to calculate the masses of all the nuclides as long as we know how many protons, neutrons and electrons are in a particular nuclide. In fact, the mass of a nuclide determined by the “doublet method” discussed above is slightly smaller than the combined masses of the constituent elementary particles. We can use the case of 191 Ir as an example. Iridium-191 is made up of 77 protons, 77 electrons and 114 neutrons. Therefore, the combined mass of the elementary particles is given by Cin-Ty Lee 4 CHEMISTRY OF THE EARTH M = Zm p + Zm e + Nm n = 77 .1( 00727647 ) + 77 .0( 0005485803 ) +114 .1( 00866501 ) 2.8 =192 .590340 u (where mp, m e, and mn refer to the masses of a proton, electron and neutron). The true mass of 191 Ir (e.g., m( A Γ) ) is actually 190.960584 u, which is 1.62976 u lower than the combined mass of the elementary particles. The reason for this decrease in mass is that the fusion of these elementary particles into the nucleus is energetically favorable, that is, energy is released when protons and neutrons come together. As energy is equivalent to mass according to the well-known equation E = mc 2 2.9 where E is the energy, m is the mass, and c is the speed of light, the decrease in energy is equivalent to a decrease in mass. The unit conversion between mass and energy is c2=931.50 MeV/u .
Recommended publications
  • The R-Process Nucleosynthesis and Related Challenges
    EPJ Web of Conferences 165, 01025 (2017) DOI: 10.1051/epjconf/201716501025 NPA8 2017 The r-process nucleosynthesis and related challenges Stephane Goriely1,, Andreas Bauswein2, Hans-Thomas Janka3, Oliver Just4, and Else Pllumbi3 1Institut d’Astronomie et d’Astrophysique, Université Libre de Bruxelles, CP 226, 1050 Brussels, Belgium 2Heidelberger Institut fr¨ Theoretische Studien, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany 3Max-Planck-Institut für Astrophysik, Postfach 1317, 85741 Garching, Germany 4Astrophysical Big Bang Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan Abstract. The rapid neutron-capture process, or r-process, is known to be of fundamental importance for explaining the origin of approximately half of the A > 60 stable nuclei observed in nature. Recently, special attention has been paid to neutron star (NS) mergers following the confirmation by hydrodynamic simulations that a non-negligible amount of matter can be ejected and by nucleosynthesis calculations combined with the predicted astrophysical event rate that such a site can account for the majority of r-material in our Galaxy. We show here that the combined contribution of both the dynamical (prompt) ejecta expelled during binary NS or NS-black hole (BH) mergers and the neutrino and viscously driven outflows generated during the post-merger remnant evolution of relic BH-torus systems can lead to the production of r-process elements from mass number A > 90 up to actinides. The corresponding abundance distribution is found to reproduce the∼ solar distribution extremely well. It can also account for the elemental distributions observed in low-metallicity stars. However, major uncertainties still affect our under- standing of the composition of the ejected matter.
    [Show full text]
  • Photofission Cross Sections of 238U and 235U from 5.0 Mev to 8.0 Mev Robert Andrew Anderl Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1972 Photofission cross sections of 238U and 235U from 5.0 MeV to 8.0 MeV Robert Andrew Anderl Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Nuclear Commons, and the Oil, Gas, and Energy Commons Recommended Citation Anderl, Robert Andrew, "Photofission cross sections of 238U and 235U from 5.0 MeV to 8.0 MeV " (1972). Retrospective Theses and Dissertations. 4715. https://lib.dr.iastate.edu/rtd/4715 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This dissertation was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction, 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity, 2.
    [Show full text]
  • Compilation and Evaluation of Fission Yield Nuclear Data Iaea, Vienna, 2000 Iaea-Tecdoc-1168 Issn 1011–4289
    IAEA-TECDOC-1168 Compilation and evaluation of fission yield nuclear data Final report of a co-ordinated research project 1991–1996 December 2000 The originating Section of this publication in the IAEA was: Nuclear Data Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria COMPILATION AND EVALUATION OF FISSION YIELD NUCLEAR DATA IAEA, VIENNA, 2000 IAEA-TECDOC-1168 ISSN 1011–4289 © IAEA, 2000 Printed by the IAEA in Austria December 2000 FOREWORD Fission product yields are required at several stages of the nuclear fuel cycle and are therefore included in all large international data files for reactor calculations and related applications. Such files are maintained and disseminated by the Nuclear Data Section of the IAEA as a member of an international data centres network. Users of these data are from the fields of reactor design and operation, waste management and nuclear materials safeguards, all of which are essential parts of the IAEA programme. In the 1980s, the number of measured fission yields increased so drastically that the manpower available for evaluating them to meet specific user needs was insufficient. To cope with this task, it was concluded in several meetings on fission product nuclear data, some of them convened by the IAEA, that international co-operation was required, and an IAEA co-ordinated research project (CRP) was recommended. This recommendation was endorsed by the International Nuclear Data Committee, an advisory body for the nuclear data programme of the IAEA. As a consequence, the CRP on the Compilation and Evaluation of Fission Yield Nuclear Data was initiated in 1991, after its scope, objectives and tasks had been defined by a preparatory meeting.
    [Show full text]
  • 1 Lecture Notes in Nuclear Structure Physics B. Alex Brown November
    1 Lecture Notes in Nuclear Structure Physics B. Alex Brown November 2005 National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy Michigan State University, E. Lansing, MI 48824 CONTENTS 2 Contents 1 Nuclear masses 6 1.1 Masses and binding energies . 6 1.2 Q valuesandseparationenergies . 10 1.3 Theliquid-dropmodel .......................... 18 2 Rms charge radii 25 3 Charge densities and form factors 31 4 Overview of nuclear decays 40 4.1 Decaywidthsandlifetimes. 41 4.2 Alphaandclusterdecay ......................... 42 4.3 Betadecay................................. 51 4.3.1 BetadecayQvalues ....................... 52 4.3.2 Allowedbetadecay ........................ 53 4.3.3 Phase-space for allowed beta decay . 57 4.3.4 Weak-interaction coupling constants . 59 4.3.5 Doublebetadecay ........................ 59 4.4 Gammadecay............................... 61 4.4.1 Reduced transition probabilities for gamma decay . .... 62 4.4.2 Weisskopf units for gamma decay . 65 5 The Fermi gas model 68 6 Overview of the nuclear shell model 71 7 The one-body potential 77 7.1 Generalproperties ............................ 77 7.2 Theharmonic-oscillatorpotential . ... 79 7.3 Separation of intrinsic and center-of-mass motion . ....... 81 7.3.1 Thekineticenergy ........................ 81 7.3.2 Theharmonic-oscillator . 83 8 The Woods-Saxon potential 87 8.1 Generalform ............................... 87 8.2 Computer program for the Woods-Saxon potential . .... 91 8.2.1 Exampleforboundstates . 92 8.2.2 Changingthepotentialparameters . 93 8.2.3 Widthofanunboundstateresonance . 94 8.2.4 Width of an unbound state resonance at a fixed energy . 95 9 The general many-body problem for fermions 97 CONTENTS 3 10 Conserved quantum numbers 101 10.1 Angularmomentum. 101 10.2Parity ..................................
    [Show full text]
  • Radioactive Decay
    North Berwick High School Department of Physics Higher Physics Unit 2 Particles and Waves Section 3 Fission and Fusion Section 3 Fission and Fusion Note Making Make a dictionary with the meanings of any new words. Einstein and nuclear energy 1. Write down Einstein’s famous equation along with units. 2. Explain the importance of this equation and its relevance to nuclear power. A basic model of the atom 1. Copy the components of the atom diagram and state the meanings of A and Z. 2. Copy the table on page 5 and state the difference between elements and isotopes. Radioactive decay 1. Explain what is meant by radioactive decay and copy the summary table for the three types of nuclear radiation. 2. Describe an alpha particle, including the reason for its short range and copy the panel showing Plutonium decay. 3. Describe a beta particle, including its range and copy the panel showing Tritium decay. 4. Describe a gamma ray, including its range. Fission: spontaneous decay and nuclear bombardment 1. Describe the differences between the two methods of decay and copy the equation on page 10. Nuclear fission and E = mc2 1. Explain what is meant by the terms ‘mass difference’ and ‘chain reaction’. 2. Copy the example showing the energy released during a fission reaction. 3. Briefly describe controlled fission in a nuclear reactor. Nuclear fusion: energy of the future? 1. Explain why nuclear fusion might be a preferred source of energy in the future. 2. Describe some of the difficulties associated with maintaining a controlled fusion reaction.
    [Show full text]
  • Arxiv:1901.01410V3 [Astro-Ph.HE] 1 Feb 2021 Mental Information Is Available, and One Has to Rely Strongly on Theoretical Predictions for Nuclear Properties
    Origin of the heaviest elements: The rapid neutron-capture process John J. Cowan∗ HLD Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019, USA Christopher Snedeny Department of Astronomy, University of Texas, 2515 Speedway, Austin, TX 78712-1205, USA James E. Lawlerz Physics Department, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706-1390, USA Ani Aprahamianx and Michael Wiescher{ Department of Physics and Joint Institute for Nuclear Astrophysics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556, USA Karlheinz Langanke∗∗ GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany and Institut f¨urKernphysik (Theoriezentrum), Fachbereich Physik, Technische Universit¨atDarmstadt, Schlossgartenstraße 2, 64298 Darmstadt, Germany Gabriel Mart´ınez-Pinedoyy GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany; Institut f¨urKernphysik (Theoriezentrum), Fachbereich Physik, Technische Universit¨atDarmstadt, Schlossgartenstraße 2, 64298 Darmstadt, Germany; and Helmholtz Forschungsakademie Hessen f¨urFAIR, GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany Friedrich-Karl Thielemannzz Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland and GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany (Dated: February 2, 2021) The production of about half of the heavy elements found in nature is assigned to a spe- cific astrophysical nucleosynthesis process: the rapid neutron capture process (r-process). Although this idea has been postulated more than six decades ago, the full understand- ing faces two types of uncertainties/open questions: (a) The nucleosynthesis path in the nuclear chart runs close to the neutron-drip line, where presently only limited experi- arXiv:1901.01410v3 [astro-ph.HE] 1 Feb 2021 mental information is available, and one has to rely strongly on theoretical predictions for nuclear properties.
    [Show full text]
  • Two-Proton Radioactivity 2
    Two-proton radioactivity Bertram Blank ‡ and Marek P loszajczak † ‡ Centre d’Etudes Nucl´eaires de Bordeaux-Gradignan - Universit´eBordeaux I - CNRS/IN2P3, Chemin du Solarium, B.P. 120, 33175 Gradignan Cedex, France † Grand Acc´el´erateur National d’Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, BP 55027, 14076 Caen Cedex 05, France Abstract. In the first part of this review, experimental results which lead to the discovery of two-proton radioactivity are examined. Beyond two-proton emission from nuclear ground states, we also discuss experimental studies of two-proton emission from excited states populated either by nuclear β decay or by inelastic reactions. In the second part, we review the modern theory of two-proton radioactivity. An outlook to future experimental studies and theoretical developments will conclude this review. PACS numbers: 23.50.+z, 21.10.Tg, 21.60.-n, 24.10.-i Submitted to: Rep. Prog. Phys. Version: 17 December 2013 arXiv:0709.3797v2 [nucl-ex] 23 Apr 2008 Two-proton radioactivity 2 1. Introduction Atomic nuclei are made of two distinct particles, the protons and the neutrons. These nucleons constitute more than 99.95% of the mass of an atom. In order to form a stable atomic nucleus, a subtle equilibrium between the number of protons and neutrons has to be respected. This condition is fulfilled for 259 different combinations of protons and neutrons. These nuclei can be found on Earth. In addition, 26 nuclei form a quasi stable configuration, i.e. they decay with a half-life comparable or longer than the age of the Earth and are therefore still present on Earth.
    [Show full text]
  • 2.3 Neutrino-Less Double Electron Capture - Potential Tool to Determine the Majorana Neutrino Mass by Z.Sujkowski, S Wycech
    DEPARTMENT OF NUCLEAR SPECTROSCOPY AND TECHNIQUE 39 The above conservatively large systematic hypothesis. TIle quoted uncertainties will be soon uncertainty reflects the fact that we did not finish reduced as our analysis progresses. evaluating the corrections fully in the current analysis We are simultaneously recording a large set of at the time of this writing, a situation that will soon radiative decay events for the processes t e'v y change. This result is to be compared with 1he and pi-+eN v y. The former will be used to extract previous most accurate measurement of McFarlane the ratio FA/Fv of the axial and vector form factors, a et al. (Phys. Rev. D 1984): quantity of great and longstanding interest to low BR = (1.026 ± 0.039)'1 I 0 energy effective QCD theory. Both processes are as well as with the Standard Model (SM) furthermore very sensitive to non- (V-A) admixtures in prediction (Particle Data Group - PDG 2000): the electroweak lagLangian, and thus can reveal BR = (I 038 - 1.041 )*1 0-s (90%C.L.) information on physics beyond the SM. We are currently analyzing these data and expect results soon. (1.005 - 1.008)* 1W') - excl. rad. corr. Tale 1 We see that even working result strongly confirms Current P1IBETA event sxpelilnentstatistics, compared with the the validity of the radiative corrections. Another world data set. interesting comparison is with the prediction based on Decay PIBETA World data set the most accurate evaluation of the CKM matrix n >60k 1.77k element V d based on the CVC hypothesis and ihce >60 1.77_ _ _ results
    [Show full text]
  • 14. Structure of Nuclei Particle and Nuclear Physics
    14. Structure of Nuclei Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 14. Structure of Nuclei 1 In this section... Magic Numbers The Nuclear Shell Model Excited States Dr. Tina Potter 14. Structure of Nuclei 2 Magic Numbers Magic Numbers = 2; 8; 20; 28; 50; 82; 126... Nuclei with a magic number of Z and/or N are particularly stable, e.g. Binding energy per nucleon is large for magic numbers Doubly magic nuclei are especially stable. Dr. Tina Potter 14. Structure of Nuclei 3 Magic Numbers Other notable behaviour includes Greater abundance of isotopes and isotones for magic numbers e.g. Z = 20 has6 stable isotopes (average=2) Z = 50 has 10 stable isotopes (average=4) Odd A nuclei have small quadrupole moments when magic First excited states for magic nuclei higher than neighbours Large energy release in α, β decay when the daughter nucleus is magic Spontaneous neutron emitters have N = magic + 1 Nuclear radius shows only small change with Z, N at magic numbers. etc... etc... Dr. Tina Potter 14. Structure of Nuclei 4 Magic Numbers Analogy with atomic behaviour as electron shells fill. Atomic case - reminder Electrons move independently in central potential V (r) ∼ 1=r (Coulomb field of nucleus). Shells filled progressively according to Pauli exclusion principle. Chemical properties of an atom defined by valence (unpaired) electrons. Energy levels can be obtained (to first order) by solving Schr¨odinger equation for central potential. 1 E = n = principle quantum number n n2 Shell closure gives noble gas atoms. Are magic nuclei analogous to the noble gas atoms? Dr.
    [Show full text]
  • Mass Defect & Binding Energy
    Sem-3 CC7 Nuclear Physics Mass Defect & Binding Energy According to nuclear particle experiments, the total mass of a nucleus (mnuc) is less than the sum of the masses of its constituent nucleons (protons and neutrons). For a nucleus with Z protons and mass number A, the mass difference or mass defect is given by Δm= Zmp + (A−Z)mn − mnuc where Zmp is the total mass of the protons, (A−Z)mn is the total mass of the neutrons, and mnuc is the mass of the nucleus. According to Einstein’s special theory of relativity, mass is a measure of the total energy of a system (E=mc2). The energy equivalent to mass defect is alled the binding energy B of the nucleus. Thus 2 B= [Zmp + (A−Z)mn − mnuc] c The binding energy is equal to the amount of energy released in forming the nucleus. Example 1. Calculate the mass defect and the binding energy of the deuteron. The mass of the −27 deuteron is mD=3.34359×10 kg or 2.014102u. Solution For the deuteron Z=1 and A=2. The mass defect for the deuteron is Δm=mp+mn−mD=1.008665 u+ 1.007825 u- 2.014102u = 0.002388u The binding energy of the deuteron is then B= Δm c2= Δm ×931.5 MeV/u=2.224MeV. Over two million electron volts are needed to break apart a deuteron into a proton and a neutron. This very large value indicates the great strength of the nuclear force. By comparison, the greatest amount of energy required to liberate an electron bound to a hydrogen atom by an attractive Coulomb force (an electromagnetic force) is about 10 eV.
    [Show full text]
  • Problem Set 3 Solutions
    22.01 Fall 2016, Problem Set 3 Solutions October 9, 2016 Complete all the assigned problems, and do make sure to show your intermediate work. 1 Activity and Half Lives 1. Given the half lives and modern-day abundances of the three natural isotopes of uranium, calculate the isotopic fractions of uranium when the Earth first formed 4.5 billion years ago. Today, uranium consists of 0.72% 235U, 99.2745% 238U, and 0.0055% 234U. However, it is clear that the half life of 234U (245,500 years) is so short compared to the lifetime of the Earth (4,500,000,000 years) that it would have all decayed away had there been some during the birth of the Earth. Therefore, we look a little closer, and find that 234U is an indirect decay product of 238U, by tracing it back from its parent nuclides on the KAERI table: α β− β− 238U −! 234T h −! 234P a −! 234U (1) Therefore we won’t consider there being any more 234U than would normally be in equi­ librium with the 238U around at the time. We set up the two remaining equations as follows: −t t ;235 −t t ;238 = 1=2 = 1=2 N235 = N0235 e N238 = N0238 e (2) Using the current isotopic abundances from above as N235 and N238 , the half lives from n 9 t 1 1 the KAERI Table of Nuclides t =2;235 = 703800000 y; t =2;238 = 4:468 · 10 y , and the lifetime of the earth in years (keeping everything in the same units), we arrive at the following expressions for N0235 and N0238 : N235 0:0072 N238 0:992745 N0235 =−t = 9 = 4:307N0238 =−t = 9 = 2:718 (3) =t1 ;235 −4:5·10 =7:038·108 =t1 ;238 −4:5·10 =4:468·109 e =2 e e =2 e Finally, taking the ratios of these two relative abundances gives us absolute abundances: 4:307 2:718 f235 = = 0:613 f238 = = 0:387 (4) 4:307 + 2:718 4:307 + 2:718 235U was 61.3% abundant, and 238U was 38.7% abundant.
    [Show full text]
  • Iron-57 of Its Isotopes and Has an Sum of Protons + Neutrons 26 Fe Average Mass As Determined by a in the Nucleus
    Elements - elements are pure homogeneous forms of matter Solid Liquid Gas Plamsa •constant volume & shape •constant volume but takes •varaible shape and volume •like a gas except it •very low compressibility on the shape of container that fills the container is composed of ions; •particles vibrate in place •low compressibility •high compressibility an ion is charged •highly ordered arrangement •random particle movement •complete freedom of motion atom or group of •do not flow or diffuse •moderate disorder •extreme disorder atoms. •strongest attractive forces •can flow and diffuse •flow and diffuse easily •examples: between particles •weaker attractive forces •weakest attractive forces - flames •generally more dense than •more dense than gases •least dense state - atmosphere of stars liquids •exert a pressure easily - a comet's tail Matter NO YES Pure Substance Can it be separated Mixture by physical means? Can it be decomposed by Is the mixture composition ordinary chemical means? identical throughout; uniform? NO YES YES NO element compound homogeneous heterogenous mixture mixture Co,Fe,S,H,O,C FeS, H2O, H2SO4 steel, air, blood, steam, wet iron, solution of sulfuric acid Cannot be separated Can be decomposed and rust on steel chemcially into simple chemcially separated Uniform appearance, Appearance, composition, substances into simple substances. composition and and properties are variable properties throughout in different parts of the sample Isotopes Is a mass number attached to the element? NO YES All atoms of the same element are not exactly alike mass number attached mass number equals the 57 The element is as a mixture also can be written as iron-57 of its isotopes and has an sum of protons + neutrons 26 Fe average mass as determined by a in the nucleus.
    [Show full text]