Malaysian Journal of Microbiology, Vol 12(3) 2016, Pp

Total Page:16

File Type:pdf, Size:1020Kb

Malaysian Journal of Microbiology, Vol 12(3) 2016, Pp Malaysian Journal of Microbiology, Vol 12(3) 2016, pp. 191-198 http://dx.doi.org/10.21161/mjm.77915 Malaysian Journal of Microbiology Published by Malaysian Society for Microbiology (In since 2011) Evaluation of identification techniques for the fish pathogen, Aeromonas hydrophila, from Indonesia Diah Kusumawaty 1,2, Adi Pancoro1, I. Nyoman P. Aryantha1 and Sony Suhandono1* 1School of Life Sciences and Technology, Bandung Institute of Technology, Indonesia. Jl. Ganesha No. 10, Bandung 40132 Indonesia. 2Dept. of Biology Education, Indonesia University of Education, Jl. Dr. Setiabudi No 229 Bandung 40154 Indonesia. Email: [email protected] Received 30 September 2015; Received in revised form 9 December 2015; Accepted 9 December 2015 ABSTRACT Aims: This study evaluated the accuracy of three methods used in the identification of Aeromonas hydrophila, a Gram- negative bacterium found in warm aquatic environments. A. hydrophila samples from Indonesia were tested using (a) SNI 7303, developed by the Indonesian government, (b) the method of Dorsch and (c) the method of Cascón. The results obtained were compared to that of the gold standard method, which used 16S rDNA sequences. Methodology and results: Based on the Indonesian government standard identification method SNI7303, we identified 56 out of 95 samples as A. hydrophila. The samples were then screened using the PCR amplification approach developed by Dorsch and Cascón. Of the 56 samples, only 20 samples were found to be positive by either the Dorsch or Cascón methods. DNA from these 20 samples was amplified using common 16S rDNA primers and the sequences compared with available 16S rDNA sequences from the GenBank. Phylogenetic analyses on the data were performed using Clustal X and MEGA 5 software. Conclusion, significance and impact of study: Of the 56 samples positively identified as A. hydrophila using the BSN method, identity in only five samples were positively confirmed using the16S rDNA method, giving an accuracy of only 8.9%. In this connection, the Dorsch method was 31.3% accurate while the Cascón method provided 45.5% correct identification. When all three methods were used in combination, 71.4% of the samples were correctly identified. The results of the study show that methods used to identify A. hydrophila cannot be used with confidence to identify A. hydrophila from Indonesia and probably from other tropical regions as well. The genetic diversity of Aeromonas bacteria in Indonesia appears to be considerably higher than that encountered by Dorsch or Cascón. Therefore, there is a need to develop a new simple method to identify A. hydrophila from tropical regions. Keywords: Aeromonas hydrophila, identification, phylogenetic, 16S rDNA INTRODUCTION Aeromonas hydrophila is a pathogenic bacterium found in USD235,000 and 2.7 million juvenile fish worth various aquatic environments, such as fish ponds, rivers, USD200,000 died in three days (Diraja, 2007 in Eka, lakes, even in sparkling chlorinated drinking water 2010). Laboratory experiments have shown that 105–1010 reservoirs. It is pathogenic to shrimps, frogs, and fishes CFU/mL A. hydrophila can kill the fish in only three days (Martin-Carnahan and Joseph, 2005; EPA, 2006). The after infection (Triyaningsih et al., 2014). Moreover, A. infection caused by this bacterium can lead to significant hydrophila is frequently associated with human diarrhea. mortality rates within a short period, causing losses to fish Alberts et al. (1990) found that 12.2% of toddlers with and shrimp breeders (Illanchezian et al., 2010; acute diarrhea in Dhaka, Bangladesh, tested positive for Mangunwardoyo et al., 2010). The disease symptoms A. hydrophila. Hence, a rapid method to determine A. vary, but infected fish generally show skin ulcers and hydrophila concentration in fish ponds and to ensure the haemorrhaging in the skin, gills, and oral cavity (Gardenia supply of safe drinking water is urgently needed. et al., 2010). The difficulty in distinguishing between A. hydrophila High mortality in gourami fish occurring over short and other species within the Aeromonas genus stems periods has caused great losses to fish breeders. For from the complexity of its identifying characters, example, in Lubuk Pandan, a city in the West Sumatra sometimes varying even within the species (Soler et al., Province of Indonesia, 47 tons of gourami worth 2004; Ottaviani et al., 2011). Identification using classical *Corresponding author 191 ISSN (print): 1823-8262, ISSN (online): 2231-7538 Mal. J. Microbiol. Vol 12(3) 2016, pp. 191-198 phenospecific methods is hence error-prone as shown by Tasikmalaya, Garut, Bandung, Indramayu, and Beaz-Hidalgo et al. (2010) in the recent Bergey’s Manual Sukabumi. When initially cultured on Rimler-Shotts of Systematic Bacteriology. For example, a positive ADH medium + novobiocin, the colonies of suspected A. (arginine dihydrolase) test and hydrolysis of glutamine hydrophila appeared white with a bright yellow zone in the cannot differentiate between A. hydrophila and A. sobria. middle of the colony. The isolates were sub-cultured on Moreover, conventional methods that do not employ Trypticase Soy Agar (TSA) slants and incubated at 28 °C genetic constitution tend to be tedious and complex for 24 h before being subjected to an array of tests and (Abbott et al., 2003). analyses, including Gram staining, motility test, oxidase The gold standard method in the identification of test, blood agar test, oxidative-fermentative test and bacteria involves analysis of 16S rDNA. However, this Rimler-Shotts+novobiocin test (Rimler and Shotts, 1973; method is dependent on DNA sequencing, facilities for BSN, 2009). During this procedure, the morphology of the which are not available in many laboratories. Therefore, isolate under investigation was compared with that of the there is a need to develop alternative practical and reference A. hydrophila ATCC 7966 obtained from accurate identification methods for A. hydrophila. A Microbiologic Co. standard biochemical method to identify A. hydrophila SNI 7303 (BSN, 2009) has been developed by Indonesian Bacterial DNA isolation and analysis Marine and Fisheries Department. This official protocol is frequently used to detect A. hydrophila in Indonesia To isolate bacterial DNA, the bacterial colony was re- (Tanjung et al., 2013; Hardi et al., 2014; Tulung et al., suspended in one milliliter PBS (Phosphate Buffer Saline) 2014). and homogenized using a vortex mixer. The tube was Other DNA-based methods for the identification of A. centrifuged at 1680 rcf for 3 min. The supernatant was hydrophila have been reported by Dorsch et al. (1994) discarded and the pellet was mixed with 100 μL 1× TE pH and Cascón et al. (1996). Dorsch et al. (1994) designed 8.0, and homogenized using a vortex mixer. The sample primers to amplify specific regions of the 16S rDNA of A. was incubated in boiling water for 10 min, and then hydrophila. The 685 bp amplicon that distinguishes A. centrifuged for 1 min at 1680 rcf. A total of 100 µL of the hydrophila from other Aeromonas species has been used lysate was transferred to a new 1.5 mL sterile tube and for identification of the former by Chu and Lu (2008) and dissolved in 900 μL cold 1× TE. Several sample aliquots Pandove et al. (2013). Adopting a different approach, of 200 µL were stored at −20 °C for use as template DNA Cascón et al. (1996) designed PCR primers from the in conjunction with specific primers designed by Dorsch et lipase gene of A. hydrophila H3. This method is rapid and al. (1994), Cascón et al. (1996), and Jiang et al. (2006) specific in identifying A. hydrophila isolated from aquatic for PCR. Following electrophoresis on 1% agarose gel, environments (Hiney and Smith, 1998; Abdullah et al., DNA sequencing was performed at Macrogen Korea. 2003; Salimi et al., 2013; Afsari et al., 2014). The PCR The PCR solution mix and primers used are shown in product, a 760 bp amplicon, has also been employed by Table 1. The sequencing results were subjected to Lee et al. (2000) to identify A. hydrophila in diseased BLAST analysis, with sequences aligned and compared fishes in Korea, while Swaminathan et al. (2004) with the other Aeromonas 16S rDNA from the GenBank successfully detected four out of nine A. hydrophila database NCBI (National Center for Biotechnology isolates from fish and water using the method of Cascón Information;http://www.ncbi.nml.nih.gov/BLAST/Blast.cgi). et al. Eleven sequences of Aeromonas 16S rDNA were chosen Nevertheless, both the methods of Dorsch et al. and from BLAST analysis for comparison with 16S rDNA Cascón et al. have not been validated against the gold sequence from 20 samples which were identified as standard established using complete sequence of 16S positive using the Cascón and Dorch methods. The rDNA (Jiang et al., 2006). This is the first research, to our comparison was made using phylogenetic analysis knowledge, that evaluates the accuracy (sensitivity) of the based on program of Clustal X and MEGA 5 software methods of Dorsch et al. (1994) and Cascón et al. (1996) (Tamura et al., 2011). To construct a phylogenetic tree, for the identification of A. hydrophila from a population of we used three 16S rDNA sequences from A. hydrophila Aeromonas in Indonesia. as references, viz. (1) 16S rDNA generated from living A. hydrophila (ATCC 7966) from Microbiologic Co, (2) 16S MATERIALS AND METHODS rDNA sequence of A. hydrophila (ATCC 7966) available at GenBank NCBI, and (3) 16S rDNA sequence of A. The isolation of Aeromonas hydrophila hydrophila (ATCC 4910) available at GenBank NCBI. Other reference 16S rDNA sequences were later In order to sample Aeromonas species from diverse identified from the NCBI database based on the BLAST environments, we collected bacteria from different results. We also used the 16S rDNA sequence of sources. Bacteria samples were isolated from the Tolumonas auensis strain DSM 9187 from GenBank as intestines of healthy and diseased fish obtained from an out-group.
Recommended publications
  • Antibiotic and Heavy-Metal Resistance in Motile Aeromonas Strains Isolated from Fish
    Vol. 8(17), pp. 1793-1797, 23 April, 2014 DOI: 10.5897/AJMR2013.6339 Article Number: 71C59D844175 ISSN 1996-0808 African Journal of Microbiology Research Copyright © 2014 Author(s) retain the copyright of this article http://www.academicjournals.org/AJMR Full Length Research Paper Antibiotic and heavy-metal resistance in motile Aeromonas strains isolated from fish Seung-Won Yi1#, Dae-Cheol Kim2#, Myung-Jo You1, Bum-Seok Kim1, Won-Il Kim1 and Gee-Wook Shin1* 1Bio-safety Research Institute and College of Veterinary Medicine, Chonbuk National University, Jeonju,561-756, Republic of Korea. 2College of Agriculture and Life Sciences, Chonbuk National University, Jeonju, Korea. Received 9 September, 2013; Accepted 26 February, 2014 Aeromonas spp. have been recognized as important pathogens causing massive economic losses in the aquaculture industry. This study examined the resistance of fish Aeromonas isolates to 15 antibiotics and 3 heavy metals. Based on the results, it is suggested that selective antibiotheraphy should be applied according to the Aeromonas species and the cultured-fish species. In addition, cadmium-resistant strains were associated with resistance to amoxicillin/clavulanic acid, suggesting that cadmium is a global factor related to co-selection of antibiotic resistance in Aeromonas spp. Key words: Aeromonas spp., antibiotic resistance, heavy-metal resistance, aquaculture, multi-antibiotics resistance. INTRODUCTION Motile Aeromonas spp. is widely distributed in aquatic presence of multi-antibiotics resistance (MAR) strains. environments and is a member of the bacterial flora in Recent phylogenetic analysis has revealed high taxo- aquatic animals (Roberts, 2001; Janda and Abbott, 2010). nomical complexities in the genus Aeromonas, with In aquaculture, the bacterium is an emergent pathogen resulting ramifications in Aeromonas spp.
    [Show full text]
  • Delineation of Aeromonas Hydrophila Pathotypes by Dectection of Putative Virulence Factors Using Polymerase Chain Reaction and N
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@Kennesaw State University Kennesaw State University DigitalCommons@Kennesaw State University Master of Science in Integrative Biology Theses Biology & Physics Summer 7-20-2015 Delineation of Aeromonas hydrophila Pathotypes by Dectection of Putative Virulence Factors using Polymerase Chain Reaction and Nematode Challenge Assay John Metz Kennesaw State University, [email protected] Follow this and additional works at: http://digitalcommons.kennesaw.edu/integrbiol_etd Part of the Integrative Biology Commons Recommended Citation Metz, John, "Delineation of Aeromonas hydrophila Pathotypes by Dectection of Putative Virulence Factors using Polymerase Chain Reaction and Nematode Challenge Assay" (2015). Master of Science in Integrative Biology Theses. Paper 7. This Thesis is brought to you for free and open access by the Biology & Physics at DigitalCommons@Kennesaw State University. It has been accepted for inclusion in Master of Science in Integrative Biology Theses by an authorized administrator of DigitalCommons@Kennesaw State University. For more information, please contact [email protected]. Delineation of Aeromonas hydrophila Pathotypes by Detection of Putative Virulence Factors using Polymerase Chain Reaction and Nematode Challenge Assay John Michael Metz Submitted in partial fulfillment of the requirements for the Master of Science Degree in Integrative Biology Thesis Advisor: Donald J. McGarey, Ph.D Department of Molecular and Cellular Biology Kennesaw State University ABSTRACT Aeromonas hydrophila is a Gram-negative, bacterial pathogen of humans and other vertebrates. Human diseases caused by A. hydrophila range from mild gastroenteritis to soft tissue infections including cellulitis and acute necrotizing fasciitis. When seen in fish it causes dermal ulcers and fatal septicemia, which are detrimental to aquaculture stocks and has major economic impact to the industry.
    [Show full text]
  • 10.1016/J.Ijfoodmicro.2018.07.033 Antibiotic Resistance of Aeromonas
    10.1016/j.ijfoodmicro.2018.07.033 Antibiotic resistance of Aeromonas ssp. strains isolated from Sparus aurata reared in Italian mariculture farms C. Scaranoa, F. Pirasa, S. Virdisa, G. Ziinob, R. Nuvolonic, A. Dalmassod, E.P.L. De Santisa, C. Spanua a Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy b Department of Veterinary Sciences, University of Messina, Italy c Department of Veterinary Sciences, University of Pisa, Italy d Department of Veterinary Sciences, University of Turin, Italy Abstract Selective pressure in the aquatic environment of intensive fish farms leads to acquired antibiotic resistance. This study used the broth microdilution method to measure minimum inhibitory concentrations (MICs) of 15 antibiotics against 104 Aeromonas spp. strains randomly selected among bacteria isolated from Sparus aurata reared in six Italian mariculture farms. The antimicrobial agents chosen were representative of those primarily used in aquaculture and human therapy and included oxolinic acid (OXA), ampicillin (AM), amoxicillin (AMX), cephalothin (CF), cloramphenicol (CL), erythromycin (E), florfenicol (FF), flumequine (FM), gentamicin (GM), kanamycin (K), oxytetracycline (OT), streptomycin (S), sulfadiazine (SZ), tetracycline (TE) and trimethoprim (TMP). The most prevalent species selected from positive samples was Aeromonas media (15 strains). The bacterial strains showed high resistance to SZ, AMX, AM, E, CF, S and TMP antibiotics. Conversely, TE and CL showed MIC90 values lower than breakpoints for susceptibility and many isolates were susceptible to OXA, GM, FF, FM, K and OT antibiotics. Almost all Aeromonas spp. strains showed multiple antibiotic resistance. Epidemiological cut-off values (ECVs) for Aeromonas spp. were based on the MIC distributions obtained.
    [Show full text]
  • The Occurrence of Aeromonas in Drinking Water, Tap Water and the Porsuk River
    Brazilian Journal of Microbiology (2011) 42: 126-131 ISSN 1517-8382 THE OCCURRENCE OF AEROMONAS IN DRINKING WATER, TAP WATER AND THE PORSUK RIVER Merih Kivanc1, Meral Yilmaz1*, Filiz Demir1 Anadolu University, Faculty of Science, Department of Biology, Eskiehir, Turkey. Submitted: April 01, 2010; Returned to authors for corrections: May 11, 2010; Approved: June 21, 2010. ABSTRACT The occurrence of Aeromonas spp. in the Porsuk River, public drinking water and tap water in the City of Eskisehir (Turkey) was monitored. Fresh water samples were collected from several sampling sites during a period of one year. Total 102 typical colonies of Aeromonas spp. were submitted to biochemical tests for species differentiation and of 60 isolates were confirmed by biochemical tests. Further identifications of isolates were carried out first with the VITEK system (BioMe˜rieux) and then selected isolates from different phenotypes (VITEK types) were identified using the DuPont Qualicon RiboPrinter® system. Aeromonas spp. was detected only in the samples from the Porsuk River. According to the results obtained with the VITEK system, our isolates were 13% Aeromonas hydrophila, 37% Aeromonas caviae, 35% Pseudomonas putida, and 15% Pseudomonas acidovorans. In addition Pseudomonas sp., Pseudomonas maltophila, Aeromonas salmonicida, Aeromonas hydrophila, and Aeromonas media species were determined using the RiboPrinter® system. The samples taken from the Porsuk River were found to contain very diverse Aeromonas populations that can pose a risk for the residents of the city. On the other hand, drinking water and tap water of the City are free from Aeromonas pathogens and seem to be reliable water sources for the community.
    [Show full text]
  • An Update on the Genus Aeromonas: Taxonomy, Epidemiology, and Pathogenicity
    microorganisms Review An Update on the Genus Aeromonas: Taxonomy, Epidemiology, and Pathogenicity Ana Fernández-Bravo and Maria José Figueras * Unit of Microbiology, Department of Basic Health Sciences, Faculty of Medicine and Health Sciences, IISPV, University Rovira i Virgili, 43201 Reus, Spain; [email protected] * Correspondence: mariajose.fi[email protected]; Tel.: +34-97-775-9321; Fax: +34-97-775-9322 Received: 31 October 2019; Accepted: 14 January 2020; Published: 17 January 2020 Abstract: The genus Aeromonas belongs to the Aeromonadaceae family and comprises a group of Gram-negative bacteria widely distributed in aquatic environments, with some species able to cause disease in humans, fish, and other aquatic animals. However, bacteria of this genus are isolated from many other habitats, environments, and food products. The taxonomy of this genus is complex when phenotypic identification methods are used because such methods might not correctly identify all the species. On the other hand, molecular methods have proven very reliable, such as using the sequences of concatenated housekeeping genes like gyrB and rpoD or comparing the genomes with the type strains using a genomic index, such as the average nucleotide identity (ANI) or in silico DNA–DNA hybridization (isDDH). So far, 36 species have been described in the genus Aeromonas of which at least 19 are considered emerging pathogens to humans, causing a broad spectrum of infections. Having said that, when classifying 1852 strains that have been reported in various recent clinical cases, 95.4% were identified as only four species: Aeromonas caviae (37.26%), Aeromonas dhakensis (23.49%), Aeromonas veronii (21.54%), and Aeromonas hydrophila (13.07%).
    [Show full text]
  • Salmonicida from Aeromonas Bestiarum
    RESEARCH ARTICLE INTERNATIONAL MICROBIOLOGY (2005) 8:259-269 www.im.microbios.org Antonio J. Martínez-Murcia1* Phenotypic, genotypic, and Lara Soler2 Maria José Saavedra1,3 phylogenetic discrepancies Matilde R. Chacón Josep Guarro2 to differentiate Aeromonas Erko Stackebrandt4 2 salmonicida from María José Figueras Aeromonas bestiarum 1Molecular Diagnostics Center, and Univ. Miguel Hernández, Orihuela, Alicante, Spain 2Microbiology Unit, Summary. The taxonomy of the “Aeromonas hydrophila” complex (compris- Dept. of Basic Medical Sciences, ing the species A. hydrophila, A. bestiarum, A. salmonicida, and A. popoffii) has Univ. Rovira i Virgili, Reus, Spain been controversial, particularly the relationship between the two relevant fish 3Dept. of Veterinary Sciences, pathogens A. salmonicida and A. bestiarum. In fact, none of the biochemical tests CECAV-Univ. of Trás-os-Montes evaluated in the present study were able to separate these two species. One hun- e Alto Douro, Vila Real, Portugal dred and sixteen strains belonging to the four species of this complex were iden- 4DSMZ-Deutsche Sammlung von tified by 16S rDNA restriction fragment length polymorphism (RFLP). Mikroorganismen und Zellkulturen Sequencing of the 16S rDNA and cluster analysis of the 16S–23S intergenic GmbH, Braunschwieg, Germany spacer region (ISR)-RFLP in selected strains of A. salmonicida and A. bestiarum indicated that the two species may share extremely conserved ribosomal operons and demonstrated that, due to an extremely high degree of sequence conserva- tion, 16S rDNA cannot be used to differentiate these two closely related species. Moreover, DNA–DNA hybridization similarity between the type strains of A. salmonicida subsp. salmonicida and A. bestiarum was 75.6 %, suggesting that Received 8 September 2005 they may represent a single taxon.
    [Show full text]
  • Aeromonas Media and Related Species As a Test Case Emilie Talagrand-Reboul, Frédéric Roger, Jean-Luc Kimper, Sophie M
    Delineation of Taxonomic Species within Complex of Species: Aeromonas media and Related Species as a Test Case Emilie Talagrand-Reboul, Frédéric Roger, Jean-Luc Kimper, Sophie M. Colston, Joerg Graf, Fadua Latif-Eugenín, Maria José Figueras, Fabienne Petit, Hélène Marchandin, Estelle Jumas-Bilak, et al. To cite this version: Emilie Talagrand-Reboul, Frédéric Roger, Jean-Luc Kimper, Sophie M. Colston, Joerg Graf, et al.. Delineation of Taxonomic Species within Complex of Species: Aeromonas media and Related Species as a Test Case. Frontiers in Microbiology, Frontiers Media, 2017, 8, pp.621. 10.3389/fmicb.2017.00621. hal-01522587 HAL Id: hal-01522587 https://hal.sorbonne-universite.fr/hal-01522587 Submitted on 15 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License ORIGINAL RESEARCH published: 18 April 2017 doi: 10.3389/fmicb.2017.00621 Delineation of Taxonomic Species within Complex of Species: Aeromonas media and Related Species as a Test Case Emilie Talagrand-Reboul
    [Show full text]
  • Succession of Lignocellulolytic Bacterial Consortia Bred Anaerobically from Lake Sediment
    bs_bs_banner Succession of lignocellulolytic bacterial consortia bred anaerobically from lake sediment Elisa Korenblum,*† Diego Javier Jimenez and A total of 160 strains was isolated from the enrich- Jan Dirk van Elsas ments. Most of the strains tested (78%) were able to Department of Microbial Ecology,Groningen Institute for grow anaerobically on carboxymethyl cellulose and Evolutionary Life Sciences,University of Groningen, xylan. The final consortia yield attractive biological Groningen,The Netherlands. tools for the depolymerization of recalcitrant ligno- cellulosic materials and are proposed for the produc- tion of precursors of biofuels. Summary Anaerobic bacteria degrade lignocellulose in various Introduction anoxic and organically rich environments, often in a syntrophic process. Anaerobic enrichments of bacte- Lignocellulose is naturally depolymerized by enzymes of rial communities on a recalcitrant lignocellulose microbial communities that develop in soil as well as in source were studied combining polymerase chain sediments of lakes and rivers (van der Lelie et al., reaction–denaturing gradient gel electrophoresis, 2012). Sediments in organically rich environments are amplicon sequencing of the 16S rRNA gene and cul- usually waterlogged and anoxic, already within a cen- turing. Three consortia were constructed using the timetre or less of the sediment water interface. There- microbiota of lake sediment as the starting inoculum fore, much of the organic detritus is probably degraded and untreated switchgrass (Panicum virgatum) (acid by anaerobic processes in such systems (Benner et al., or heat) or treated (with either acid or heat) as the 1984). Whereas fungi are well-known lignocellulose sole source of carbonaceous compounds. Addition- degraders in toxic conditions, due to their oxidative ally, nitrate was used in order to limit sulfate reduc- enzymes (Wang et al., 2013), in anoxic environments tion and methanogenesis.
    [Show full text]
  • Identification and Characterization of Aeromonas Species Isolated from Ready- To-Eat Lettuce Products
    Master's thesis Noelle Umutoni Identification and Characterization of Aeromonas species isolated 2019 from ready-to-eat lettuce Master's thesis products. Noelle Umutoni NTNU May 2019 Norwegian University of Science and Technology Faculty of Natural Sciences Department of Biotechnology and Food Science Identification and Characterization of Aeromonas species isolated from ready- to-eat lettuce products. Noelle Umutoni Food science and Technology Submission date: May 2019 Supervisor: Lisbeth Mehli Norwegian University of Science and Technology Department of Biotechnology and Food Science Preface This thesis covers 45 ECTS-credits and was carried out as part of the M. Sc. programme for Food and Technology at the institute of Biotechnology and Food Science, faculty of natural sciences at the Norwegian University of Science and Technology in Trondheim in spring 2019. First, I would like to express my gratitude to my main supervisor Associate professor Lisbeth Mehli. Thank you for the laughs, advice, and continuous encouragement throughout the project. Furthermore, appreciations to PhD Assistant professor Gunn Merethe Bjørge Thomassen for valuable help in the lab. Great thanks to my family and friends for their patience and encouragement these past years. Thank you for listening, despite not always understanding the context of my studies. A huge self-five to myself, for putting in the work. Finally, a tremendous thank you to Johan – my partner in crime and in life. I could not have done this without you. You kept me fed, you kept sane. I appreciate you from here to eternity. Mama, we made it! 15th of May 2019 Author Noelle Umutoni I Abstract Aeromonas spp.
    [Show full text]
  • Evaluation of Pathogenic Potential of Aeromonas Spp. Strains Using in Vitro Methodologies
    Catarina Ribeiro Correia Degree in Cellular and Molecular Biology Evaluation of pathogenic potential of Aeromonas spp. strains using in vitro methodologies Dissertation to obtain a Master Degree in Molecular Genetics and Biomedicine Supervisor: Ana Luísa Ferreira Simplício, Ph.D IBET/ITQB-UNL Co-Supervisor: Maria Teresa Crespo, Ph.D IBET/ITQB-UNL Júri: Presidente: Prof. Doutora Paula Maria Theriaga Mendes Bernardo Gonçalves Arguente: Doutora Teresa Maria Leitão Semedo-Lemsaddek Vogal: Doutora Ana Luísa Ferreira Simplício December 2013 [this page intentionally left blank] Catarina Ribeiro Correia Degree in Cellular and Molecular Biology Evaluation of pathogenic potential of Aeromonas spp. strains using in vitro methodologies Dissertation to obtain a Master Degree in Molecular Genetics and Biomedicine Supervisor: Ana Luísa Ferreira Simplício, Ph.D IBET/ITQB-UNL Co-Supervisor: Maria Teresa Crespo, Ph.D IBET/ITQB-UNL Júri: Presidente: Prof. Doutora Paula Maria Theriaga Mendes Bernardo Gonçalves Arguente: Doutora Teresa Maria Leitão Semedo-Lemsaddek Vogal: Doutora Ana Luísa Ferreira Simplício December 2013 [this page intentionally left blank] Evaluation of pathogenic potential of Aeromonas spp. strains using in vitro methodologies Copyright Catarina Ribeiro Correia, FCT/UNL, UNL A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor.
    [Show full text]
  • Investigation of the Virulence and Genomics of Aeromonas Salmonicida Strains Isolated from Human Patients T
    Infection, Genetics and Evolution 68 (2019) 1–9 Contents lists available at ScienceDirect Infection, Genetics and Evolution journal homepage: www.elsevier.com/locate/meegid Research paper Investigation of the virulence and genomics of Aeromonas salmonicida strains isolated from human patients T Antony T. Vincenta,1, Ana Fernández-Bravob,1, Marta Sanchisb, Emilio Mayayob,c, ⁎⁎ ⁎ María Jose Figuerasb, , Steve J. Charettea, a Université Laval, Quebec City, QC, Canada b Universitat Rovira i Virgili, IISPV, Reus, Spain c University Hospital Joan XIII, Tarragona, Spain ARTICLE INFO ABSTRACT Keywords: The bacterium Aeromonas salmonicida is known since long time as a major fish pathogen unable to grow at 37 °C. Aeromonas salmonicida However, some cases of human infection by putative mesophilic A. salmonicida have been reported. The goal of Infection the present study is to examine two clinical cases of human infection by A. salmonicida in Spain and to in- Necrotizing fasciitis vestigate the pathogenicity in mammals of selected mesophilic A. salmonicida strains. An evaluation of the pa- Pathogenicity thogenicity in a mouse model of clinical and environmental A. salmonicida strains was performed. The genomes Type III secretion systems of the strains were sequenced and analyzed in order to find the virulence determinants of these strains. The Whole genome sequencing experimental infection in mice showed a gradient in the virulence of these strains and that some of them can cause necrotizing fasciitis and tissue damage in the liver. In addition to demonstrating significant genomic diversity among the strains studied, bioinformatics analyses permitted also to shed light on crucial elements for the virulence of the strains, like the presence of a type III secretion system in the one that caused the highest mortality in the experimental infection.
    [Show full text]
  • Caracterización De Bacterias Aeromonadales Móviles Aisladas De Peces Cultivados En Uruguay
    UNIVERSIDAD DE LA REPÚBLICA FACULTAD DE VETERINARIA Programa de Posgrados CARACTERIZACIÓN DE BACTERIAS AEROMONADALES MÓVILES AISLADAS DE PECES CULTIVADOS EN URUGUAY Alejandro Perretta TESIS DE MAESTRÍA EN SALUD ANIMAL URUGUAY 2016 i ii iii UNIVERSIDAD DE LA REPÚBLICA FACULTAD DE VETERINARIA Programa de Posgrados CARACTERIZACIÓN DE BACTERIAS AEROMONADALES MÓVILES AISLADAS DE PECES CULTIVADOS EN URUGUAY Alejandro Perretta _________________________ _________________________ Dr. Pablo Zunino Dra. Karina Antúnez Director de Tesis Codirectora de Tesis 2016 iv INTEGRACIÓN DEL TRIBUNAL DE DEFENSA DE TESIS Claudia Piccini; MS, PhD Departamento de Microbiología Instituto de Investigaciones Biológicas "Clemente Estable"- Ministerio de Educación y Cultura - Uruguay Laura Bentancor; MS, PhD Departamento de Bacteriología y Virología Instituto de Higiene - Facultad de Medicina Universidad de la República - Uruguay Martín Fraga; MS, PhD Plataforma de Salud Animal Instituto de Investigaciones Agropecuarias - Uruguay 2016 v vi vii DEDICATORIA …para Federíco, Anaclara y Valeria viii AGRADECIMIENTOS - A Pablo Zunino y Karina Antúnez, gracias por compartir el conocimiento conmigo, abrirme las puertas del IIBCE para poder llevar a cabo este trabajando y por la paciencia y el apoyo en todo momento. - A Daniel Carnevia por el apoyo contínuo y la colaboración brindada en cada uno de mis emprendimientos. - A todo el personal docente y no docente del Instituto de Investigaciones Pesqueras de la Facultad de Veterinaria por tantos años de apoyo y colaboración. - A Belén Branchiccela y todo el personal del Departamento de Microbiología del IIBCE por el apoyo y la colaboración en todas las tareas llevadas a cabo allí. - A Rodrigo Puentes, Uruguaysito Benavides y todo el personal del Área Inmunología de la Facultad de Veterinaria por la colaboración con las taréas de biología molecular llevadas a cabo.
    [Show full text]