Critical (Temperature) Thresholds and Climate Change Impacts/Adaptation in Horticulture

Total Page:16

File Type:pdf, Size:1020Kb

Critical (Temperature) Thresholds and Climate Change Impacts/Adaptation in Horticulture Project Number :- QP1005130 (1/5/2011) Project Title :- Critical (temperature) thresholds and climate change impacts/adaptation in horticulture. Author(s) Name :- Peter Deuter et al. Research Provider :- Department of Employment Economic Development and Innovation (DEEDI), Queensland Project Number :- QP1005130 Project Leader :- Peter Deuter Senior Principal Horticulturist AgriScience Queensland Department of Employment Economic Development and Innovation Gatton Research Station Warrego Highway, Gatton Queensland 4343 Phone – (07) 5466 2222 Mobile – (0407) 636 907 Email – [email protected] Key Personnel :- Dr Neil White, Principal Research Scientist, Department of Employment Economic Development and Innovation, Toowoomba, Queensland. David Putland, Climate Change Officer, Growcom, Brisbane. Rachel Mackenzie, Chief Advocate, Growcom, Brisbane. Jane Muller, Senior Research and Policy Officer, Growcom, Brisbane. Purpose of the report :- Final Report documenting critical temperature thresholds for major horticultural commodities in Australia Funding sources :- Woolworths, Landcare, Horticulture Australia Limited, Queensland Government Collaborating institutions :- Date of the report :- 5th May 2011 Disclaimer: Any recommendations contained in this publication do not necessarily represent current HAL Limited policy. No person should act on the basis of the contents of this publication, whether as to matters of fact or opinion or other content, without first obtaining specific, independent professional advice in respect of the matters set out in this publication. Contents Page 1.0 Media Summary 2 2.0 Technical Summary 4 3.0 Introduction and Review of Literature 6 4.0 Overview of Critical Thresholds 13 5.0 Materials and Methods 14 6.0 Results 16 Case Studies - Lettuce 22 - Banana 39 - Apple 42 - Citrus 47 - Pineapple 52 - Tomato 54 - Macadamia 62 - Capsicum 64 - Avocado 68 7.0 Discussion 74 8.0 Technology Transfer 86 9.0 Recommendations - Scientific and Industry 87 10.0 Acknowledgments 90 11.0 Bibliography of Literature Cited 90 12.0 Appendix I - Literature Review 94 1 1.0 Media Summary Key Components of the Project A review of the literature and industry consultation was undertaken to document critical temperature thresholds for a number of major horticultural commodities. The focus was on temperature thresholds, to the exclusion of rainfall effects, because the majority of horticulture in Australia is irrigated. While this approach does not discount the importance of rainfall and associated runoff into irrigation storages, it is temperature which determines to a great extent the location and performance of the majority of horticultural commodities in Australia. Understanding the specific impact of temperature change on horticultural commodities is a necessary step in providing growers with the decision making tools to manage and adapt to climate change. Such information is critical to help preserve Australia’s profitable and productive horticulture industry. Industry Significance Horticulture in Australia comprises a large number of commodities contributing ~ $7 billion annually to the economy. Horticultural crops are grown in a wide range of production regions due to the diversity of micro-climates. Horticultural crops are particularly sensitive to temperature, most having specific temperature requirements for the development of optimum yield and quality. Key Outcomes & Benefits for Industry The key outcome of this project has been a better understanding of the temperature thresholds affecting a small number of horticultural crops, and the impact of further temperature rises on these commodities, under a changing climate. Conclusions In general, growers have managed past climate change quite well and are optimistic that they will continue to manage projected temperature increases into the medium term future. In many horticultural regions where the temperature threshold is currently exceeded at some specific times of the year, growers in the main have avoided production during these periods, as in general yield and quality are reduced when the temperature exceeds the threshold for each commodity. As temperatures continue to rise in all vegetable production regions through to 2030, growers are likely to respond by changing planting and harvest dates, and reducing the production season by a few weeks. If more adaptable vegetable cultivars are available to growers, the impact of reducing the length of the production season will be reduced, until such time as the genetic capability of more adaptable cultivars is exceeded. It is expected that it will not be until after 2030 that market access and the profitability of a reduced season in the majority of vegetable production districts will be a major factor in the increasing vulnerability of the vegetable industry. In districts where the threshold is not exceeded currently, and will be exceeded only on occasions, or not at all by 2030, growers may be able to take advantage of earlier planting in the spring, and later planting in the autumn, as temperatures continue to rise. For perennial fruit crops, the effects of exceeding thresholds is somewhat different to annual vegetable cropping. More adaptable varieties will be the long-term solution, where agronomic practices are not appropriate of not cost effective. Recommendations for future R&D Although the impacts of increasing temperatures on a range of horticultural crops are somewhat similar, there are sufficient differences between commodities, regions and seasons for additional assessment of critical temperature thresholds to be conducted for the very large number of horticultural commodities grown across a wide range of regions and seasons in Australia. 2 The next step should be an assessment of the vulnerability of major horticultural commodities and/or production regions in Australia. Those commodities and/or regions which are most vulnerable will require particular attention from growers and industry bodies. There is a need for additional assessment of other critical thresholds (e.g. rainfall) for the very large number of horticultural commodities grown across a wide range of regions and seasons in Australia. Recommendations for industry application More adaptable cultivars are required by all vegetable industries in Australia to cope better with a very variable as well as a changing climate. Identify those commodities and regions which will be most impacted by further rises in temperature (and decreases in rainfall runoff), and potential new or alternative locations where temperatures will be more favourable, up to and after 2030. Similarly, more adaptable fruit crop cultivars for some specific commodities such as apples will be required in the future as temperatures continue to rise. Identify those countries/regions, which currently export product to Australia, which will be significantly impacted by rising temperatures, and those which will become more competitive on the Australian market because of favourable impacts as a result of further changes to the world’s climate. Despite the lack of immediacy, growers and industry need to be vigilant in continuing to assess the changes in climate as they occur, and the impacts these changes will bring. The specific outcomes for each of the individual horticultural commodities assessed in this project should be directed to the Industry Bodies representing those industries. 3 2.0 Technical Summary Nature of the Problem Horticulture in Australia comprises a large number of commodities contributing ~ $7 billion annually to the economy. Horticultural crops are grown in a wide range of production regions due to the diversity of micro-climates. Horticultural crops are particularly sensitive to temperature, most having specific temperature requirements for the development of optimum yield and/or quality. In agriculture, a critical threshold is the point at which the production of a commodity becomes unviable due to identifiable change in a production variable. In horticulture, yield and or quality are usually the first to suffer as the threshold is approached or exceeded. Critical temperature thresholds differ for each commodity and often between different varieties. Science undertaken A review of literature and industry consultation was undertaken to document critical temperature thresholds for a number of major horticultural commodities. The focus was on temperature thresholds, to the exclusion of rainfall effects, because the majority of horticulture in Australia is irrigated. While this approach does not discount the importance of rainfall and associated runoff into irrigation storages, it is temperature which determines to a great extent the location and performance of the majority of horticultural commodities in Australia. The work program proceeded in the following stages: The current understanding of critical temperature thresholds was identified and documented through a review of literature for a selection of the major horticultural crops. Additional data on critical temperature thresholds was collected through consultation with informed growers, consultants and scientists. The impact of projected temperature change in 2030 was determined for selected horticultural commodities in current production regions using the information gained from the literature review. Potential adaption strategies documented. Findings reported through commodity specific case studies. Understanding the impact of temperature change on horticultural commodities is a necessary
Recommended publications
  • Stenoma Catenifer Walsingham
    Avocado Seed Moth Screening Aid Stenoma catenifer Walsingham Hanna R. Royals1, Todd M. Gilligan1 and Steven C. Passoa2 1) Identification Technology Program (ITP) / Colorado State University, USDA-APHIS-PPQ-Science & Technology (S&T), 2301 Research Boulevard, Suite 108, Fort Collins, Colorado 80526 U.S.A. (Emails: [email protected]; [email protected]) 2) USDA-APHIS-PPQ, USDA-FS Northern Forest Research Station and Ohio State University, 1315 Kinnear Road, Columbus, Ohio 43212 U.S.A. (Email: [email protected]) This CAPS (Cooperative Agricultural Pest Survey) screening aid produced for and distributed by: Version 2 20 January 2016 USDA-APHIS-PPQ National Identification Services (NIS) This and other identification resources are available at: http://caps.ceris.purdue.edu/taxonomic_services The avocado seed moth, Stenoma catenifer is one of the most important moth pests in avocado-growing regions of the world. Larvae feed on fruit flesh and burrow into the seed, producing large amounts of frass and causing the fruits to drop from the tree prematurely. Larval damage renders the fruits unfit for commercial sale, leading to significant economic losses. The avocado seed moth has only been recorded as feeding on members of the Lauraceae family, with Persea americana (avocado) as the major host and other secondary hosts: P. schiedeana (coyo), wild Persea spp., and Beilschmedia spp. California accounts for the majority of avocado production in the U.S., followed by Florida and Hawaii. Stenoma catenifer is a small moth with few distinguishing features Fig. 1. Dorsal (top) and ventral (bottom) as an adult.
    [Show full text]
  • Palomilla Barrenadora Del Aguacate Stenoma Catenifer Walsingham (Lepidoptera: Elachistidae)
    DIRECCIÓN GENERAL DE SANIDAD VEGETAL CENTRO NACIONAL DE REFERENCIA FITOSANITARIA FICHA TÉCNICA Palomilla barrenadora del aguacate Stenoma catenifer Walsingham (Lepidoptera: Elachistidae) Créditos: Hoddle, 2013. GRUPO ESPECIALISTA FITOSANITARIO DIRECCIÓN GENERAL DE SANIDAD VEGETAL CENTRO NACIONAL DE REFERENCIA FITOSANITARIA CONTENIDO IDENTIDAD ..............................................................................................................................................................1 Nombre científico..................................................................................................................................................1 Clasificación taxonómica ......................................................................................................................................1 Nombres comunes................................................................................................................................................1 Código EPPO .......................................................................................................................................................1 SITUACIÓN EN MÉXICO .........................................................................................................................................1 DISTRIBUCIÓN ........................................................................................................................................................1 HOSPEDANTES.......................................................................................................................................................1
    [Show full text]
  • Animal and Plant Health Inspection Service, USDA § 319.56–50
    Animal and Plant Health Inspection Service, USDA § 319.56–50 § 319.56–50 Hass avocados from Peru. requirements of paragraph (f) of this Fresh Hass variety avocados (Persea section. americana P. Mill.) may be imported (3) If the NPPO of Peru finds that a into the continental United States place of production or packinghouse is from Peru only under the conditions not complying with the requirements described in this section. These condi- of this section, no fruit from the place tions are designed to prevent the intro- of production or packinghouse will be duction of the following quarantine eligible for export to the United States pests: Anastrepha fraterculus (Wiede- until APHIS and the NPPO of Peru mann), the South American fruit fly; conduct an investigation and appro- Ceratitis capitata (Wiedemann), the priate remedial actions have been im- Mediterranean fruit fly; Coccus viridis plemented. (Green), the green scale; Ferrisia (4) The NPPO of Peru must retain all malvastra (McDaniel), a mealybug; and forms and documents related to export Stenoma catenifer Walsingham, the avo- program activities in places of produc- cado seed moth. tion and packinghouses for at least 1 (a) General requirements. (1) The na- year and, as requested, provide them to tional plant protection organization APHIS for review. (NPPO) of Peru must provide a (c) Grove sanitation. Avocado fruit workplan to APHIS that details the ac- that has fallen from the trees must be tivities that the NPPO of Peru will, removed from each place of production subject to APHIS’ approval of the at least once every 7 days, starting 2 workplan, carry out to meet the re- months before harvest and continuing quirements of this section.
    [Show full text]
  • Stenoma Catenifer
    Stenoma catenifer Scientific Name Stenoma catenifer Walsingham, 1912 Synonyms: None Common Name(s) Avocado seed moth, avocado borer, avocado moth, avocado seed worm Figure 1. Stenoma catenifer adult. Image taken in Guatemala (Mark Hoddle, Department of Entomology, University of California Type of Pest Riverside). Moth, borer Taxonomic Position Class: Insecta, Order: Lepidoptera, Family: Elachistidae (Also placed in Stenomidae, Oecophoridae and most recently in Depressariidae (S. Passoa, personal communication, 2015)). Reason for Inclusion Additional Pests of Concern 2013 Pest Description Eggs: “Light green when first laid, oval, 0.6 by 0.4 mm with corium transparent at first then cream colored” (USDA, 1980). The texture of the chorion is “reticulate with longitudinal grooves resembling irregular hexagons” (USDA, 1980). Larvae: “Fully grown larval length 20 – 25 mm [about 2 cm]. Body creamy white when newly emerged, becoming light rose by the 3rd instar. The dorsal side becomes violet and the ventral side, greenish [turquoise] blue by the 5th instar. Head light brown, turning black by the 5th instar with blackish eyespots and mandibles. Thoracic shield light brown with darker brown anterior edge. Figure 2. Stenoma catenifer eggs on an avocado branch. Image taken in Body light fuscous with blackish brown tubercles, Guatemala (Mark Hoddle, Department of prolegs with complete circle of alternating long and Entomology, University of California Riverside). Last update: February 2016 1 short crochets, abdominal segment 8 with spiracle high up on dorsum, anal shield dark brown” (USDA, 1980). Gilligan and Passoa (2014) diagnosed S. catenifer in their key to intercepted lepidopteran larvae as having a large prespiracular shield extending below the spiracle on the prothorax; the SV group bisetose on A1; A1-8 with SD1 and SD2 on the same pinaculum; A3-6 with the crochets in a biordinal to weakly triordinal complete circle; A8 with L3 above L1 and L2 and A9 with the the D1 and D2 setae on same pinaculum.
    [Show full text]
  • Moth Species Captured with the Sex Pheromone of Stenoma Catenifer (Lepidoptera: Elachistidae) in Avocado Plantations of Southern Mexico
    Castillo et al.: Moth Species Captured with Stenoma catenifer Sex Pheromone 1111 MOTH SPECIES CAPTURED WITH THE SEX PHEROMONE OF STENOMA CATENIFER (LEPIDOPTERA: ELACHISTIDAE) IN AVOCADO PLANTATIONS OF SOUTHERN MEXICO ALFREDO CASTILLO*, LEOPOLDO CRUZ-LOPEZ AND JAIME GÓMEZ El Colegio de la Frontera Sur (ECOSUR), Carretera Antiguo Aeropuerto km 2.5. Tapachula, 30700 Chiapas, Mexico *Corresponding author; E-mail: [email protected] ABSTRACT Moth species trapped using the sex pheromone of Stenoma catenifer (LaSalle) as a lure, were registered at 2 commercial avocado orchards (one consisting of “Hass” and other of “Criollo”) and in wild “Criollo” avocado trees in southern Mexico. Traps were maintained for 1 mo in two seasons (dry and wet) on avocado trees under these 3 production conditions, changing the baits each season. Weekly observations registered no moths in the traps placed in the commercial “Hass” avocado orchard, in contrast to the other 2 sites, where Stenoma cateni- fer and Antaeotricha nictitans males were captured. Stenoma catenifer adults were always observed at the commercial “Criollo” orchard and wild “Criollo” avocado trees during the dry season (fructification period), but never in the wet season (non fruiting period). Under wild conditions A. nictitans was captured during both dry and wet seasons; however, it was never captured during the dry season at the commercial “Criollo” orchard. Populations of both moth species were similar -S. catenifer: 0.3 (wild trees) to 0.7 (orchard); and A. nicti- tans: 0.6 (wild trees) moth/trap/wk- during the dry season, and no differences were observed per species at each locality. The total number of captures per site during the fruiting season decreased significantly -0.9 (1st wk) to 0.2(4th wk) moth/trap/wk- during the observation period.
    [Show full text]
  • Technical Bulletin
    TechnicalInformation Technology Bulletin Solutionsfor: Avocado Seed Moth Stenoma catenifer (Walsingham) • Lepidoptera, Depressariidae • STECAT Argentina, Colombia, El Salvador, Guatemala, Guyana, Honduras, Mexico, Peru, and DISTRIBUTION Venezuela. Has also been recorded in Brazil and the Galápagos Islands HOSTS Avocado and other species of Laurel. DESCRIPTION Moths are light tan color, and wings are marked with numerous black spots. Adult females are about 15 mm in length (tip of head to tip of wings) when in the resting position with wings folded Adult across the dorsum. Wing span for females with forewings fully spread is around 28–30 mm in breadth. Males tend to be slightly smaller (2–3 mm shorter) than females and are similarly colored Fully grown larval length 20 – 25 mm. Body creamy white when newly emerged, becoming light rose by the 3rd instar. The dorsal side becomes violet and the ventral side, greenish blue by the Larvae 5th instar. Head light brown, turning black by the 5th instar with blackish eyespots and mandibles. Light green when first laid, oval, 0.6 by 0.4 mm with corium transparent at first then cream Eggs colored. Laid in total from 180-240. Adults are active at night. Females oviposit on either the fruit crevices or on branches near where the fruit is attached. Larvae hatch in 5-6 days and tunnel into fruit pulp, feeding on the LIFE HISTORY seeds, which may be devoured in 20 days, or young branches, twigs and stems. After 21-28 days, larvae drop to the ground to pupate. The entire life cycle lasts 44-49 days.
    [Show full text]
  • Avocado Seed Moth, Stenoma Catenifer Walsingham (Lepidoptera: Elachistidae) in Queretaro, Mexico
    ISSN 0065-1737 Acta Zoológica MexicanaActa Zool. (n.s.), Mex. 27(2): (n.s.) 501-504 27(2) (2011) Nota Científica (Short Communication) AVOCADO SEED MOTH, STENOMA CATENIFER WALSINGHAM (LEPIDOPTERA: ELACHISTIDAE) IN QUERETARO, MEXICO Palacios Torres, R.E., M. Ramírez-Del Ángel., E. Uribe-González., D. Granados-Escamilla, J Romero-Castañeda & J. Valdez-Carrasco. 2011. La palomilla barrenadora del aguacate Stenoma catenifer Walsingham (Lepidoptera: Elachistidae) en Querétaro, México. Acta Zoológica Mexicana (n. s.), 27(2): 501-504. ABSTRACT. The avocado seed moth, Stenoma catenifer Walsingham, is recorded for the first time in the State of Queretaro, Mexico. Aspects about its habits and behavior are described. Documented knowledge on the avocado seed moth, S. catenifer, begins with its taxonomic description with specimens from Coatepeque, Guatemala, and Volcan de Chiriqui, Panama, at the beginning of the past century (Walsingham 1909). This document also includes specimens collected from Presidio, Mexico. Various other documents make reference to several aspects of this species in Mexico, such as, its morphological description, the damage that it causes in avocado fruits, habits and behavior, geographical distribution, and control measures (Mendez 1961, Garcia et al.1967, Acevedo et al.1972, Comision Nacional de Fruticultura 1973). The geo- graphical distribution of this moth in Mexico includes the States of Chiapas, Colima, Guerrero, Nuevo Leon, Oaxaca, Tamaulipas, and Veracruz (Acevedo et al. 1972). Wolfenbarger & Colburn (1979) observed
    [Show full text]
  • Memorias De Avances De
    0 MEMORIAS DE AVANCES DE INVESTIGACIÓN POSGRADO EN FITOSANIDAD 2019 COLEGIO DE POSTGRADUADOS CAMPUS MONTECILLO EDITORES OBDULIA LOURDES SEGURA LEON REMIGIO ANASTACIO GUZMÁN PLAZOLA MARCO ANTONIO MAGALLANES TAPIA GONZALO ESPINOSA VÁSQUEZ COMITÉ ORGANIZADOR REMIGIO ANASTACIO GUZMÁN PLAZOLA OBDULIA LOURDES SEGURA LEÓN MARCO ANTONIO MAGALLANES TAPIA GONZALO ESPINOSA VÁSQUEZ COORDINACIÓN DE DIFUSIÓN CLAUDIA CONTRERAS ORTÍZ DISEÑO DE PORTADA JORGE VALDEZ CARRASCO Montecillo, Texcoco, México, 15 de noviembre de 2019 0 AVANCES DE INVESTIGACIÓN - POSGRADO EN FITOSANIDAD 2019 PRESENTACIÓN El evento de Avances de Investigación, tuvo su origen en 1990, como una iniciativa dentro del entonces Instituto de Fitosanidad, ahora Posgrado en Fitosanidad. En 2019, se cumplen 28 años de su inicio y por primera vez; estos se unen al festejo del 60 aniversario de la creación de los Programas que le dieron su origen: Fitopatología y Entomología, en 1959. El evento de presentación de los avances de investigación del Posgrado en Fitosanidad tiene diferentes objetivos académicos, entre estos: a) que los estudiantes de maestría y doctorado próximos a graduarse como maestros o doctores en ciencias expongan, de forma oral, los trabajos de investigación que desarrollan; b) que obtengan experiencia para presentase ante un público académico experto en el área; c) favorecer la interacción académica entre las diferentes áreas de la Fitosanidad y del Colegio de Postgraduados y d) conocer los avances científicos y tecnológicos que se desarrollan en favor de la protección
    [Show full text]
  • Impacts of Deforestation on Mosquito Community Dynamics
    IMPACTS OF DEFORESTATION ON MOSQUITO COMMUNITY DYNAMICS Hayley Louise Brant Imperial College London Centre for Environmental Policy, Faculty of Natural Sciences, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK Thesis submitted for the degree of Doctor of Philosophy September 2015 2 Declaration of Originality I hereby certify that all content of this thesis is my original research and collaborations with other researchers are fully acknowledged. The experimental design, data collection and analysis of Chapter 5 was completed jointly with Borame Dickens, a fellow researcher at the Centre for Environmental Policy. We both contributed equally to this chapter. Hayley Brant Names of supervisors Professor John Mumford Dr Robert Ewers Copyright declaration The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work. 3 Abstract Human-induced land use changes, including deforestation, agricultural encroachment and urbanisation, have caused widespread change in the global distribution of organisms and caused considerable declines in biodiversity through loss of habitat. Oil palm is one of the most rapidly expanding crops in Southeast Asia, but the impact of this crop on mosquito distribution, behaviour and exposure potential has been poorly explored. Understanding these factors is essential for developing, optimising and evaluating novel control measures aimed at reducing disease-transmission.
    [Show full text]
  • DNA Barcodes for Bio-Surveillance
    Genome DNA Barcodes for Bio -surveillance: Regulated and Economically Important Arthropod Plant Pests Journal: Genome Manuscript ID gen-2016-0024.R2 Manuscript Type: Review Date Submitted by the Author: 16-Jul-2016 Complete List of Authors: Ashfaq, Muhammad; University of Guelph Biodiversity Institute of Ontario Hebert, Paul; Biodiversity Institute of Ontario, species identification,Draft cryptic taxa, invasive species, quarantine, pest Keyword: management https://mc06.manuscriptcentral.com/genome-pubs Page 1 of 73 Genome DNA Barcodes for Bio-surveillance: Regulated and Economically Important Arthropod Plant Pests Muhammad Ashfaq* and Paul D.N. Hebert Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, ON, Canada * Corresponding author: Draft Muhammad Ashfaq Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, ON N1G 2W1, Canada Email: [email protected] Phone: (519) 824-4120 Ext. 56393 1 https://mc06.manuscriptcentral.com/genome-pubs Genome Page 2 of 73 Abstract Many of the arthropod species that are important pests of agriculture and forestry are impossible to discriminate morphologically throughout all of their life stages. Some cannot be differentiated at any life stage. Over the past decade, DNA barcoding has gained increasing adoption as a tool to both identify known species and to reveal cryptic taxa. Although there has not been a focused effort to develop a barcode library for them, reference sequences are now available for 77% of the 409 species of arthropods documented on major pest databases. Aside from developing the reference library needed to guide specimen identifications, past barcode studies have revealed that a significant fraction of arthropod pests are a complex of allied taxa.
    [Show full text]
  • Key to Frequently Named Lepidopteran Larvae Intercepted, Or Potentially Encountered, at Us Ports
    KEY TO FREQUENTLY NAMED LEPIDOPTERAN LARVAE INTERCEPTED, OR POTENTIALLY ENCOUNTERED, AT US PORTS S. C. Passoa, 2014 This key is designed to identify the most frequently named Lepidoptera at United States ports of entry as of 2013. Because many species cannot be named (early instars or poorly studied groups), it is not a given that this key has all the most frequently intercepted taxa. Some genera may regularly intercepted but unrecognized. The huge variety of early instar Noctuidae/Erebidae is a good example of this problem. There are many other taxa in this category. Trade patterns are constantly changing over time, users should expect a need to delete or add species to this key in the future. Good comprehensive larval keys exist (Carter and Kristensen 1998, Stehr 1987) but as a rule they are too long and complicated for the volume of material we get in APHIS. Also, they rarely go past family. This key is a compromise between the need to for precision and speed. Thus, a good collection and detailed understanding of larval morphology is assumed and required. All of the references cited in the LepIntercept fact sheets need to be part of any port library. This document serves as a blanket recommendation for their purchase or copying costs from the APHIS Lepidoptera specialist to any port needing a justification. This key assumes eventual full access to the appropriate literature. Getting this information needs to be a priority for ports frequently intercepting larval Lepidoptera. Many of the copyrighted books are never going to be "on-line" and go out of print relatively fast.
    [Show full text]
  • Proactive IPM of the Big Avocado Seed Weevil, Heilipus Lauri (Coleoptera: Curculionidae)
    California By Mark S. Hoddle AvoTech Department of Entomology, UC Riverside Proactive IPM of the Big Avocado Seed Weevil, Heilipus lauri (Coleoptera: Curculionidae) Aeration chambers in quarantine set up to capture H. lauri aggregation pheromones. vocados, an iconic specialty ity of this industry (Hoddle 2006). The Vildózola, et al. 2017; Luna et al. 2017; crop grown in California, are avocado seed moth, S. catenifer, was the Vallejo et al. 2014). Around 60% of native to parts of México, and subject of a proactive Integrated Pest Hass fruit have been reported as be- ACentral and South America, where as- Management project sponsored by the ing damaged by H. lauri in unmanaged sociated native insect biodiversity is California Avocado Commission. This orchards in Morelos, México (Medina high. In contrast, the biodiversity of multi-year project, run primarily in 2005), while in Colombia, damage lev- the arthropod fauna associated with Guatemala and Peru, resulted in iden- els in managed Hass orchards average avocados in California is low, consist- tification of this moth’s sex pheromone, 4-8% (Caicedo et al. 2010). ing primarily of about four invasive pest optimization of its field use (Hoddle et Adult H. lauri feed on leaves and species of insects (red banded whitefly, al. 2011), and development of natural young stems but don’t reproduce on avocado thrips, and avocado lace bug) enemy inventories and life table quan- these structures. Female seed feeding and mites (persea mite) that primarily tification of their impacts (Hoddle and weevils lay eggs inside holes they drill feed on leaves (Hoddle 2006). Hoddle 2008; 2012).
    [Show full text]