Cercartetus Lepidus (Diprotodontia: Burramyidae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reptile-Like Physiology in Early Jurassic Stem-Mammals
bioRxiv preprint doi: https://doi.org/10.1101/785360; this version posted October 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Reptile-like physiology in Early Jurassic stem-mammals Authors: Elis Newham1*, Pamela G. Gill2,3*, Philippa Brewer3, Michael J. Benton2, Vincent Fernandez4,5, Neil J. Gostling6, David Haberthür7, Jukka Jernvall8, Tuomas Kankanpää9, Aki 5 Kallonen10, Charles Navarro2, Alexandra Pacureanu5, Berit Zeller-Plumhoff11, Kelly Richards12, Kate Robson-Brown13, Philipp Schneider14, Heikki Suhonen10, Paul Tafforeau5, Katherine Williams14, & Ian J. Corfe8*. Affiliations: 10 1School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK. 2School of Earth Sciences, University of Bristol, Bristol, UK. 3Earth Science Department, The Natural History Museum, London, UK. 4Core Research Laboratories, The Natural History Museum, London, UK. 5European Synchrotron Radiation Facility, Grenoble, France. 15 6School of Biological Sciences, University of Southampton, Southampton, UK. 7Institute of Anatomy, University of Bern, Bern, Switzerland. 8Institute of Biotechnology, University of Helsinki, Helsinki, Finland. 9Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland. 10Department of Physics, University of Helsinki, Helsinki, Finland. 20 11Helmholtz-Zentrum Geesthacht, Zentrum für Material-und Küstenforschung GmbH Germany. 12Oxford University Museum of Natural History, Oxford, OX1 3PW, UK. 1 bioRxiv preprint doi: https://doi.org/10.1101/785360; this version posted October 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 13Department of Anthropology and Archaeology, University of Bristol, Bristol, UK. 14Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK. -
Red-Necked Wallaby (Bennett’S Wallaby) Macropus Rufogriseus
Red-necked Wallaby (Bennett’s Wallaby) Macropus rufogriseus Class: Mammalia Order: Diprotodontia Family: Macropodidae Characteristics: Red-necked wallabies get their name from the red fur on the back of their neck. They are also differentiated from other wallabies by the white cheek patches and larger size compared to other wallaby species (Bioweb). The red-necked wallaby’s body fur is grey to reddish in color with a white or pale grey belly. Their muzzle, paws and toes are black (Australia Zoo). Wallabies look like smaller kangaroos with their large hindquarters, short forelimbs, and long, muscular tails. The average size of this species is 27-32 inches in the body with a tail length of 20-28 inches. The females weigh about 25 pounds while the males weigh significantly more at 40 pounds. The females differ from the males of the species in that they have a forward opening pouch (Sacramento Zoo). Range & Habitat: Flat, high-ground eucalyptus Behavior: Red-necked wallabies are most active at dawn and dusk to avoid forests near open grassy areas in the mid-day heat. In the heat, they will lick their hands and forearms to Tasmania and South-eastern promote heat loss. (Animal Diversity) These wallabies are generally solitary Australia. but do forage in small groups. The males will have boxing matches with one another to determine social hierarchy within populations. They can often be seen punching, wrestling, skipping, dancing, standing upright, grabbing, sparring, pawing, and kicking. All members of the kangaroo and wallaby family travel by hopping. Red-necked wallabies can hop up to 6 feet in the air. -
Encouraging Possums
Encouraging Possums Keywords: possums, mammals, habitat, management, nest boxes Location: southwest Author: Emma Bramwell Possums are delightful and appealing creatures, with THE SEVEN SPECIES their soft downy fur and large innocent eyes. Some may be as small as a mouse while others are the size of a domestic • Honeypossum Tarsipes rostratus cat. The honey possum is the smallest of the Western The western ringtail and common brushtail possums are Australian possums, and is endemic to (occurring only in) two of the most commonly seen native animals around urban the lower southwest, in heaths with a rich diversity of areas in the southwest of Western Australia. The common nectar-producing plants. brushtail possum in particular has adapted to urban Mainly nocturnal, the honey possum sleeps during the development, and readily takes up residence in human day in hollow stems or abandoned bird nests, emerging at dwellings. With careful planning and management, people night to feed on the nectar and pollen that exclusively make can live harmoniously with these creatures and enjoy the up its diet, probing flowers with its long, pointed snout and close proximity of wildlife. brush-tipped tongue. In colder weather the honey possum becomes torpid (semi-hibernates). The honey possum has no obvious breeding season. WHAT IS A POSSUM? Most young are produced when pollen and nectar are most abundant, and females usually raise two or three young at a A number of small to medium-sized, tree-climbing time. Australian marsupial species have been given the common Provided large areas of habitat are retained, the honey name of possum. -
Biodiversity Plan for the South East of South Australia 1999
SUMMARY Biodiversity Plan for the South East of South Australia 1999 rks & W Pa i Department for Environment ld l a l i f n e o i t Heritage and Aboriginal Affairs a N South Government of South Australia Australia AUTHORS Tim Croft (National Parks & Wildlife SA) Georgina House (QED) Alison Oppermann (National Parks & Wildlife SA) Ann Shaw Rungie (QED) Tatia Zubrinich (PPK Environment & Infrastructure Pty Ltd) CARTOGRAPHY AND DESIGN National Parks & Wildlife SA (Cover) Geographic Analysis and Research Unit, Planning SA Pierris Kahrimanis PPK Environment & Infrastructure Pty Ltd ACKNOWLEDGEMENTS The authors are grateful to Professor Hugh Possingham, the Nature Conservation Society, and the South Australian Farmers Federation in providing the stimulus for the Biodiversity Planning Program and for their ongoing support and involvement Dr Bob Inns and Professor Possingham have also contributed significantly towards the information and design of the South East Biodiversity Plan. We also thank members of the South East community who have provided direction and input into the plan through consultation and participation in workshops © Department for Environment, Heritage and Aboriginal Affairs, 1999 ISBN 0 7308 5863 4 Cover Photographs (top to bottom) Lowan phebalium (Phebalium lowanense) Photo: D.N. Kraehenbuehl Swamp Skink (Egernia coventryi) Photo: J. van Weenen Jaffray Swamp Photo: G. Carpenter Little Pygmy Possum (Cercartetus lepidus) Photo: P. Aitken Red-necked Wallaby (Macropus rufogriseus) Photo: P. Canty 2 diversity Plan for the South East of South Australia — Summary Foreword The conservation of our natural biodiversity is essential for the functioning of natural systems. Aside from the intrinsic importance of conserving the diversity of species many of South Australia's economic activities are based on the sustainable use, conservation and management of biodiversity. -
Yellow Bellied Glider
Husbandry Manual for the Yellow-Bellied Glider Petaurus australis [Mammalia / Petauridae] Liana Carroll December 2005 Western Sydney Institute of TAFE, Richmond 1068 Certificate III Captive Animals Lecturer: Graeme Phipps TABLE OF CONTENTS 1 INTRODUCTION............................................................................................................................... 5 2 TAXONOMY ...................................................................................................................................... 6 2.1 NOMENCLATURE .......................................................................................................................... 6 2.2 SUBSPECIES .................................................................................................................................. 6 2.3 RECENT SYNONYMS ..................................................................................................................... 6 2.4 OTHER COMMON NAMES ............................................................................................................. 6 3 NATURAL HISTORY ....................................................................................................................... 7 3.1 MORPHOMETRICS ......................................................................................................................... 8 3.1.1 Mass And Basic Body Measurements ..................................................................................... 8 3.1.2 Sexual Dimorphism ................................................................................................................ -
Vernacular Name GLIDER, SUGAR (Aka: Sugar Squirrel, Lesser Flying Squirrel, Short-Headed Or Lesser Flying Phalanger, Lesser Glider, Wrist-Winged Glider)
1/4 Vernacular Name GLIDER, SUGAR (aka: sugar squirrel, lesser flying squirrel, short-headed or lesser flying phalanger, lesser glider, wrist-winged glider) GEOGRAPHIC RANGE Eastern Australia, Moluccas, New Guinea and nearby islands HABITAT Wooded areas, preferably open forest. Forests of all types, provided there are enough trees for nesting. CONSERVATION STATUS IUCN: Least Concern (2016). COOL FACTS Sugar gliders can glide for at least 160'. They are accomplished acrobats that weave and maneuver gracefully between trees, landing with precision by swooping upwards. By skillfully adjusting their vertical and lateral angles of attack and twisting their gliding membranes in mid-air, Sugar gliders are able to take advantage of aerodynamic forces. Their tails are also used for carrying nest material. Hanging from branches by their hind feet, the animals break off leaves with their forefeet, pass the leaves from the forefeet to the hind feet to the tail which then coils around the nest material. Used this way, the tail cannot be used in gliding, so the animal transports the leaves by running along the tree branches to the nest They can tolerate wide ranges of temperatures by (1) huddling with others in their leafy nests to help save energy and (2) falling into dormancy and torpor (brief hibernation). They will also fall into torpor during long periods of food scarcity. They bite holes in a tree's bark to get the sweet sap. Since they can make sufficiently large holes to satisfy the carbohydrate requirements of a large group for a whole year, it is sufficient to defend a single tree. -
Checklist of the Mammals of Indonesia
CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation i ii CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation By Ibnu Maryanto Maharadatunkamsi Anang Setiawan Achmadi Sigit Wiantoro Eko Sulistyadi Masaaki Yoneda Agustinus Suyanto Jito Sugardjito RESEARCH CENTER FOR BIOLOGY INDONESIAN INSTITUTE OF SCIENCES (LIPI) iii © 2019 RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI) Cataloging in Publication Data. CHECKLIST OF THE MAMMALS OF INDONESIA: Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation/ Ibnu Maryanto, Maharadatunkamsi, Anang Setiawan Achmadi, Sigit Wiantoro, Eko Sulistyadi, Masaaki Yoneda, Agustinus Suyanto, & Jito Sugardjito. ix+ 66 pp; 21 x 29,7 cm ISBN: 978-979-579-108-9 1. Checklist of mammals 2. Indonesia Cover Desain : Eko Harsono Photo : I. Maryanto Third Edition : December 2019 Published by: RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI). Jl Raya Jakarta-Bogor, Km 46, Cibinong, Bogor, Jawa Barat 16911 Telp: 021-87907604/87907636; Fax: 021-87907612 Email: [email protected] . iv PREFACE TO THIRD EDITION This book is a third edition of checklist of the Mammals of Indonesia. The new edition provides remarkable information in several ways compare to the first and second editions, the remarks column contain the abbreviation of the specific island distributions, synonym and specific location. Thus, in this edition we are also corrected the distribution of some species including some new additional species in accordance with the discovery of new species in Indonesia. -
Platypus Collins, L.R
AUSTRALIAN MAMMALS BIOLOGY AND CAPTIVE MANAGEMENT Stephen Jackson © CSIRO 2003 All rights reserved. Except under the conditions described in the Australian Copyright Act 1968 and subsequent amendments, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, duplicating or otherwise, without the prior permission of the copyright owner. Contact CSIRO PUBLISHING for all permission requests. National Library of Australia Cataloguing-in-Publication entry Jackson, Stephen M. Australian mammals: Biology and captive management Bibliography. ISBN 0 643 06635 7. 1. Mammals – Australia. 2. Captive mammals. I. Title. 599.0994 Available from CSIRO PUBLISHING 150 Oxford Street (PO Box 1139) Collingwood VIC 3066 Australia Telephone: +61 3 9662 7666 Local call: 1300 788 000 (Australia only) Fax: +61 3 9662 7555 Email: [email protected] Web site: www.publish.csiro.au Cover photos courtesy Stephen Jackson, Esther Beaton and Nick Alexander Set in Minion and Optima Cover and text design by James Kelly Typeset by Desktop Concepts Pty Ltd Printed in Australia by Ligare REFERENCES reserved. Chapter 1 – Platypus Collins, L.R. (1973) Monotremes and Marsupials: A Reference for Zoological Institutions. Smithsonian Institution Press, rights Austin, M.A. (1997) A Practical Guide to the Successful Washington. All Handrearing of Tasmanian Marsupials. Regal Publications, Collins, G.H., Whittington, R.J. & Canfield, P.J. (1986) Melbourne. Theileria ornithorhynchi Mackerras, 1959 in the platypus, 2003. Beaven, M. (1997) Hand rearing of a juvenile platypus. Ornithorhynchus anatinus (Shaw). Journal of Wildlife Proceedings of the ASZK/ARAZPA Conference. 16–20 March. -
A Dated Phylogeny of Marsupials Using a Molecular Supermatrix and Multiple Fossil Constraints
Journal of Mammalogy, 89(1):175–189, 2008 A DATED PHYLOGENY OF MARSUPIALS USING A MOLECULAR SUPERMATRIX AND MULTIPLE FOSSIL CONSTRAINTS ROBIN M. D. BECK* School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia Downloaded from https://academic.oup.com/jmammal/article/89/1/175/1020874 by guest on 25 September 2021 Phylogenetic relationships within marsupials were investigated based on a 20.1-kilobase molecular supermatrix comprising 7 nuclear and 15 mitochondrial genes analyzed using both maximum likelihood and Bayesian approaches and 3 different partitioning strategies. The study revealed that base composition bias in the 3rd codon positions of mitochondrial genes misled even the partitioned maximum-likelihood analyses, whereas Bayesian analyses were less affected. After correcting for base composition bias, monophyly of the currently recognized marsupial orders, of Australidelphia, and of a clade comprising Dasyuromorphia, Notoryctes,and Peramelemorphia, were supported strongly by both Bayesian posterior probabilities and maximum-likelihood bootstrap values. Monophyly of the Australasian marsupials, of Notoryctes þ Dasyuromorphia, and of Caenolestes þ Australidelphia were less well supported. Within Diprotodontia, Burramyidae þ Phalangeridae received relatively strong support. Divergence dates calculated using a Bayesian relaxed molecular clock and multiple age constraints suggested at least 3 independent dispersals of marsupials from North to South America during the Late Cretaceous or early Paleocene. Within the Australasian clade, the macropodine radiation, the divergence of phascogaline and dasyurine dasyurids, and the divergence of perameline and peroryctine peramelemorphians all coincided with periods of significant environmental change during the Miocene. An analysis of ‘‘unrepresented basal branch lengths’’ suggests that the fossil record is particularly poor for didelphids and most groups within the Australasian radiation. -
A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes
J Mammal Evol DOI 10.1007/s10914-007-9062-6 ORIGINAL PAPER A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes Robert W. Meredith & Michael Westerman & Judd A. Case & Mark S. Springer # Springer Science + Business Media, LLC 2007 Abstract Even though marsupials are taxonomically less diverse than placentals, they exhibit comparable morphological and ecological diversity. However, much of their fossil record is thought to be missing, particularly for the Australasian groups. The more than 330 living species of marsupials are grouped into three American (Didelphimorphia, Microbiotheria, and Paucituberculata) and four Australasian (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelemorphia) orders. Interordinal relationships have been investigated using a wide range of methods that have often yielded contradictory results. Much of the controversy has focused on the placement of Dromiciops gliroides (Microbiotheria). Studies either support a sister-taxon relationship to a monophyletic Australasian clade or a nested position within the Australasian radiation. Familial relationships within the Diprotodontia have also proved difficult to resolve. Here, we examine higher-level marsupial relationships using a nuclear multigene molecular data set representing all living orders. Protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF were analyzed using maximum parsimony, maximum likelihood, and Bayesian methods. Two different Bayesian relaxed molecular clock methods were employed to construct a timescale for marsupial evolution and estimate the unrepresented basal branch length (UBBL). Maximum likelihood and Bayesian results suggest that the root of the marsupial tree is between Didelphimorphia and all other marsupials. All methods provide strong support for the monophyly of Australidelphia. Within Australidelphia, Dromiciops is the sister-taxon to a monophyletic Australasian clade. -
Thylacinidae
FAUNA of AUSTRALIA 20. THYLACINIDAE JOAN M. DIXON 1 Thylacine–Thylacinus cynocephalus [F. Knight/ANPWS] 20. THYLACINIDAE DEFINITION AND GENERAL DESCRIPTION The single member of the family Thylacinidae, Thylacinus cynocephalus, known as the Thylacine, Tasmanian Tiger or Wolf, is a large carnivorous marsupial (Fig. 20.1). Generally sandy yellow in colour, it has 15 to 20 distinct transverse dark stripes across the back from shoulders to tail. While the large head is reminiscent of the dog and wolf, the tail is long and characteristically stiff and the legs are relatively short. Body hair is dense, short and soft, up to 15 mm in length. Body proportions are similar to those of the Tasmanian Devil, Sarcophilus harrisii, the Eastern Quoll, Dasyurus viverrinus and the Tiger Quoll, Dasyurus maculatus. The Thylacine is digitigrade. There are five digital pads on the forefoot and four on the hind foot. Figure 20.1 Thylacine, side view of the whole animal. (© ABRS)[D. Kirshner] The face is fox-like in young animals, wolf- or dog-like in adults. Hairs on the cheeks, above the eyes and base of the ears are whitish-brown. Facial vibrissae are relatively shorter, finer and fewer than in Tasmanian Devils and Quolls. The short ears are about 80 mm long, erect, rounded and covered with short fur. Sexual dimorphism occurs, adult males being larger on average. Jaws are long and powerful and the teeth number 46. In the vertebral column there are only two sacrals instead of the usual three and from 23 to 25 caudal vertebrae rather than 20 to 21. -
3.Pdf Open Access
Veterinary World, EISSN: 2231-0916 RESEARCH ARTICLE Available at www.veterinaryworld.org/Vol.13/November-2020/3.pdf Open Access Genetic characterization and phylogenetic study of Indonesian cuscuses from Maluku and Papua Island based on 16S rRNA gene Rini Widayanti1 , Richo Apriladi Bagas Pradana1 , Rony Marsyal Kunda2 and Suhendra Pakpahan3 1. Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia; 2. Biology Study Program, Faculty of Mathematics and Natural Sciences, Universitas Pattimura, Ambon, Indonesia; 3. Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, West Java, Indonesia. Corresponding author: Suhendra Pakpahan, e-mail: [email protected] Co-authors: RW: [email protected], RABP: [email protected], RMK: [email protected] Received: 04-06-2020, Accepted: 22-09-2020, Published online: 04-11-2020 doi: www.doi.org/10.14202/vetworld.2020.2319-2325 How to cite this article: Widayanti R, Pradana RAB, Kunda RM, Pakpahan S (2020) Genetic characterization and phylogenetic study of Indonesian cuscuses from Maluku and Papua Island based on 16S rRNA gene, Veterinary World, 13(11): 2319-2325. Abstract Background and Aim: Indonesian cuscuses are now becoming scarce because of the reduction of habitat and poaching. Further, molecular characterization of Indonesian cuscuses is still very lacking. This study aimed to determine genetic markers and phylogenetic relationships of Indonesian cuscuses based on 16S rRNA gene sequences. Materials and Methods: This study used 21 cuscuses caught from two provinces and 16 islands: 13 from Maluku and eight from Papua. Cuscus samples were taken by biopsy following ethics guidelines for animals.