Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021 1 Supplementary Information 2 The Impact of Hydrogen Valence on Its Bonding and Transport in Molten Fluoride Salts 3 Stephen T. Lam1,2*, Qing-Jie Li1, Jonathan Mailoa3, Charles Forsberg1, Ronald Ballinger1,4, Ju Li1,4 4 1Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 5 02139, USA 6 2Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA 7 3Bosch Research and Technology Center, Cambridge, MA 02139, USA 8 4Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, 9 MA 02139, USA 10 * Corresponding author:
[email protected] 11 12 Supplementary Notes 13 Supplementary Note 1: Simulated versus experimental local structure of fluorides 14 For structural analysis, X-ray and neutron diffraction methods are most commonly used. In 15 polyatomic systems, the total interference function 퐹푁(푄) is decomposed into a weighted linear combination 16 of the component pair structure factors 푆훼훽(푄). Taking Fourier transforms of these structure factors, the real 17 space distribution functions 푔훼훽(푟) are determined. In practice, scattering methods for multi-component 18 systems should be coupled to simulation and other experimental methods to fully understand and resolve 19 features of the diffraction pattern [1][2][3]. 20 The fluoride salts LiF, NaF, KF, BeF2, Flibe and Flinak are simulated since they are the prototypical 21 salt and salt constituents of interest. The local structure is determined by the radial distribution function and 22 compared. Overall, there is good agreement between the simulations and experiments across a range of 23 fluorides.