A Study of the Interaction Between the Plant Pathogenic Fungus Botrytis Cinerea and the Filamentous Ssrna Mycoviruses Botrytis Virus X and Botrytis Virus F

Total Page:16

File Type:pdf, Size:1020Kb

A Study of the Interaction Between the Plant Pathogenic Fungus Botrytis Cinerea and the Filamentous Ssrna Mycoviruses Botrytis Virus X and Botrytis Virus F A study of the interaction between the plant pathogenic fungus Botrytis cinerea and the filamentous ssRNA mycoviruses Botrytis virus X and Botrytis virus F Barbara Boine A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Biological Sciences. The University of Auckland, April 2012. i Abstract The ecological significance of mycoviruses is becoming increasingly recognised, not just for their potential as biocontrol agents but also as driving forces in the evolution and diversification of fungi. Therefore, it is important to understand how mycoviruses and fungi interact on the molecular and biochemical level. To this end the interaction between Botrytis cinerea and the mycoviruses Botrytis virus F and Botrytis virus X was studied. Relative and absolute real time PCR protocols were developed for monitoring the titres of BVX and BVF during transfection studies to monitor changes in virus titre in relation to phenotypic and metabolic changes in the fungal host. Phenotypic changes included severe phenotypical alterations, which were associated with extreme up regulation of carbohydrate, amino acid and lipid metabolism, and induction of stress responses (vacuolisation/cell lysis, increased pigmentation). To study the location and distribution of BVX in infected Botrytis the BVX coat protein was recombinantly expressed in E. coli, BVX specific polyclonal antibodies produced, and protocols developed for the serological detection and visualisation of BVX. Immuno-fluorescence microscopy was used to studying the distribution of BVX within growing Botrytis cultures indicated that the virus is present in aggregates located attached to the cell membrane, the septum, in spores, and in hyphal tips. A combination of light and electron microscopy showed that BVX is often closely associated with cell walls, suggesting that the virus may be moving across the cell wall by altering cell wall composition. If this is shown to be the case then it provides an alternative method to transmission via hyphal anastomosis, which is currently considered to be the only method of horizontal transfer. ii To Matthias iii ‘It takes a lot of courage to release the familiar and seemingly secure, to embrace the new. But there is no real security in what is no longer meaningful. There is more security in the adventurous and exciting, for in movement there is life, and in change there is power.’ — Alan Cohen iv Acknowledgment First, I would like to thank my partner Matthias Kessler, who came with me to New Zealand not knowing what to expect and how this journey would turn out. His love, support, encouragements as well as constructive critics helped me in so many ways to advance personally as well as professionally. Mein Liebchen, the PhD would not have been possible without you. Secondly, I would like to express my gratitude for my supervisor Associate Professor Mike Pearson. The trust, freedom and guidance I was allowed to experience under Mike’s supervision inspired me, let me see things from a different point of view and helped me to find my own way. His reliable support, professionally as well as privately, made me feel appreciated and welcomed. I am especially thankful for the quick and thorough reviewing, commenting and correcting of my thesis. Thank you Mike, it was a pleasure and an honor to have been one of your PhD students. Similarly, I would like to thank Ross Beever, who was also a great inspiration for me and I feel honored and blessed to have known him. He was and is missed immensely! I am also very thankful for the help and advice from my advisors Andy Bailey and Professor Gary Foster, and also for the lab training I received from Risha Patel in Bristol. Furthermore, this PhD thesis was only possible due to the financial support of the Bio-Protection Research Centre (Lincoln, Canterbury, New Zealand). I highly appreciated that I was able to attend several overseas and New Zealand conferences as well as workshops. Moreover, I would like to thank my colleagues and collaborators Sarah Jane Cowell, Kar Mun Chooi, Scott Harper, Colin Tan, Kieren Arthur, Joanne Smith, Nicole Anfang, Mahmoud Khalifa, Elizabeth Woo, Peter Deines, Christian Kost, Susanne Schmitt, Kelly Roberts, Sonia Lilly, Saadiah Arshed, Graham Bailey, Siri Alana McKelvie, Raphael Aggio, Silas G. Vilas-Boas, Jane Martin, Karin Hoksbergen and Dang Nguyen for their help, support and constructive discussions. As several of my colleagues were also my friends, I feel especially fortunate to have spent movie, dinner, and game night with them together. Thank you for these wonderful times! Being a PhD student at the University of Auckland and in Mike Pearson’s lab also taught me how to give a presentation at international conferences, to work under pressure and to find your way through unfamiliar territory, which were many things in the beginning because English and New Zealand were still foreign to me. The plant pathology community of Auckland and New Zealand helped me greatly to overcome this and made me feel home and welcomed. Especially, I would like to say thank you to Colleen Higgins, Robin McDiarmid, Dan Cohen, Matt Templeton and plant pathology meeting group for their support and help during lab meetings and conferences, but also with practical questions, and professional advice. v However, one of the most difficult parts of this PhD was the expression of the BVX coat protein. Without the help of Richard L. Kingston this success would not have been possible. Therefore, I owe Richard a big thank you for his ideas and advices. Furthermore, I want to thank Robert Sutherland for the preparation of the ultra-thin cross sections through Botrytis hyphae and very helpful discussions about fluorescence microscopy techniques. A lot of practical help with the electron and fluorescence microscope I also received from Adrian Turner. I am very grateful for his endless patience and kindness. Furthermore, I would like to thank Ian McDonald, who was always there when pictures needed to be taken or printed. During the last 4 ½ years, I also highly appreciated and enjoyed the support of my friends and my family. Catia Delmiglio was always there for me to cheer me up, to stand by me, to party with me and to give me a home when needed. Her advice and help throughout the entire PhD was extraordinary! I am also very grateful for the friendship with Gerard Clover and Sarah Burges who helped my partner and me in so many ways and we will never forget the understanding and comforting we received. Furthermore, I want to thank my friends Ines and Robert Winz, who helped out with accommodation many times and who were always there for me. Also, I want to thank Christian Paul, who visit me in New Zealand, and brought a little bit of home to me. And after all those years of studying, I finally get to thank my dear friend Katrin Kuscher, who always believed in me, encouraged me and was there for me when it was important. In this context, I would also like to thank Gisela Naujoks, who showed me how much fun science can be and that it is worth perusing your dreams. At last, I want to say a very big thank you to my family, who was and is very patient with me and supported and encouraged me during my whole life. Mutti, I thank you so much for being there for me, for soothing me, for putting no pressure on me and for waiting for me. Judi, mein Schwesterherz, I thank you for being such a great sister. I could always rely on your love and on your care. Vati, I thank you for being there me for as long as you could. You will always be in my heart. And the rhyme you told me once still stands: “Es gibt nichts Gutes, auβer man tut es!”. vi Contents Abstract ………………………………………………………………………..….……...ii Acknowledgment ………………………………………………………………………..…..…..…v Contents ………………………………………………………………………...…….…vii Chapter index ………………………………………………………………………….…...…vii List of tables ……………………………………………………………………..….………xiii List of figures ……………………………………………..……………………...……..….…xv Abbreviations …………………………………………………………….….……………...xxvi Formulas ……………………………………………………………..……..….......…..xxxi Thesis chapters ……………………………………………………………………….….…....…1 Appendices ……………………………………………………………………..….…...…217 Bibliography ………………………………………………………………………..…..…..237 Chapter index 1. Introduction 1 1.1 Botrytis cinerea 1 1.1.1 General background information 1 1.1.2 Taxonomy and genetic characteristics of Botrytis cinerea 3 1.1.3 Somatic compatibility 4 1.1.4 Characteristics, pathogenesis, and disease cycle of Botrytis cinerea 5 1.1.5 Chemical and microbial control 7 1.1.6 Biocontrol agents for Botrytis cinerea and their modes of action 8 1.2 Mycoviruses 10 1.2.1 Introduction 10 1.2.2 Diversity of mycoviruses 11 vii 1.2.3 Host range and incidence 15 1.2.4 Origin and evolution of mycoviruses 16 1.2.5 Transmission and movement of mycoviruses 17 1.2.6 Effects of mycoviruses on host phenotype 19 1.2.7 Mycoviruses as biological control agents 21 1.2.8 Molecular techniques and the study of the virus-fungal interactions 22 1.3. Mycoviruses of Botrytis cinerea 24 1.3.1 Introduction 24 1.3.2 Botrytis virus F and Botrytis virus X 25 1.3.2.1 Genetic characteristics of BVF and BVX 27 1.4 Research aims 31 2. Material and methods 32 2.1. Fungal isolates and plant material 32 2.2 Culturing conditions of Botrytis isolates 33 2.3 Molecular protocols 34 2.3.1 DNA and RNA extraction 34 2.3.2 PCR reactions and primer design 36 2.3.2.1 Primer design 36 2.3.2.2 General gel electrophoresis procedure 37 2.3.2.3 Screening for presence of plasmid-DNA inserts 37 2.3.2.4 Detection of viral RNA by reverse transcription PCR and real-time PCR 38 2.3.3 Cloning of DNA fragments 40 2.3.3.1 Ligations and digests 40 2.3.4 Transformation of Escherichia coli DHα5 cells 41 2.4 Partial virus purification 42 viii 3.
Recommended publications
  • Virus World As an Evolutionary Network of Viruses and Capsidless Selfish Elements
    Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Koonin, E. V., & Dolja, V. V. (2014). Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements. Microbiology and Molecular Biology Reviews, 78(2), 278-303. doi:10.1128/MMBR.00049-13 10.1128/MMBR.00049-13 American Society for Microbiology Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Eugene V. Koonin,a Valerian V. Doljab National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USAa; Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USAb Downloaded from SUMMARY ..................................................................................................................................................278 INTRODUCTION ............................................................................................................................................278 PREVALENCE OF REPLICATION SYSTEM COMPONENTS COMPARED TO CAPSID PROTEINS AMONG VIRUS HALLMARK GENES.......................279 CLASSIFICATION OF VIRUSES BY REPLICATION-EXPRESSION STRATEGY: TYPICAL VIRUSES AND CAPSIDLESS FORMS ................................279 EVOLUTIONARY RELATIONSHIPS BETWEEN VIRUSES AND CAPSIDLESS VIRUS-LIKE GENETIC ELEMENTS ..............................................280 Capsidless Derivatives of Positive-Strand RNA Viruses....................................................................................................280
    [Show full text]
  • Exploring the Tymovirids Landscape Through Metatranscriptomics Data
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.15.452586; this version posted July 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Exploring the tymovirids landscape through metatranscriptomics data 2 Nicolás Bejerman1,2, Humberto Debat1,2 3 4 1 Instituto de Patología Vegetal – Centro de Investigaciones Agropecuarias – Instituto Nacional de 5 Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5 (X5020ICA), Córdoba, 6 Argentina 7 2 Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización 8 Agrícola, Camino 60 Cuadras Km 5,5 (X5020ICA), Córdoba, Argentina 9 10 Corresponding author: Nicolás Bejerman, [email protected] 11 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.15.452586; this version posted July 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 12 Abstract 13 Tymovirales is an order of viruses with positive-sense, single-stranded RNA genomes that mostly infect 14 plants, but also fungi and insects. The number of tymovirid sequences has been growing in the last few 15 years with the extensive use of high-throughput sequencing platforms. Here we report the discovery of 31 16 novel tymovirid genomes associated with 27 different host plant species, which were hidden in public 17 databases.
    [Show full text]
  • 2007.014-017P (To Be Completed by ICTV Officers)
    Taxonomic proposal to the ICTV Executive Committee This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Code assigned: 2007.014-017P (to be completed by ICTV officers) Short title: New genus Botrexvirus for Botrytis virus X Modules attached 1 2 3 4 5 (please check all that apply): 6 7 Author(s) with e-mail address(es) of the proposer: Mike Adams ([email protected]) on behalf of the Flexiviridae SG and Jan Kreuze ([email protected]) If the proposal has been seen and agreed by the relevant study group(s) write “yes” in the box on the right YES ICTV-EC or Study Group comments and response of the proposer: The original (2007) proposals were to place the new genus within a new subfamily Alphaflexivirinae and to retain the existing families Flexiviridae and Tymoviridae in the new order Tymovirales. As a result of EC discussion and comments, the Study Group has agreed to split the Flexiviridae into three families and thus create an order with four families. Assignment is therefore to the new family Alphaflexiviridae. Date first submitted to ICTV: 08 June 2007 Date of this revision (if different to above): 20 Aug 2008 MODULE 2: NEW SPECIES Code 2007.014P (assigned by ICTV officers) To create 1 new species with the name(s): Botrytis virus X MODULE 3: NEW GENUS Code 2007.015P (assigned by ICTV officers) To create a new genus to contain
    [Show full text]
  • Small Hydrophobic Viral Proteins Involved in Intercellular Movement of Diverse Plant Virus Genomes Sergey Y
    AIMS Microbiology, 6(3): 305–329. DOI: 10.3934/microbiol.2020019 Received: 23 July 2020 Accepted: 13 September 2020 Published: 21 September 2020 http://www.aimspress.com/journal/microbiology Review Small hydrophobic viral proteins involved in intercellular movement of diverse plant virus genomes Sergey Y. Morozov1,2,* and Andrey G. Solovyev1,2,3 1 A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia 2 Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia 3 Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia * Correspondence: E-mail: [email protected]; Tel: +74959393198. Abstract: Most plant viruses code for movement proteins (MPs) targeting plasmodesmata to enable cell-to-cell and systemic spread in infected plants. Small membrane-embedded MPs have been first identified in two viral transport gene modules, triple gene block (TGB) coding for an RNA-binding helicase TGB1 and two small hydrophobic proteins TGB2 and TGB3 and double gene block (DGB) encoding two small polypeptides representing an RNA-binding protein and a membrane protein. These findings indicated that movement gene modules composed of two or more cistrons may encode the nucleic acid-binding protein and at least one membrane-bound movement protein. The same rule was revealed for small DNA-containing plant viruses, namely, viruses belonging to genus Mastrevirus (family Geminiviridae) and the family Nanoviridae. In multi-component transport modules the nucleic acid-binding MP can be viral capsid protein(s), as in RNA-containing viruses of the families Closteroviridae and Potyviridae. However, membrane proteins are always found among MPs of these multicomponent viral transport systems.
    [Show full text]
  • Melbourne Australia 16 – 19 November 2010
    9th h 9t MelbourneMelbourne AustraliaAustralia 1616 –– 1919 NovemberNovember 20102010 Sponsored by ISBN 978-1-74264-590-2 (online) Welcome Welcome to the 9th Australasian Plant Virology Workshop (APVW). The organising committee would like to thank our fellow plant virologists and researchers of virus-like organisms for attending our virology workshop in Melbourne. This workshop provides a forum for plant virologists from Australia, New Zealand and the rest of the world to meet on a biannual basis and discuss plant virus and virus-like topics in a congenial environment, over four days. Our theme for the workshop is “Plant viruses: Friend or foe?” We would like to build on the concepts introduced to this group at the 8th Australasian Plant Virology Workshop and consider the role of viruses as both pathogens and as beneficial organisms. The talks and posters for this workshop have been aligned with seven themes: Plant virus ecology and diversity; New and emerging viruses; Virus-like organisms; Plant virus diversity and detection; New tools and technologies; Plant host-virus interactions; and Plant virus epidemiology and climate change. We have officially aligned the APVW with the Australasian Plant Pathology Society as a special interest group and we now have an official website aligned with APPS (http://www.australasianplantpathologysociety.org.au/). As part of the program we have also scheduled a one hour meeting to discuss the formalisation of the Australasian Plant Virology Special Interest Group (APV) and any issues that are relevant to our newly formed group. We would like to extend a special thanks to several organisations for their support: • Horticulture Australia Limited (HAL) for sponsoring this workshop • Cooperative Research Centre for National Plant Biosecurity who are a platinum sponsor of this workshop, and providing the satchels • Victorian Department of Primary Industries who sponsored Ulrich Melcher and Ko Verhoeven • Qiagen as an exhibition sponsor, and • The Jasper Hotel for their support in hosting the workshop.
    [Show full text]
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person
    [Show full text]
  • Virus De La Marchitez Del Tomate (Tomarv) En El Noroeste De México E Identificación De Hospedantes Alternos” TESIS
    INSTITUTO POLITÉCNICO NACIONAL CENTRO INTERDISCIPLINARIO DE INVESTIGACIÓN PARA EL DESARROLLO INTEGRAL REGIONAL UNIDAD SINALOA “Presencia del Virus de la marchitez del tomate (ToMarV) en el Noroeste de México e identificación de hospedantes alternos” TESIS QUE PARA OBTENER EL GRADO DE MAESTRÍA EN RECURSOS NATURALES Y MEDIO AMBIENTE PRESENTA ROGELIO ARMENTA CHÁVEZ GUASAVE, SINALOA; MÉXICO DICIEMBRE, 2012 Agradecimientos a proyectos El trabajo de tesis se desarrolló en el Departamento de Biotecnología Agrícola del Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR) Unidad Sinaloa del Instituto Politécnico Nacional (IPN). El presente trabajo fue apoyado económicamente por el IPN y recursos autogenerados. El alumno Rogelio Armenta Chávez fue apoyado con una beca CONACYT con clave 366650 y por el IPN a través de la beca PIFI dentro del proyecto Determinación de la importancia de hospedantes alternos en la dispersión de Ca. Liberibacter sp. en el Norte de México (Con número de registro 20120507). DEDICATORIA A mis padres A ellos por haberme dado la vida y haberse preocupado día a día por mi bienestar y futuro, a ellos les dedicó esta tesis, mi vida y mi ser. Gracias por ser mis padres. A mi novia A mi novia Karen quien siempre me ha apoyado en todo, sin condición alguna; por darme su amor y cariño, por eso gracias. A mi tía Soledad Armenta Por estar a mi lado en los momentos difíciles y haberme dado su apoyo y fuerza para salir adelante día con día. Gracias por eso y por todo lo que venga. A mi hermana Quien ha estado conmigo en las buenas y en las malas a lo largo de mi vida; gracias hermana por ese apoyo tan peculiar que me das.
    [Show full text]
  • Viroze Biljaka 2010
    VIROZE BILJAKA Ferenc Bagi Stevan Jasnić Dragana Budakov Univerzitet u Novom Sadu, Poljoprivredni fakultet Novi Sad, 2016 EDICIJA OSNOVNI UDŽBENIK Osnivač i izdavač edicije Univerzitet u Novom Sadu, Poljoprivredni fakultet Trg Dositeja Obradovića 8, 21000 Novi Sad Godina osnivanja 1954. Glavni i odgovorni urednik edicije Dr Nedeljko Tica, redovni profesor Dekan Poljoprivrednog fakulteta Članovi komisije za izdavačku delatnost Dr Ljiljana Nešić, vanredni profesor – predsednik Dr Branislav Vlahović, redovni profesor – član Dr Milica Rajić, redovni profesor – član Dr Nada Plavša, vanredni profesor – član Autori dr Ferenc Bagi, vanredni profesor dr Stevan Jasnić, redovni profesor dr Dragana Budakov, docent Glavni i odgovorni urednik Dr Nedeljko Tica, redovni profesor Dekan Poljoprivrednog fakulteta u Novom Sadu Urednik Dr Vera Stojšin, redovni profesor Direktor departmana za fitomedicinu i zaštitu životne sredine Recenzenti Dr Vera Stojšin, redovni profesor, Univerzitet u Novom Sadu, Poljoprivredni fakultet Dr Mira Starović, naučni savetnik, Institut za zaštitu bilja i životnu sredinu, Beograd Grafički dizajn korice Lea Bagi Izdavač Univerzitet u Novom Sadu, Poljoprivredni fakultet, Novi Sad Zabranjeno preštampavanje i fotokopiranje. Sva prava zadržava izdavač. ISBN 978-86-7520-372-8 Štampanje ovog udžbenika odobrilo je Nastavno-naučno veće Poljoprivrednog fakulteta u Novom Sadu na sednici od 11. 07. 2016.godine. Broj odluke 1000/0102-797/9/1 Tiraž: 20 Mesto i godina štampanja: Novi Sad, 2016. CIP - Ʉɚɬɚɥɨɝɢɡɚɰɢʁɚɭɩɭɛɥɢɤɚɰɢʁɢ ȻɢɛɥɢɨɬɟɤɚɆɚɬɢɰɟɫɪɩɫɤɟɇɨɜɢɋɚɞ
    [Show full text]
  • 2007.018-020P (To Be Completed by ICTV Officers)
    Taxonomic proposal to the ICTV Executive Committee This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Code assigned: 2007.018-020P (to be completed by ICTV officers) Short title: Creation of new family Alphaflexiviridae (e.g. 6 new species in the genus Zetavirus; re-classification of the family Zetaviridae etc.) Modules attached 1 2 3 4 5 (please check all that apply): 6 7 Author(s) with e-mail address(es) of the proposer: Mike Adams ([email protected]) on behalf of the Flexiviridae SG and Jan Kreuze ([email protected]) If the proposal has been seen and agreed by the relevant study group(s) write “yes” in the box on the right YES ICTV-EC or Study Group comments and response of the proposer: The original (2007) proposal was to create a new subfamily Alphaflexivirinae within the family Flexiviridae and to assign the families Flexiviridae and Tymoviridae in the new order Tymovirales. As a result of EC discussion and comments, the Study Group has agreed to split the Flexiviridae into three families and thus create an order with four families. This therefore becomes a proposal to create a new family Alphaflexiviridae. Date first submitted to ICTV: 08 June 2007 Date of this revision (if different to above): 20 Aug 2008 MODULE 5: NEW FAMILY Code 2007.018P (assigned by ICTV officers) To create a new family containing genera resembling:
    [Show full text]
  • Rajarshi Kumar Gaur · Nikolay Manchev Petrov Basavaprabhu L
    Rajarshi Kumar Gaur · Nikolay Manchev Petrov Basavaprabhu L. Patil Mariya Ivanova Stoyanova Editors Plant Viruses: Evolution and Management Plant Viruses: Evolution and Management Rajarshi Kumar Gaur • Nikolay Manchev Petrov • Basavaprabhu L. Patil • M a r i y a I v a n o v a S t o y a n o v a Editors Plant Viruses: Evolution and Management Editors Rajarshi Kumar Gaur Nikolay Manchev Petrov Department of Biosciences, College Department of Plant Protection, Section of Arts, Science and Commerce of Phytopathology Mody University of Science and Institute of Soil Science, Technology Agrotechnologies and Plant Sikar , Rajasthan , India Protection “Nikola Pushkarov” Sofi a , Bulgaria Basavaprabhu L. Patil ICAR-National Research Centre on Mariya Ivanova Stoyanova Plant Biotechnology Department of Phytopathology LBS Centre, IARI Campus Institute of Soil Science, Delhi , India Agrotechnologies and Plant Protection “Nikola Pushkarov” Sofi a , Bulgaria ISBN 978-981-10-1405-5 ISBN 978-981-10-1406-2 (eBook) DOI 10.1007/978-981-10-1406-2 Library of Congress Control Number: 2016950592 © Springer Science+Business Media Singapore 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID- 19 Pandemic: A
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID- 19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. March 2021 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Raphael Freitas de Souza, Faculty of Dentistry, McGill University Paul Allison, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University March 31, 2021 1 Contents Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. .................................................................................................................................. 1 Foreword to the second update ............................................................................................. 4 Introduction ............................................................................................................................. 5 Project goal............................................................................................................................. 5 Specific objectives .................................................................................................................. 6 Methods used to identify and include relevant literature ......................................................
    [Show full text]
  • 50-Plus Years of Fungal Viruses
    Virology 479-480 (2015) 356–368 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/yviro Review 50-plus years of fungal viruses Said A. Ghabrial a,n, José R. Castón b, Daohong Jiang c, Max L. Nibert d, Nobuhiro Suzuki e a Plant Pathology Department, University of Kentucky, Lexington, KY, USA b Department of Structure of Macromolecules, Centro Nacional Biotecnologıa/CSIC, Campus de Cantoblanco, Madrid, Spain c State Key Lab of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, PR China d Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA e Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan article info abstract Article history: Mycoviruses are widespread in all major taxa of fungi. They are transmitted intracellularly during cell Received 9 January 2015 division, sporogenesis, and/or cell-to-cell fusion (hyphal anastomosis), and thus their life cycles generally Returned to author for revisions lack an extracellular phase. Their natural host ranges are limited to individuals within the same or 31 January 2015 closely related vegetative compatibility groups, although recent advances have established expanded Accepted 19 February 2015 experimental host ranges for some mycoviruses. Most known mycoviruses have dsRNA genomes Available online 13 March 2015 packaged in isometric particles, but an increasing number of positive- or negative-strand ssRNA and Keywords: ssDNA viruses have been isolated and characterized. Although many mycoviruses do not have marked Mycoviruses effects on their hosts, those that reduce the virulence of their phytopathogenic fungal hosts are of Totiviridae considerable interest for development of novel biocontrol strategies.
    [Show full text]