The Western Ringtail Possum (Pseudocheirus Occidentalis)

Total Page:16

File Type:pdf, Size:1020Kb

The Western Ringtail Possum (Pseudocheirus Occidentalis) A major road and an artificial waterway are barriers to the rapidly declining western ringtail possum, Pseudocheirus occidentalis Kaori Yokochi BSc. (Hons.) This thesis is presented for the degree of Doctor of Philosophy of The University of Western Australia School of Animal Biology Faculty of Science October 2015 Abstract Roads are known to pose negative impacts on wildlife by causing direct mortality, habitat destruction and habitat fragmentation. Other kinds of artificial linear structures, such as railways, powerline corridors and artificial waterways, have the potential to cause similar negative impacts. However, their impacts have been rarely studied, especially on arboreal species even though these animals are thought to be highly vulnerable to the effects of habitat fragmentation due to their fidelity to canopies. In this thesis, I studied the effects of a major road and an artificial waterway on movements and genetics of an endangered arboreal species, the western ringtail possum (Pseudocheirus occidentalis). Despite their endangered status and recent dramatic decline, not a lot is known about this species mainly because of the difficulties in capturing them. Using a specially designed dart gun, I captured and radio tracked possums over three consecutive years to study their movement and survival along Caves Road and an artificial waterway near Busselton, Western Australia. I studied the home ranges, dispersal pattern, genetic diversity and survival, and performed population viability analyses on a population with one of the highest known densities of P. occidentalis. I also carried out simulations to investigate the consequences of removing the main causes of mortality in radio collared adults, fox predation and road mortality, in order to identify effective management options. A rope bridge was built to provide this species with a safe passage across Caves Road in July 2013, and I present the results from 270 days of monitoring of the rope bridge and factors influencing the numbers of crossings. No radio collared possums crossed the road successfully during my study, while two were killed on the road. No collared possums crossed the waterway, except for one accidentally falling into the waterway during a severe storm. None of the home ranges included the road or waterway, suggesting that they both act as physical barriers for possums. Even a 5 m wide firebreak was enough to limit the movements of some possums where canopy connection was not available. Individuals in partially cleared campsites mostly remained within groups of trees with continuous canopy connections. Home ranges were small (males: 0.31 ± 0.044 ha, females: 0.16 ± 0.017 ha), and their sizes were affected by sex and proximity to the waterway. These results highlight the exceptionally sedentary and arboreal nature of this species. i I used 12 species-specific microsatellite DNA loci to investigate the fine-scale spatial genetic structure and the effects of a road and an artificial waterway on the population of P. occidentalis. Spatial autocorrelation analyses identified positive genetic structure over distances up to 600 m in continuous habitat. The artificial waterway was associated with significant genetic divergence, while no significant genetic divergence was detected across the road. However, this increasingly busy road may cause future divergence, and road mortality can still contribute to loss of genetic diversity. Therefore, providing safe passages to reconnect habitat is suggested to maximise genetic diversity and prevent isolation of subpopulations. Predation by red foxes (Vulpes vulpes) was the most common cause of mortality in adult radio collared possums contributing to 70 % of all confirmed mortalities. Road mortality also contributed to about 10 % of mortalities. A population viability analysis revealed that the probability of this important population going extinct in 20 years was alarmingly high (P = 0.921 with 95 % lower confidence interval of 0.903 and upper confidence interval of 0.937 ). Removal of the effects of road mortality and fox predation on adult and pouch young survival rates dramatically reduced the extinction probability (P = 0.318 without road mortality and P = 0. 004 without fox predation), indicating that reducing both road mortality and fox predation is essential to ensure the survival of this important population. We monitored the rope bridge using motion sensor cameras and microchip readers for 270 days. Western ringtail possums started crossing the bridge 36 days after its installation, which was remarkably sooner than expected or previously reported. It took other possums and glider species in the eastern states of Australia seven to 17 months to start crossing rope bridges across roads. After a period of habituation, multiple individuals were found crossing the bridge every night at a rate of 8.87 0.59 complete crossings per night, which was at least double of those reported on bridges built in eastern Australia. The number of crossings increased over time and decreased on windy or warm nights. Brightness of the moon also slightly reduced the crossings by the possums. Longer monitoring and genetic analyses to test whether crossings result in gene flow are necessary to assess the true conservation value of this bridge. However, these early monitoring results suggest that rope bridges have the potential to be safe crossing structures for this species. ii This study provides an example of an artificial linear structure other than a road having similar or even greater impacts on wildlife than a road. It therefore highlights the need for more research into the impacts of artificial structures such as waterways. The population of P. occidentalis I studied has a high probability of extinction in the near future and more effective management strategies, especially against the effects of fox predation and road mortality, are urgently needed in order to ensure its survival. iii Table of contents Abstract ………………………………………………………………………...……… i Acknowledgement ………………………………......………………………………. .. vi Declaration and publications ……………………………………………..………... viii 1. General introduction……………………………….……………………………. .... 1 1.1. Impacts of artificial linear structures ………………………...…….……….… 2 1.1.1. Impacts of roads ……………………………………………………….. 2 1.1.1.1. Habitat alteration, degradation and destruction .............................................. 2 1.1.1.2. Direct mortality ............................................................................................... 3 1.1.1.3. Habitat fragmentation ..................................................................................... 5 1.1.2. Impacts of artificial linear structures other than roads .............................. 7 1.2. Mitigation measures ............................................................................................. 8 1.2.1. Common measures ..................................................................................... 8 1.2.2. Wildlife crossing structures ....................................................................... 9 1.3. The western ringtail possum .............................................................................. 11 1.3.1. Biology and ecology ................................................................................ 11 1.3.2. Decline and management ......................................................................... 12 1.3.3. Locke Nature Reserve and surrounding campsites .................................. 14 1.4. Gaps in the knowledge ....................................................................................... 16 1.5. Research aims .................................................................................................... 17 1.6. Structure of the thesis ......................................................................................... 18 1.7. References .......................................................................................................... 19 2. An artificial waterway and a road restrict movements and alter home ranges of the western ringtail possum ................................................................................... 33 Abstract ..................................................................................................................... 34 Introduction ............................................................................................................... 35 Materials and methods .............................................................................................. 36 Results ....................................................................................................................... 44 Discussion ................................................................................................................. 49 References ................................................................................................................. 55 Supplementary results ....………………………………………………………........62 iv 3. The western ringtail possum shows fine-scale population structure and limited gene flow across an artificial waterway ................................................................ 63 Abstract ..................................................................................................................... 64 Introduction ............................................................................................................... 65 Materials and methods .............................................................................................
Recommended publications
  • Western Ringtail Possum (Pseudocheirus Occidentalis) Recovery Plan
    Western Ringtail Possum (Pseudocheirus occidentalis) Recovery Plan Wildlife Management Program No. 58 Western Australia Department of Parks and Wildlife October 2014 Wildlife Management Program No. 58 Western Ringtail Possum (Pseudocheirus occidentalis) Recovery Plan October 2014 Western Australia Department of Parks and Wildlife Locked Bag 104, Bentley Delivery Centre, Western Australia 6983 Foreword Recovery plans are developed within the framework laid down in Department of Parks and Wildlife Policy Statements Nos. 44 and 50 (CALM 1992, 1994), and the Australian Government Department of the Environment’s Recovery Planning Compliance Checklist for Legislative and Process Requirements (DEWHA 2008). Recovery plans outline the recovery actions that are needed to urgently address those threatening processes most affecting the ongoing survival of threatened taxa or ecological communities, and begin the recovery process. Recovery plans are a partnership between the Department of the Environment and the Department of Parks and Wildlife. The Department of Parks and Wildlife acknowledges the role of the Environment Protection and Biodiversity Conservation Act 1999 and the Department of the Environment in guiding the implementation of this recovery plan. The attainment of objectives and the provision of funds necessary to implement actions are subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. This recovery plan was approved by the Department of Parks and Wildlife, Western Australia. Approved recovery plans are subject to modification as dictated by new findings, changes in status of the taxon or ecological community, and the completion of recovery actions. Information in this recovery plan was accurate as of October 2014.
    [Show full text]
  • Husbandry Guidelines for Common Ringtail Possums, Pseudocheirus Peregrinus Mammalia: Pseudocheiridae
    32325/01 Casey Poolman E0190918 Husbandry guidelines for Common Ringtail Possums, Pseudocheirus peregrinus Mammalia: Pseudocheiridae Ault Ringtail Possum Image: Casey Poolman Author: Casey Poolman Date of preparation: 7/11/2017 Open Colleges, Course name and number: ACM30310 Certificate III in Captive Animals Trainer: Chris Hosking Husbandry guidelines for Pseudocheirus peregrinus 1 32325/01 Casey Poolman E0190918 Author contact details [email protected] Disclaimer Please note that these husbandry guidelines are student material, created as part of student assessment for Open Colleges ACM30310 Certificate III in Captive Animals. While care has been taken by students to compile accurate and complete material at the time of creation, all information contained should be interpreted with care. No responsibility is assumed for any loss or damage resulting from using these guidelines. Husbandry guidelines are evolving documents that need to be updated regularly as more information becomes available and industry knowledge about animal welfare and care is extended. Husbandry guidelines for Pseudocheirus peregrinus 2 32325/01 Casey Poolman E0190918 Workplace Health and Safety risks warning Ringtail Possums are not an aggressive possum and will mostly try to freeze or hide when handled, however they can and do bite, which can be deep and penetrating. When handling possums always be careful not to get bitten, do not put your hands around its mouth. You should always use two hands and be firm but gentle. Adult Ringtail Possums should be gripped by the back of the neck and around the shoulders with one hand and around the base of the tail with the other. This should allow you to control the animal without hurting it and reduces the risk of you being bitten or scratched.
    [Show full text]
  • Yellow Bellied Glider
    Husbandry Manual for the Yellow-Bellied Glider Petaurus australis [Mammalia / Petauridae] Liana Carroll December 2005 Western Sydney Institute of TAFE, Richmond 1068 Certificate III Captive Animals Lecturer: Graeme Phipps TABLE OF CONTENTS 1 INTRODUCTION............................................................................................................................... 5 2 TAXONOMY ...................................................................................................................................... 6 2.1 NOMENCLATURE .......................................................................................................................... 6 2.2 SUBSPECIES .................................................................................................................................. 6 2.3 RECENT SYNONYMS ..................................................................................................................... 6 2.4 OTHER COMMON NAMES ............................................................................................................. 6 3 NATURAL HISTORY ....................................................................................................................... 7 3.1 MORPHOMETRICS ......................................................................................................................... 8 3.1.1 Mass And Basic Body Measurements ..................................................................................... 8 3.1.2 Sexual Dimorphism ................................................................................................................
    [Show full text]
  • Platypus Collins, L.R
    AUSTRALIAN MAMMALS BIOLOGY AND CAPTIVE MANAGEMENT Stephen Jackson © CSIRO 2003 All rights reserved. Except under the conditions described in the Australian Copyright Act 1968 and subsequent amendments, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, duplicating or otherwise, without the prior permission of the copyright owner. Contact CSIRO PUBLISHING for all permission requests. National Library of Australia Cataloguing-in-Publication entry Jackson, Stephen M. Australian mammals: Biology and captive management Bibliography. ISBN 0 643 06635 7. 1. Mammals – Australia. 2. Captive mammals. I. Title. 599.0994 Available from CSIRO PUBLISHING 150 Oxford Street (PO Box 1139) Collingwood VIC 3066 Australia Telephone: +61 3 9662 7666 Local call: 1300 788 000 (Australia only) Fax: +61 3 9662 7555 Email: [email protected] Web site: www.publish.csiro.au Cover photos courtesy Stephen Jackson, Esther Beaton and Nick Alexander Set in Minion and Optima Cover and text design by James Kelly Typeset by Desktop Concepts Pty Ltd Printed in Australia by Ligare REFERENCES reserved. Chapter 1 – Platypus Collins, L.R. (1973) Monotremes and Marsupials: A Reference for Zoological Institutions. Smithsonian Institution Press, rights Austin, M.A. (1997) A Practical Guide to the Successful Washington. All Handrearing of Tasmanian Marsupials. Regal Publications, Collins, G.H., Whittington, R.J. & Canfield, P.J. (1986) Melbourne. Theileria ornithorhynchi Mackerras, 1959 in the platypus, 2003. Beaven, M. (1997) Hand rearing of a juvenile platypus. Ornithorhynchus anatinus (Shaw). Journal of Wildlife Proceedings of the ASZK/ARAZPA Conference. 16–20 March.
    [Show full text]
  • Biparental Care and Obligate Monogamy in the Rock-Haunting Possum, Petropseudes Dahli, from Tropical Australia
    ANIMAL BEHAVIOUR, 2000, 59, 1001–1008 doi:10.1006/anbe.1999.1392, available online at http://www.idealibrary.com on Biparental care and obligate monogamy in the rock-haunting possum, Petropseudes dahli, from tropical Australia MYFANWY J. RUNCIE CRC for Sustainable Development of Tropical Savannas, Northern Territory University (Received 10 May 1999; initial acceptance 9 June 1999; final acceptance 30 December 1999; MS. number: 6222R) Monogamy is rare among mammals, including marsupials. I studied the social organization of the little-known rock-haunting possum in Kakadu National Park in Northern Australia. Preliminary field observations revealed that the majority of possums live in cohesive groups consisting of a female–male pair and young, suggesting a monogamous mating system. I used radiotracking to determine home range patterns, and observations to measure the degree of symmetry between the sexes in maintaining the pair bond and initiating changes in group activity. I also measured the extent of maternal and paternal indirect and direct care. Nocturnal observations and radiotelemetric data from 3 years showed that six possum groups maintained nonoverlapping home ranges with long-term consorts and young sharing dens. Males contributed more than females to maintaining the pair bond but they contributed equally to parental care. For the first time, the parental behaviours of bridge formation, embracing, marshalling of young, sentinel behaviour and tail beating are reported in a marsupial. Males participated to a high degree in maintaining relationships with one mate and their offspring. Collectively, these results suggest that the mating system of this wild population of rock-haunting possums is obligate social monogamy.
    [Show full text]
  • Squirrel Glider Petaurus Norfolcensis Review of Current Information in NSW August 2008
    NSW SCIENTIFIC COMMITTEE Squirrel Glider Petaurus norfolcensis Review of Current Information in NSW August 2008 Current status: The Squirrel Glider Petaurus norfolcensis is currently listed as Threatened in Victoria under the Flora & Fauna Guarantee Act 1988 (FFG Act; Endangered on the Advisory List), and Endangered in South Australia under the National Parks and Wildlife Act 1972 (NPW Act). This species is not listed under Commonwealth legislation. The NSW Scientific Committee recently determined that the Squirrel Glider meets criteria for listing as Vulnerable in NSW under the Threatened Species Conservation Act 1995 (TSC Act), based on information contained in this report and other information available for the species. Two Endangered Populations of Squirrel Gliders are also listed in NSW; one on the Barrenjoey Peninsula, and one in the Wagga Wagga Local Government Area. Species description: The Squirrel Glider is a medium-sized glider, with a thick furry tail, almost twice the size of the Sugar Glider Petaurus breviceps; head-body length 17-24 cm, tail 22-30 cm, weight 190-330 g. The upperparts are grey with a black dorsal stripe from crown to rump, black markings around the ears, and a black border to the gliding membrane; the terminal third to half of the tail is black, and the underparts are white. The smaller Sugar Glider is very similar (head-body 16-20 cm, tail 17-21 cm, weight 90-150 g), but is more snub-nosed with less bold black markings, has pale grey or cream rather than clean white underparts, and the less tapered tail is black on the terminal quarter, sometimes with a white tip.
    [Show full text]
  • Kangaroos, Dendrolagus Matschiei (Macropodidae), in Upper Montane Forest
    Spatial Requirements of Free-Ranging Huon Tree Kangaroos, Dendrolagus matschiei (Macropodidae), in Upper Montane Forest Gabriel Porolak1,2,3*, Lisa Dabek3, Andrew K. Krockenberger1,2 1 Centre for Tropical Biodiversity and Climate Change, James Cook University, Cairns, Australia, 2 School of Marine and Tropical Biology, James Cook University, Cairns, Australia, 3 Department of Field Conservation, Woodland Park Zoo, Seattle, Washington, United States of America Abstract Tree kangaroos (Macropodidae, Dendrolagus) are some of Australasia’s least known mammals. However, there is sufficient evidence of population decline and local extinctions that all New Guinea tree kangaroos are considered threatened. Understanding spatial requirements is important in conservation and management. Expectations from studies of Australian tree kangaroos and other rainforest macropodids suggest that tree kangaroos should have small discrete home ranges with the potential for high population densities, but there are no published estimates of spatial requirements of any New Guinea tree kangaroo species. Home ranges of 15 Huon tree kangaroos, Dendrolagus matschiei, were measured in upper montane forest on the Huon Peninsula, Papua New Guinea. The home range area was an average of 139.6626.5 ha (100% MCP; n = 15) or 81.8628.3 ha (90% harmonic mean; n = 15), and did not differ between males and females. Home ranges of D. matschiei were 40–100 times larger than those of Australian tree kangaroos or other rainforest macropods, possibly due to the impact of hunting reducing density, or low productivity of their high altitude habitat. Huon tree kangaroos had cores of activity within their range at 45% (20.964.1 ha) and 70% (36.667.5 ha) harmonic mean isopleths, with little overlap (4.862.9%; n = 15 pairs) between neighbouring females at the 45% isopleth, but, unlike the Australian species, extensive overlap between females (20.865.5%; n = 15 pairs) at the complete range (90% harmonic mean).
    [Show full text]
  • Ba3444 MAMMAL BOOKLET FINAL.Indd
    Intot Obliv i The disappearing native mammals of northern Australia Compiled by James Fitzsimons Sarah Legge Barry Traill John Woinarski Into Oblivion? The disappearing native mammals of northern Australia 1 SUMMARY Since European settlement, the deepest loss of Australian biodiversity has been the spate of extinctions of endemic mammals. Historically, these losses occurred mostly in inland and in temperate parts of the country, and largely between 1890 and 1950. A new wave of extinctions is now threatening Australian mammals, this time in northern Australia. Many mammal species are in sharp decline across the north, even in extensive natural areas managed primarily for conservation. The main evidence of this decline comes consistently from two contrasting sources: robust scientifi c monitoring programs and more broad-scale Indigenous knowledge. The main drivers of the mammal decline in northern Australia include inappropriate fi re regimes (too much fi re) and predation by feral cats. Cane Toads are also implicated, particularly to the recent catastrophic decline of the Northern Quoll. Furthermore, some impacts are due to vegetation changes associated with the pastoral industry. Disease could also be a factor, but to date there is little evidence for or against it. Based on current trends, many native mammals will become extinct in northern Australia in the next 10-20 years, and even the largest and most iconic national parks in northern Australia will lose native mammal species. This problem needs to be solved. The fi rst step towards a solution is to recognise the problem, and this publication seeks to alert the Australian community and decision makers to this urgent issue.
    [Show full text]
  • Cercartetus Lepidus (Diprotodontia: Burramyidae)
    MAMMALIAN SPECIES 842:1–8 Cercartetus lepidus (Diprotodontia: Burramyidae) JAMIE M. HARRIS School of Environmental Science and Management, Southern Cross University, Lismore, New South Wales, 2480, Australia; [email protected] Abstract: Cercartetus lepidus (Thomas, 1888) is a burramyid commonly called the little pygmy-possum. It is 1 of 4 species in the genus Cercartetus, which together with Burramys parvus form the marsupial family Burramyidae. This Lilliputian possum has a disjunct distribution, occurring on mainland Australia, Kangaroo Island, and in Tasmania. Mallee and heath communities are occupied in Victoria and South Australia, but in Tasmania it is found mainly in dry and wet sclerophyll forests. It is known from at least 18 fossil sites and the distribution of these reveal a significant contraction in geographic range since the late Pleistocene. Currently, this species is not listed as threatened in any state jurisdictions in Australia, but monitoring is required in order to more accurately define its conservation status. DOI: 10.1644/842.1. Key words: Australia, burramyid, hibernator, little pygmy-possum, pygmy-possum, Tasmania, Victoria mallee Published 25 September 2009 by the American Society of Mammalogists Synonymy completed 2 April 2008 www.mammalogy.org Cercartetus lepidus (Thomas, 1888) Little Pygmy-possum Dromicia lepida Thomas, 1888:142. Type locality ‘‘Tasma- nia.’’ E[udromicia](Dromiciola) lepida: Matschie, 1916:260. Name combination. Eudromicia lepida Iredale and Troughton, 1934:23. Type locality ‘‘Tasmania.’’ Cercartetus lepidus: Wakefield, 1963:99. First use of current name combination. CONTEXT AND CONTENT. Order Diprotodontia, suborder Phalangiformes, superfamily Phalangeroidea, family Burra- myidae (Kirsch 1968). No subspecies for Cercartetus lepidus are currently recognized.
    [Show full text]
  • The Nutrition, Digestive Physiology and Metabolism of Potoroine Marsupials — General Discussion Ҟ193
    THE NUTRITION, DIGESTIVE PHYSIOLOGY AND METABOLISM OF POTOROINE MARSUPIALS A thesis submitted to The University of New England for the degree of Doctor of Philosophy by Ian Robert Wallis Department of Biochemistry, Microbiology and Nutrition 1990 000OO000 TO ... Streetfighter, Rufous and the Archbishop . three flamboyant potoroine marsupials. o oo00 oo o PREFACE The studies presented in this thesis were completed by the author while a part-time student in the Department of Biochemistry, Microbiology and Nutrition, University of New England, Armidale, NSW, Australia. Assistance given by other persons is indicated in the text or in the list of acknowledgements. All references cited are included in the bibliography. The work is otherwise original. I certify that the substance of this thesis has not already been submitted for any degree and is not being currently submitted for any other degree. I certify that any help received in preparing this thesis, and all sources used have been acknowledged in the thesis. August 1990 I R Wallis 000OO000 11 CONTENTS Prefaceҟ i Acknowledgementsҟ viii Abstractҟ x List of scientific namesҟ xiv List of tablesҟ xvi List of figuresҟ xx Chapter One Introduction: The Potoroinae, a neglected group of marsupialsҟ 1 Chapter Two Herbivory: Problems and solutions 2.1 Diet, body size, gut capacity and metabolic requirements 4 2.2 Gut structure: how herbivores obtain nourishment 6 2.2.1 Mastication 7 2.2.2 Salivary glands 8 2.2.3 Gut capacity 10 2.2.4 Gastric sulcus 10 2.2.5 Epithelia 11 2.2.6 Separation of digesta
    [Show full text]
  • The Ecology of the Koomal
    THE ECOLOGY OF THE KOOMAL (TRICHOSURUS VULPECULA HYPOLEUCUS) AND NGWAYIR (PSEUDOCHEIRUS OCCIDENTALIS) IN THE JARRAH FORESTS OF SOUTH-WESTERN AUSTRALIA Adrian Francis Wayne A thesis submitted for the degree of Doctor of Philosophy May 2005 Centre for Resource and Environmental Studies The Australian National University, Canberra To Julia Northin and all of my family, for their love and support The ecology of the koomal and ngwayir in the jarrah forest DECLARATION This thesis is my own work except where otherwise acknowledged (see Acknowledgements and Preface). Adrian Francis Wayne May 2005 i The ecology of the koomal and ngwayir in the jarrah forest ACKNOWLEDGMENTS First, I would like to thank my supervisory panel. I am most grateful to David Lindenmayer (Principal Supervisor), Neil Burrows, Mike Calver and Ric How for their guidance, support and comments on this thesis. Many thanks to Ann Cowling for her statistical advice and assistance with the analyses for three of the chapters (2, 3 and 7). I am most grateful to Simon Knapp for his collaboration and diligence with the logistic regression modelling in Chapter 6. I also thank Christine Donnelly for conducting many of the analyses in Chapters 2, 3 and 7. Joern Fischer taught me ‘R’ scripting and assisted with the analyses in the two life history chapters (4 and 5). I deeply value Joern Fischer and Ioan Fazey for all of their help in so many ways, including their assistance to improve my writing style, comments on earlier drafts, discussions, support, advice and their friendship. Ross Cunningham provided valued design advice in the early development phase of this research.
    [Show full text]
  • There's a Possum in My Garden
    Department for Environment and Heritage Possums and gardens Living with Possums in South Australia www.environment.sa.gov.au With a reduction in natural habitats due to Possums urbanisation, native animals are often forced to live Possums are nocturnal animals. Finding shelter and in close quarters with humans. The opportunity to nesting sites is becoming the biggest challenge for observe native wildlife in your own backyard cannot these native animals. With the removal of many large be overstated; however, living with wildlife has its share old gum trees, possums have to seek shelter in other of problems too. areas. For Common Brushtail Possums one common This information aims to help solve problems that alternative is buildings with access to the roof space. possums may be causing to your property. You will find Common Ringtail Possums rarely enter a building roof, a list of common questions and solutions to possum instead this species builds a nest, or drey, in amongst problems. If you still have questions or your problem is the dense foliage of trees or shrubs and several not covered please contact you local Department for metres above the ground. Environment and Heritage office. Common Brushtail Possum This information relates specifically to the Common Brushtail Possum and Common Ringtail Possum, the Common Brushtail Possums are approximately the size species most commonly encountered in natural and of a domestic cat. Males are generally larger than urban environments. females. These possums have dense fur, which varies Common Brushtail Possum in colour from light to dark grey on the back and a creamy coloured belly.
    [Show full text]