1462 Element of Month Beryllium BS

Total Page:16

File Type:pdf, Size:1020Kb

1462 Element of Month Beryllium BS All About Elements: Beryllium 1 Boreal’s All About Elements Series Fun Facts Building Real-World Connections to About… 4 the Building Blocks of Chemistry Beryllium PERIODIC TABLE OF THE ELEMENTS 1. Prior to being named beryllium, this element GROUP 1/IA 18/VIIIA 1 2 was known as glucinium, which originated H KEY He from the Greek word glykys, meaning sweet. Atomic Number 1.01 2/IIA 35 13/IIIA 14/IVA 15/VA 16/VIA 17/VIIA 4.00 3 4 5 6 7 8 9 10 Symbol It was so named due to it characteristic Li Be Br B C N O F Ne 6.94 9.01 79.90 Atomic Weight 10.81 12.01 14.01 16.00 19.00 20.18 11 12 13 14 15 16 17 18 sweet taste. Na Mg Al Si P S Cl Ar 8 9 10 22.99 24.31 3/IIIB 4/IVB 5/VB 6/VIB 7/VIIB VIIIBVIII 11/IB 12/IIB 26.98 28.09 30.97 32.07 35.45 39.95 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Be K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 2. Emerald, morganite and aquamarine are 39.10 40.08 44.96 47.87 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.41 69.72 72.64 74.92 78.9678.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 precious forms of beryl. Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (97.91)(98) 101.07 102.91 106.42 107.87 112.41 114.82 118.71 121.76 127.60 126.90 131.29 55 56 57–71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs Ba La-Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 3. Beryllium is resistant to concentrated 9.012 ´ 132.91 137.33 178.49 180.95 183.84 186.21 190.23 192.22 195.08 196.97 200.59 204.38 207.20207.2 208.98 (208.98)(209) (209.99)(210) (222.02)(222) 87 88 89–103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 nitric acid. Fr Ra AcAc-Lr - Lr Rf Db Sg Bh Hs Mt Ds Rg Uub Uut Uuq Uup Uuh Uus Uuo ´´ (223.02)(223) (226.03)(226) (261.11)(261) (262.11)(262) (266.12)(266) (264.12)(264) (277.00)(277) (268.14)(268) (247.07)(269) (280.00)(272) (285.00)(285) (284.00)(284) (289.00)(289) (288.00)(288) (293.00)(289) (294.00) (294.00)(294) ´ 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 4. Where beryllium is rather transparent to x-rays, this element and its compounds are highly La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 138.91 140.12 140.91 144.24 (144.91)(145) 150.36 151.97151.96 157.25 158.93 162.50 164.93 167.26 168.93 173.04 174.97 US: www.wardsci.com reflective to infrared light. Canada: www.wardsci.ca ´´ 800-962-2660 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 © 2010 Rev. 7/15 Ward’s Science. All Rights Reserved. No portion of this work may be reproduced in any form Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr or by any means without express prior written permission from Ward’s Science. (227.03)(227) 232.04232.04 231.04 238.03 (237.05)(237) (244.06)(244) (243.06)(243) (247.07)(247) (247.07)(247) (251.08)(251) (252.08)(252) (257.10)(257) (258.10)(258) (259.10)(259) (262.11)(262) US: www.scholarchemistry.com Canada: www.scholarchemistry.ca NOTES: Black — solid Red — gas Blue — liquid — synthetically prepared 866-260-0501 © Copyright 2010 ScholAR Chemistry. All Rights Reserved. Values provided are based on the 85th edition of the CRC Handbook of Chemistry and Physics. Some values have been rounded. BASICNo portion PERIODIC of this work TABLE may be reproduced- SIDE 1 (Rev.in any form7/15) or by any means without express prior written permission from ScholAR Chemistry. 5. Between 1998 and 2000 beryllium-aluminum-alloy pistons were used in the McLaren Formula Catalog #9630200 One racecar used by Mercedes-Benz. The periodic table of elements is an essential part of any chemistry classroom or science lab, but have you ever stopped to wonder about all of the amazing ways each element is used to create the world around us? Each of the trillions of substances in our universe can be tied back to just these 118 simple, yet powerful elements. All About In our All About Elements series, we’ve brought together the most fascinating Beryllium: facts and figures about your favorite elements so students can explore their properties and uses in the real world and you can create chemistry connections Beryllium is the fourth element on the Periodic Table of Elements, found in group 2 (2A), with atomic number of 4, in your classroom and beyond. and symbol Be. Beryllium contains two valence electrons, with a configuration of 1s22s2, making it an alkaline earth metal. Interestingly, beryllium is unlike other alkaline earth Look for a new featured element each month, plus metals in that it does not form ions. The result of this is all limited-time savings on select hands-on materials beryllium compounds are covalent compounds rather than ionic compounds. Beryllium is denser than water, with a to incorporate these element in your lessons. density of 1.85 g/cm3. In its pure elemental form it is a shiny- gray metal that is relatively brittle at room temperature. It is estimated that the crustal abundance of beryllium on Earth is only 2.8 mg/kg, mainly concentrated in soils, however beryllium is found in over 100 mineral species, includ- ing bertrandite, beryl, chrysoberyl, and phenacite. Beryl and bertrandite are the most important commercial sources of the element and its compound today. In fact, the name of beryllium originated from beryllos, which is the Greek name for the mineral beryl. Prior to being named beryllium however, this element was Check back often at boreal.com/elements for the latest content and known as glucinium, which originated from the Greek word glykys, meaning sweet. It was so named due exclusive savings on new teaching tools each month. to its characteristic sweet taste. Early chemists actually tasted the unknown element in order to determine its taste. However, the chemists who discovered this unique property of beryllium also found that it is in fact highly toxic and should therefore NEVER be tasted! boreal.com | 800-387-9393 2 3 di(2-diethylhexyl) phosphate in kerosene at elevated temperatures. The beryllium is then treated with Properties of Beryllium aqueous ammonium carbonate to form an aqueous ammonium beryllium carbonate complex, which is then heated to precipitate beryllium carbonate. Continued heating liberates carbon dioxide and beryllium Beryllium has both stable and unstable hydroxide (Be(OH)2). Beryllium hydroxide is then recovered by filtration and is the main compound used in isotopes, which are all created in stars. the production of beryllium metal, beryllium alloys and beryllium oxide. Radioisotopes of beryllium are very short lived however, some with half lives as In order to produce pure beryllium metal, the beryllium hydroxide is first converted into beryllium fluoride or short at 7 x 10-17 seconds (8Be) and 2.7 x beryllium chloride. To form beryllium fluoride, beryllium hydroxide has aqueous ammonium hydrogen fluo- 10-21 s (13Be). The most common stable ride added to it to yield ammonium tetrafluoroberyllate. This precipitate is then heated to 1000°C which yields isotope of beryllium was created in the beryllium fluoride. Using heat again at 900°C with magnesium, results in finely divided beryllium and contin- interstellar medium when cosmic rays ued heating up to 1300°C results in the compact metal. Conversely, simply heating the beryllium hydroxide induced fission in heavier elements will result in the oxide form of beryllium, which can easily become beryllium chloride when combined with found specifically in interstellar gas and carbon and chlorine. Electrolysis is then performed in order to obtain the pure metal. Only a few hundred tons dusts. There is only one stable isotope of metallic beryllium is produced each year. of beryllium, 9Be, and therefore it is a monoisotopic element. The isotope 10Be A) View NW across Death Valley showing the location of the shore- The majority of the beryllium that is produced is actually used to produce “beryllium copper” alloy, which con- is a radioactive isotope of beryllium that line from where 10Be TCN samples were collected. B) Surface of tains up to 3 percent beryllium by weight and is remarkably flexible, elastic, and hard wearing. Many products accumulates in the earth’s soil, where it the shoreline that was sampled. C) Views of several of the sampled are made from this versatile alloy such as springs, and even tools. Mixing 2% beryllium with 98% copper pro- enjoys a long half life of 1.36 million years.
Recommended publications
  • The Heat of Combustion of Beryllium in Fluorine*
    JOURNAL OF RESEARCH of the National Bureau of Standards -A. Physics and Chemistry Vol. 73A, No.3, May- June 1969 The Heat of Combustion of Beryllium in Fluorine* K. L. Churney and G. T. Armstrong Institute for Materials Research, National Bureau of Standards, Washington, D.C. 20234 (February 11, 1969) An expe rimental dete rmination of the e ne rgies of combustion in Auorine of polyte traAuoroethylene film and Q.o wder and of mixtures of beryllium with polytetraAuoroethyle ne gi ves for reacti on ( 1)f).H ~.or= - 1022.22 kJ 111 0 1- 1 (- 244.32 kcal mol - I) wit h a n ove ra ll precision of 0.96 kJ 111 0 1- 1 (0. 23 kcal 111 0 1- 1 ) at the 95 pe rce nt confid ence limit s. The tota l un cert a int y is estimated not to exceed ±3.2 kJ mol- I (±0.8 kcal mol - I). The measureme nts on polytetraflu oroeth yle ne giv e for reaction (2a) and reacti on (2 b) f).H ~. o c =- 10 369. 7 and - 10392.4 Jg- I, respective ly. Overall precisions e xpressed at the 95 pe rcent confide nce Ijmits are 3.3 and 6.0 Jg- I, respective ly. Be(c)+ F,(g) = BeF2(a morphous) (1) C,F.(polym e r powd er) + 2F2(g) = 2CF.(g) (2a) C2F.(polyme r film ) + 2F2 (g) = 2CF.(g) (2b) Be2C and Be metal were observed in a small carbonaceous residue from the co mbustion of the beryll iul11 -polytetraAuoroethylene mixtures.
    [Show full text]
  • Exposure Data
    BERYLLIUM AND BERYLLIUM eOMPOUNDS Beryllium and beryllium compounds were considered by previous Working Groups, In 1971,1979 and 1987 (lARe, 1972, 1980, 1987a). New data have since become available, and these are included in the present monograph and have been taken into consideration In the evaluation. The agents considered herein Include (a) metallic beryllium, (b) beryllium- aluminium and -copper alloys and (c) some beryllum compounds. 1. Exposure Data 1.1 Chemical and physical data and analysis 1.1.1 Synonyms, trade names and molecular formulae Synonyms, trade names and molecular formulae for beryllium, beryllum-aluminium and -copper alloys and certain beryllium compounds are presented in Thble 1. The list is not exhaustive, nor does it comprise necessarily the most commercially important beryllum- containing substances; rather, it indicates the range of beryllum compounds available. 1. 1.2 Chemical and physical properties of the pure substances Selected chemical and physical properties of beryllium, beryllum-aluminium and -copper alloys and the beryllium compounds covered in this monograph are presented in Thble 2. The French chemist Vauquelin discovered beryllium in 1798 as the oxide, while analysing emerald to prove an analogous composition (Newland, 1984). The metallc element was first isolated in independent experiments by Wöhler (1828) and Bussy (1828), who called it 'glucinium' owing to the sweet taste of its salts; that name is stil used in the French chemical literature. Wöhler's name 'beryllum' was offcially recognized by IUPAe in 1957 (WHO, 1990). The atomic weight and corn mon valence of beryllum were originally the subject of much controversy but were correctly predicted by Mendeleev to be 9 and + 2, respectively (Everest, 1973).
    [Show full text]
  • Patent Office
    Patented Mar. 12, 1940 2,193,364 UNITED STATES PATENT OFFICE 2,193,364 PROCESS FOR OBTANING BEEY UMAND BERYLUMAL LOYS Carlo Adamoli, Milan, Italy, assignor to Perosa Corporation, Wilmington, Oel, a corporation of Delaware No Drawing. Application April 17, 1939, Serial No. 268,385. a tally June 6, 1936 16 Claims. (C. 5-84) The present application relates to a process ical method for the production of beryllium and for directly obtaining in a single operation start its alloys by treatment with a decomposing bi ing from halogenated compounds containing be valent metal such as magnesium, of a fluorine ryllium, beryllium as such or in the state of alloys containing compound of beryllium, that is a 5 with one or more alloyed elements capable of double fluoride of beryllium and an alkali metal 5 alloying with beryllium, and is a continuation-in (sodium) less rich in sodium fluoride than the part of my prior application Ser. No. 144,411 filed normal double fluoride BeFa2NaF. on May 24, 1937. The practical impossibility in fact has been In my said prior application, I have disclosed established which is met with in operating with 0 a process for directly obtaining in a single oper the normal double fluoride according to the re o ation beryllium or beryllium alloys starting from action: simple beryllium fluoride anhydrous and free or Substantially free from oxide. The present in which is rendered explosive by reason of the lib vention relates more particularly to a process eration of sodium and this is the reason in par s 5 of manufacture of beryllium or beryllium alloys ticular why instead of the normal double fluo starting from normal double fluoride of beryllium ride BeF2.2NaF the complex fluoride BeFa.NaF and an alkali-metal, the term “normal' being in is treated according to the reaction: tended to designate double fluorides containing ! 2BeFaNaF.--Mg-Be--MgF2--BeF2,2NaF two molecules of alkali fluoride for one molecule 20 of beryllium fluoride.
    [Show full text]
  • 68854 Federal Register / Vol
    68854 Federal Register / Vol. 64, No. 235 / Wednesday, December 8, 1999 / Rules and Regulations DEPARTMENT OF ENERGY H. Review Under Small Business as nuclear reactor moderators or Regulatory Enforcement Fairness Act of reflectors, and as nuclear reactor fuel 10 CFR Part 850 1996 element cladding. At DOE, beryllium Appendix A to the PreambleÐReferences operations have historically included Appendix B to the PreambleÐQuestions and [Docket No. EH±RM±98±BRYLM] Answers Concerning the Beryllium melting, casting, grinding, and machine Induced Lymphocyte Proliferation Test tooling of parts. (Be±LPT), Medical Records, and the Inhalation of beryllium dust or RIN 1901±AA75 Department of Energy (DOE) Beryllium particles can cause chronic beryllium disease (CBD) or beryllium Chronic Beryllium Disease Prevention Registry sensitization. CBD is a chronic, often Program I. Introduction debilitating, and sometimes fatal lung AGENCY: Office of Environment, Safety This final rule implements a chronic condition. Beryllium sensitization is a and Health, Department of Energy. beryllium disease prevention program condition in which a person's immune (CBDPP) for the Department of Energy system becomes highly responsive ACTION: Final rule. (DOE or the Department). This program (allergic) to the presence of beryllium in will reduce the number of workers the body. There has long been scientific SUMMARY: The Department of Energy currently exposed to beryllium at DOE consensus that exposure to airborne (DOE) is today publishing a final rule to facilities managed by
    [Show full text]
  • SDS US 2945 Version #: 02 Revision Date: 03-17-2021 Issue Date: 01-21-2020 1 / 10 Precautionary Statement Prevention Obtain Special Instructions Before Use
    SAFETY DATA SHEET 1. Identification Product identifier Lithium Beryllium Fluoride Other means of identification SDS number M47 Synonyms FLiBe Manufacturer/Importer/Supplier/Distributor information Manufacturer Company name Materion Brush Inc. Address 6070 Parkland Boulevard Mayfield Heights, OH 44124 United States Telephone 1.800.862.4118 Website www.materion.com E-mail [email protected] Contact person Theodore Knudson Emergency phone number 1.800.862.4118 2. Hazard(s) identification Physical hazards Not classified. Health hazards Acute toxicity, oral Category 3 Acute toxicity, inhalation Category 2 Skin corrosion/irritation Category 2 Serious eye damage/eye irritation Category 2 Sensitization, skin Category 1 Carcinogenicity Category 1B Specific target organ toxicity, single exposure Category 3 respiratory tract irritation Specific target organ toxicity, repeated Category 1 exposure Environmental hazards Hazardous to the aquatic environment, Category 2 long-term hazard OSHA defined hazards Not classified. Label elements Signal word Danger Hazard statement Toxic if swallowed. Causes skin irritation. May cause an allergic skin reaction. Causes serious eye irritation. Fatal if inhaled. May cause respiratory irritation. May cause cancer. Causes damage to organs (respiratory system) through prolonged or repeated exposure by inhalation. Toxic to aquatic life with long lasting effects. Material name: Lithium Beryllium Fluoride SDS US 2945 Version #: 02 Revision date: 03-17-2021 Issue date: 01-21-2020 1 / 10 Precautionary statement Prevention Obtain special instructions before use. Do not handle until all safety precautions have been read and understood. Do not breathe dust. Wash thoroughly after handling. Do not eat, drink or smoke when using this product. Use only outdoors or in a well-ventilated area.
    [Show full text]
  • Quantify Sodium Fluoride / Beryllium Fluoride Salt Properties for a Liquid Fueled Fluoride Molten Salt Reactor
    ANL/CFCT-C2018-18168 Quantify Sodium Fluoride / Beryllium Fluoride Salt Properties for a Liquid Fueled Fluoride Molten Salt Reactor Final CRADA Report Chemical and Fuel Cycle Technologies About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. DOCUMENT AVAILABILITY Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free at OSTI.GOV (http://www.osti.gov/), a service of the U.S. Dept. of Energy's Office of Scientific and Technical Information Reports not in digital format may be purchased by the public from the National Technical Information Service (NTIS): U.S. Department of Commerce National Technical Information Service 5301 Shawnee Rd Alexandria, VA 22312 www.ntis.gov Phone: (800) 553-NTIS (6847) or (703) 605-6000 Fax: (703) 605-6900 Email: [email protected] Reports not in digital format are available to DOE and DOE contractors from the Office of Scientific and Technical Information (OSTI): U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 www.osti.gov Phone: (865) 576-8401 Fax: (865) 576-5728 Email: [email protected] Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]
  • Export Control Handbook for Chemicals
    Export Control Handbook for Chemicals -Dual-use control list -Common Military List -Explosives precursors -Syria restrictive list -Psychotropics and narcotics precursors ARNES-NOVAU, X 2019 EUR 29879 This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. Contact information Xavier Arnés-Novau Joint Research Centre, Via Enrico Fermi 2749, 21027 Ispra (VA), Italy [email protected] Tel.: +39 0332-785421 Filippo Sevini Joint Research Centre, Via Enrico Fermi 2749, 21027 Ispra (VA), Italy [email protected] Tel.: +39 0332-786793 EU Science Hub https://ec.europa.eu/jrc JRC 117839 EUR 29879 Print ISBN 978-92-76-11971-5 ISSN 1018-5593 doi:10.2760/844026 PDF ISBN 978-92-76-11970-8 ISSN 1831-9424 doi:10.2760/339232 Luxembourg: Publications Office of the European Union, 2019 © European Atomic Energy Community, 2019 The reuse policy of the European Commission is implemented by Commission Decision 2011/833/EU of 12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p. 39). Reuse is authorised, provided the source of the document is acknowledged and its original meaning or message is not distorted. The European Commission shall not be liable for any consequence stemming from the reuse.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Topical Report Submittal Reactor Coolant for the Kairos Power Fluoride Salt-Cooled High Temperature Reactor
    KP-NRC-1903-002 March 8, 2019 Project No. 99902069 US Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001 Subject: Kairos Power LLC Topical Report Submittal Reactor Coolant for the Kairos Power Fluoride Salt-Cooled High Temperature Reactor This letter submits the subject topical report which provides specification information and thermophysical properties for reactor coolant for the Kairos Power Fluoride Salt-Cooled, High Temperature Reactor (KP-FHR). This topical report is provided for NRC review and approval and is expected to be referenced by future license applicants using the KP-FHR. The scope and schedule for submittal of this report was discussed in a closed meeting with NRC staff January 16, 2019. Kairos Power respectfully requests NRC acceptance review be completed and a review schedule be provided within 60 days of the receipt of this letter. In recognition of an aggressive deployment schedule and substantial pre-application engagement, Kairos Power has established a generic assumption of a 12-month review for topical reports. Portions of the attached report are considered proprietary, and Kairos Power requests it be withheld from public disclosure in accordance with the provisions of 10 CFR 2.390. Enclosure 1 provides the proprietary version of the report and Enclosure 2 provides the non-proprietary report. An affidavit supporting the withholding request is provided in Enclosure 3. Additionally, the information indicated as proprietary has also been determined to contain Export Controlled Information. This information must be protected from disclosure pursuant to the requirements of 10 CFR 810. If you have any questions or need any additional information, please contact Darrell Gardner at [email protected] or (704) 604-6064.
    [Show full text]
  • Measured Enthalpy and Derived Thermodynamic Properties of Solid and Liquid Lithium Tetrafluoroberyllate
    JOURNAL OF RESEARCH of the Notiona l Bureau of Standards-A. Ph ysics and Chemistry Vol. 73A, No.5, September- October 1969 Measured Enthalpy and Derived Thermodynamic Properties of Solid and Liquid Lithium Tetrafluoroberyllate, from 273 to 900 K 1 Thomas B. Douglas and William H. Payne 2 Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234 (May 20, 1969) The enthalpy of a sampl e of lithium tetraAu oroberyllate, Li,BeF4 , of 98.6 percent purity was ?,easu. red re laLJ ve to 273 K a t eleven te mpe ratures from 323 to 873 K. Corrections we re appli ed fo r the Im purI li es and fo r ex t e n ~ lv e premelting below the m e lti~ g po int (745 K ). The e nthalpy and heat capacity, a nd the e ntropy a nd GIbbs free-energy functIOn rela LJ ve to the undetermined value of 5,°98 15 ' we re computed from empiri cal functIO ns of tem peratu re derived from the data and are tabuhied from 273 to 900 K. ' Key words: Drop calorimetry; enthalpy data; lithium beryllium Au oride; lithium te traAu orobe ryllate; premeltmg; th e rmodynamic properties. 1. Introduction The temperature-composition phase diagram of the condensed phases of the LiF-BeF 2 system has been As part of a long-term research program at the investigated in a number of laboratories. The version National Bureau of Standards on the thermodynamic in a fairly recent compilation of phase diagrams [3] is properties of the simpler li ght-element compounds, based on th e results of two groups of workers [4, 5].
    [Show full text]
  • An Overview of Liquid-Fluoride-Salt Heat Transport Systems
    ORNL/TM-2010/156 An Overview of Liquid-Fluoride-Salt Heat Transport Systems September 2010 Prepared by David E. Holcomb Sacit M. Cetiner DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source. National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail [email protected] Web site http://www.ntis.gov/support/ordernowabout.htm Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange (ETDE) representatives, and International Nuclear Information System (INIS) representatives from the following source. Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Telephone 865-576-8401 Fax 865-576-5728 E-mail [email protected] Web site http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof.
    [Show full text]
  • The Elements.Pdf
    A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements A Resource for Elementary, Middle School, and High School Students Click an element for more information: Group** Period 1 18 IA VIIIA 1A 8A 1 2 13 14 15 16 17 2 1 H IIA IIIA IVA VA VIAVIIA He 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 Na Mg IIIB IVB VB VIB VIIB ------- VIII IB IIB Al Si P S Cl Ar 22.99 24.31 3B 4B 5B 6B 7B ------- 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 ------- 8 ------- 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.47 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr NbMo Tc Ru Rh PdAgCd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La* Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 87 88 89 104 105 106 107 108 109 110 111 112 114 116 118 7 Fr Ra Ac~RfDb Sg Bh Hs Mt --- --- --- --- --- --- (223) (226) (227) (257) (260) (263) (262) (265) (266) () () () () () () http://pearl1.lanl.gov/periodic/ (1 of 3) [5/17/2001 4:06:20 PM] A Periodic Table of the Elements at Los Alamos National Laboratory 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanide Series* Ce Pr NdPmSm Eu Gd TbDyHo Er TmYbLu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Actinide Series~ Th Pa U Np Pu AmCmBk Cf Es FmMdNo Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions.
    [Show full text]