Evaluation of Pathogenic Potential of Aeromonas Spp. Strains Using in Vitro Methodologies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
University of Cincinnati
UNIVERSITY OF CINCINNATI Date: February 22, 2007 I, _ Samuel Lee Hayes________________________________________, hereby submit this work as part of the requirements for the degree of: Doctor of Philosophy in: Biological Sciences It is entitled: Response of Mammalian Models to Exposure of Bacteria from the Genus Aeromonas Evaluated using Transcriptional Analysis and Conjectures on Disease Mechanisms This work and its defense approved by: Chair: _Brian K. Kinkle _Dennis W. Grogan _Richard D. Karp _Mario Medvedovic _Stephen J. Vesper Response of Mammalian Models to Exposure of Bacteria from the Genus Aeromonas Evaluated using Transcriptional Analysis and Conjectures on Disease Mechanisms A dissertation submitted to the Division of Graduate Studies and Research of the University of Cincinnati in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in the Department of Biological Sciences of the College of Arts and Sciences 2007 by Samuel Lee Hayes B.S. Ohio University, 1978 M.S. University of Cincinnati, 1986 Committee Chair: Dr. Brian K. Kinkle Abstract The genus Aeromonas contains virulent bacteria implicated in waterborne disease, as well as avirulent strains. One of my research objectives was to identify and characterize host- pathogen relationships specific to Aeromonas spp. Aeromonas virulence was assessed using changes in host mRNA expression after infecting cell cultures and live animals. Messenger RNA extracts were hybridized to murine genomic microarrays. Initially, these model systems were infected with two virulent A. hydrophila strains, causing up-regulation of over 200 and 50 genes in animal and cell culture tissues, respectively. Twenty-six genes were common between the two model systems. The live animal model was used to define virulence for many Aeromonas spp. -
Antibiotic and Heavy-Metal Resistance in Motile Aeromonas Strains Isolated from Fish
Vol. 8(17), pp. 1793-1797, 23 April, 2014 DOI: 10.5897/AJMR2013.6339 Article Number: 71C59D844175 ISSN 1996-0808 African Journal of Microbiology Research Copyright © 2014 Author(s) retain the copyright of this article http://www.academicjournals.org/AJMR Full Length Research Paper Antibiotic and heavy-metal resistance in motile Aeromonas strains isolated from fish Seung-Won Yi1#, Dae-Cheol Kim2#, Myung-Jo You1, Bum-Seok Kim1, Won-Il Kim1 and Gee-Wook Shin1* 1Bio-safety Research Institute and College of Veterinary Medicine, Chonbuk National University, Jeonju,561-756, Republic of Korea. 2College of Agriculture and Life Sciences, Chonbuk National University, Jeonju, Korea. Received 9 September, 2013; Accepted 26 February, 2014 Aeromonas spp. have been recognized as important pathogens causing massive economic losses in the aquaculture industry. This study examined the resistance of fish Aeromonas isolates to 15 antibiotics and 3 heavy metals. Based on the results, it is suggested that selective antibiotheraphy should be applied according to the Aeromonas species and the cultured-fish species. In addition, cadmium-resistant strains were associated with resistance to amoxicillin/clavulanic acid, suggesting that cadmium is a global factor related to co-selection of antibiotic resistance in Aeromonas spp. Key words: Aeromonas spp., antibiotic resistance, heavy-metal resistance, aquaculture, multi-antibiotics resistance. INTRODUCTION Motile Aeromonas spp. is widely distributed in aquatic presence of multi-antibiotics resistance (MAR) strains. environments and is a member of the bacterial flora in Recent phylogenetic analysis has revealed high taxo- aquatic animals (Roberts, 2001; Janda and Abbott, 2010). nomical complexities in the genus Aeromonas, with In aquaculture, the bacterium is an emergent pathogen resulting ramifications in Aeromonas spp. -
10.1016/J.Ijfoodmicro.2018.07.033 Antibiotic Resistance of Aeromonas
10.1016/j.ijfoodmicro.2018.07.033 Antibiotic resistance of Aeromonas ssp. strains isolated from Sparus aurata reared in Italian mariculture farms C. Scaranoa, F. Pirasa, S. Virdisa, G. Ziinob, R. Nuvolonic, A. Dalmassod, E.P.L. De Santisa, C. Spanua a Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy b Department of Veterinary Sciences, University of Messina, Italy c Department of Veterinary Sciences, University of Pisa, Italy d Department of Veterinary Sciences, University of Turin, Italy Abstract Selective pressure in the aquatic environment of intensive fish farms leads to acquired antibiotic resistance. This study used the broth microdilution method to measure minimum inhibitory concentrations (MICs) of 15 antibiotics against 104 Aeromonas spp. strains randomly selected among bacteria isolated from Sparus aurata reared in six Italian mariculture farms. The antimicrobial agents chosen were representative of those primarily used in aquaculture and human therapy and included oxolinic acid (OXA), ampicillin (AM), amoxicillin (AMX), cephalothin (CF), cloramphenicol (CL), erythromycin (E), florfenicol (FF), flumequine (FM), gentamicin (GM), kanamycin (K), oxytetracycline (OT), streptomycin (S), sulfadiazine (SZ), tetracycline (TE) and trimethoprim (TMP). The most prevalent species selected from positive samples was Aeromonas media (15 strains). The bacterial strains showed high resistance to SZ, AMX, AM, E, CF, S and TMP antibiotics. Conversely, TE and CL showed MIC90 values lower than breakpoints for susceptibility and many isolates were susceptible to OXA, GM, FF, FM, K and OT antibiotics. Almost all Aeromonas spp. strains showed multiple antibiotic resistance. Epidemiological cut-off values (ECVs) for Aeromonas spp. were based on the MIC distributions obtained. -
The Occurrence of Aeromonas in Drinking Water, Tap Water and the Porsuk River
Brazilian Journal of Microbiology (2011) 42: 126-131 ISSN 1517-8382 THE OCCURRENCE OF AEROMONAS IN DRINKING WATER, TAP WATER AND THE PORSUK RIVER Merih Kivanc1, Meral Yilmaz1*, Filiz Demir1 Anadolu University, Faculty of Science, Department of Biology, Eskiehir, Turkey. Submitted: April 01, 2010; Returned to authors for corrections: May 11, 2010; Approved: June 21, 2010. ABSTRACT The occurrence of Aeromonas spp. in the Porsuk River, public drinking water and tap water in the City of Eskisehir (Turkey) was monitored. Fresh water samples were collected from several sampling sites during a period of one year. Total 102 typical colonies of Aeromonas spp. were submitted to biochemical tests for species differentiation and of 60 isolates were confirmed by biochemical tests. Further identifications of isolates were carried out first with the VITEK system (BioMe˜rieux) and then selected isolates from different phenotypes (VITEK types) were identified using the DuPont Qualicon RiboPrinter® system. Aeromonas spp. was detected only in the samples from the Porsuk River. According to the results obtained with the VITEK system, our isolates were 13% Aeromonas hydrophila, 37% Aeromonas caviae, 35% Pseudomonas putida, and 15% Pseudomonas acidovorans. In addition Pseudomonas sp., Pseudomonas maltophila, Aeromonas salmonicida, Aeromonas hydrophila, and Aeromonas media species were determined using the RiboPrinter® system. The samples taken from the Porsuk River were found to contain very diverse Aeromonas populations that can pose a risk for the residents of the city. On the other hand, drinking water and tap water of the City are free from Aeromonas pathogens and seem to be reliable water sources for the community. -
An Update on the Genus Aeromonas: Taxonomy, Epidemiology, and Pathogenicity
microorganisms Review An Update on the Genus Aeromonas: Taxonomy, Epidemiology, and Pathogenicity Ana Fernández-Bravo and Maria José Figueras * Unit of Microbiology, Department of Basic Health Sciences, Faculty of Medicine and Health Sciences, IISPV, University Rovira i Virgili, 43201 Reus, Spain; [email protected] * Correspondence: mariajose.fi[email protected]; Tel.: +34-97-775-9321; Fax: +34-97-775-9322 Received: 31 October 2019; Accepted: 14 January 2020; Published: 17 January 2020 Abstract: The genus Aeromonas belongs to the Aeromonadaceae family and comprises a group of Gram-negative bacteria widely distributed in aquatic environments, with some species able to cause disease in humans, fish, and other aquatic animals. However, bacteria of this genus are isolated from many other habitats, environments, and food products. The taxonomy of this genus is complex when phenotypic identification methods are used because such methods might not correctly identify all the species. On the other hand, molecular methods have proven very reliable, such as using the sequences of concatenated housekeeping genes like gyrB and rpoD or comparing the genomes with the type strains using a genomic index, such as the average nucleotide identity (ANI) or in silico DNA–DNA hybridization (isDDH). So far, 36 species have been described in the genus Aeromonas of which at least 19 are considered emerging pathogens to humans, causing a broad spectrum of infections. Having said that, when classifying 1852 strains that have been reported in various recent clinical cases, 95.4% were identified as only four species: Aeromonas caviae (37.26%), Aeromonas dhakensis (23.49%), Aeromonas veronii (21.54%), and Aeromonas hydrophila (13.07%). -
Final Screening Assessment of Micrococcus Luteus Strain ATCC 4698
Final Screening Assessment of Micrococcus luteus strain ATCC 4698 Environment and Climate Change Canada Health Canada February 2018 Cat. No.: En14-313/2018E-PDF ISBN 978-0-660-24725-0 Information contained in this publication or product may be reproduced, in part or in whole, and by any means, for personal or public non-commercial purposes, without charge or further permission, unless otherwise specified. You are asked to: • Exercise due diligence in ensuring the accuracy of the materials reproduced; • Indicate both the complete title of the materials reproduced, as well as the author organization; and • Indicate that the reproduction is a copy of an official work that is published by the Government of Canada and that the reproduction has not been produced in affiliation with or with the endorsement of the Government of Canada. Commercial reproduction and distribution is prohibited except with written permission from the author. For more information, please contact Environment and Climate Change Canada’s Inquiry Centre at 1-800-668-6767 (in Canada only) or 819-997-2800 or email to [email protected]. © Her Majesty the Queen in Right of Canada, represented by the Minister of the Environment and Climate Change, 2016. Aussi disponible en français ii Synopsis Pursuant to paragraph 74(b) of the Canadian Environmental Protection Act, 1999 (CEPA), the Minister of the Environment and the Minister of Health have conducted a screening assessment of Micrococcus luteus (M. luteus) strain ATCC 4698. M. luteus strain ATCC 4698 is a bacterial strain that shares characteristics with other strains of the species. M. -
Aeromonas Media and Related Species As a Test Case Emilie Talagrand-Reboul, Frédéric Roger, Jean-Luc Kimper, Sophie M
Delineation of Taxonomic Species within Complex of Species: Aeromonas media and Related Species as a Test Case Emilie Talagrand-Reboul, Frédéric Roger, Jean-Luc Kimper, Sophie M. Colston, Joerg Graf, Fadua Latif-Eugenín, Maria José Figueras, Fabienne Petit, Hélène Marchandin, Estelle Jumas-Bilak, et al. To cite this version: Emilie Talagrand-Reboul, Frédéric Roger, Jean-Luc Kimper, Sophie M. Colston, Joerg Graf, et al.. Delineation of Taxonomic Species within Complex of Species: Aeromonas media and Related Species as a Test Case. Frontiers in Microbiology, Frontiers Media, 2017, 8, pp.621. 10.3389/fmicb.2017.00621. hal-01522587 HAL Id: hal-01522587 https://hal.sorbonne-universite.fr/hal-01522587 Submitted on 15 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License ORIGINAL RESEARCH published: 18 April 2017 doi: 10.3389/fmicb.2017.00621 Delineation of Taxonomic Species within Complex of Species: Aeromonas media and Related Species as a Test Case Emilie Talagrand-Reboul -
Identification and Characterization of Aeromonas Species Isolated from Ready- To-Eat Lettuce Products
Master's thesis Noelle Umutoni Identification and Characterization of Aeromonas species isolated 2019 from ready-to-eat lettuce Master's thesis products. Noelle Umutoni NTNU May 2019 Norwegian University of Science and Technology Faculty of Natural Sciences Department of Biotechnology and Food Science Identification and Characterization of Aeromonas species isolated from ready- to-eat lettuce products. Noelle Umutoni Food science and Technology Submission date: May 2019 Supervisor: Lisbeth Mehli Norwegian University of Science and Technology Department of Biotechnology and Food Science Preface This thesis covers 45 ECTS-credits and was carried out as part of the M. Sc. programme for Food and Technology at the institute of Biotechnology and Food Science, faculty of natural sciences at the Norwegian University of Science and Technology in Trondheim in spring 2019. First, I would like to express my gratitude to my main supervisor Associate professor Lisbeth Mehli. Thank you for the laughs, advice, and continuous encouragement throughout the project. Furthermore, appreciations to PhD Assistant professor Gunn Merethe Bjørge Thomassen for valuable help in the lab. Great thanks to my family and friends for their patience and encouragement these past years. Thank you for listening, despite not always understanding the context of my studies. A huge self-five to myself, for putting in the work. Finally, a tremendous thank you to Johan – my partner in crime and in life. I could not have done this without you. You kept me fed, you kept sane. I appreciate you from here to eternity. Mama, we made it! 15th of May 2019 Author Noelle Umutoni I Abstract Aeromonas spp. -
Biotechnological Tools in Fish Health Management - Indrani Karunasagar
BIOTECHNOLOGY –Vol. IX - Biotechnological Tools in Fish Health Management - Indrani Karunasagar BIOTECHNOLOGICAL TOOLS IN FISH HEALTH MANAGEMENT Indrani Karunasagar Department of Microbiology, University of Agricultural Sciences, College of Fisheries, Mangalore, India Keywords: aquaculture, fish disease, vaccines, diagnostic tools, bioremediation, probiotics Contents 1. Microbial disease problems in aquaculture 2. Strategies for health management 3. Biotechnological tools in health management 3.1 Pathogen detection and disease diagnosis: 3.2. Biocontrol of pathogens through probiotics 3.3 Protection of hosts through immunoprophylaxis: 3.4. Bioremediation of aquaculture environment: Glossary Bibliography Biographical Sketch Summary Aquaculture industry is suffering serious losses due to diseases. Viral, bacterial and parasitic diseases are major problems in the industry. Disease management strategies targeted only at the pathogen is not successful in aquatic systems. Some of the approaches suggested include rapid detection and avoidance of the pathogen, biocontrol of the pathogen, immunoprophylaxis through vaccines and immunostimulants and bioremediation of the environment. Biotechnological approaches show promise to improve the health of cultured fish and shellfish and improve aquaculture production, while safeguarding the environment. 1. MicrobialUNESCO Disease Problems in Aquaculture – EOLSS Aquaculture is one of the fastest growing food production sectors in the world. According to the Food and Agriculture Organisation (FAO) estimates, 29 percent of the world‘s food fish come from SAMPLEaquaculture. Freshwater aquaculture CHAPTERS contributes 15.1 million tons to fish production, while marine and brackishwater aquaculture contribute 9.7 million tons and 1.6 million tons respectively. Developing countries in Asia account for 80 percent of aquaculture production and this industry contributes significantly to the economic growth of the producing countries. -
Guidelines for Drinking-~Ater Quality I SECOND EDITION
Guidelines for drinking-~ater quality I SECOND EDITION Addendum Microbiological agents . in drinking water ~ . ~ ~tt-1\\ . ~ ~ !JR ~ World Health Organization Geneva The World Health Organ1zatwn was established m 1948 as a spec1ahzed agency of the Umted Nations servmg as the directing and coordmatmg authonty for mternauonal health matters and pubhc health. One of WHO's consututwnal functwns IS to provide objective and reliable mformat1on and advice m the field of human health, a responsibility that It fulhls in part through Its extensiVe programme of publications The Organization seeks through Its publicatwns to support natwnal health strategies and address the mostpressmg public health concerns of populations around the world. To respond to the needs of Member States at all levels of development, WHO publishes practical manuals, handbooks and trammg matenal for spec1hc categories of health workers; mternauonally applicable guidelines and standards; reviews and analyses of health polioes, programmes and research; and state-of-the-art consensus reports that offer technical advice and recommendations for deCision-makers. These books are closely ued to the Orgamzauon's pnonty activities, encompassing disease prevention and control, the development of equitable health systems based on primary health care, and health promotion for mdividuals and commumties. Progress towards better health for all also demands the global d1ssemmauon and exchange of mformauon that draws on the knowledge of all WHO's Member countnes and the collaboration of world leaders m pubhc health and the biomedical sciences. To ensure the widest possible availab1hty of authoritative mformation and guidance on health matters, WHO secures the broad mternational d1stnbuuon ohts publications and encourages theu translation and adaptation. -
Novel Magnetite-Producing Magnetotactic Bacteria Belonging to the Gammaproteobacteria
The ISME Journal (2012) 6, 440–450 & 2012 International Society for Microbial Ecology All rights reserved 1751-7362/12 www.nature.com/ismej ORIGINAL ARTICLE Novel magnetite-producing magnetotactic bacteria belonging to the Gammaproteobacteria Christopher T Lefe`vre1,4, Nathan Viloria1, Marian L Schmidt1,5, Miha´ly Po´sfai2, Richard B Frankel3 and Dennis A Bazylinski1 1School of Life Sciences, University of Nevada at Las Vegas, 4505 Maryland Parkway, Las Vegas, NV, USA; 2Department of Earth and Environmental Sciences, University of Pannonia, Veszpre´m, Hungary and 3Department of Physics, California Polytechnic State University, San Luis Obispo, CA, USA Two novel magnetotactic bacteria (MTB) were isolated from sediment and water collected from the Badwater Basin, Death Valley National Park and southeastern shore of the Salton Sea, respectively, and were designated as strains BW-2 and SS-5, respectively. Both organisms are rod-shaped, biomineralize magnetite, and are motile by means of flagella. The strains grow chemolithoauto- trophically oxidizing thiosulfate and sulfide microaerobically as electron donors, with thiosulfate oxidized stoichiometrically to sulfate. They appear to utilize the Calvin–Benson–Bassham cycle for autotrophy based on ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity and the presence of partial sequences of RubisCO genes. Strains BW-2 and SS-5 biomineralize chains of octahedral magnetite crystals, although the crystals of SS-5 are elongated. Based on 16S rRNA gene sequences, both strains are phylogenetically affiliated with the Gammaproteobacteria class. Strain SS-5 belongs to the order Chromatiales; the cultured bacterium with the highest 16S rRNA gene sequence identity to SS-5 is Thiohalocapsa marina (93.0%). -
Caracterización De Bacterias Aeromonadales Móviles Aisladas De Peces Cultivados En Uruguay
UNIVERSIDAD DE LA REPÚBLICA FACULTAD DE VETERINARIA Programa de Posgrados CARACTERIZACIÓN DE BACTERIAS AEROMONADALES MÓVILES AISLADAS DE PECES CULTIVADOS EN URUGUAY Alejandro Perretta TESIS DE MAESTRÍA EN SALUD ANIMAL URUGUAY 2016 i ii iii UNIVERSIDAD DE LA REPÚBLICA FACULTAD DE VETERINARIA Programa de Posgrados CARACTERIZACIÓN DE BACTERIAS AEROMONADALES MÓVILES AISLADAS DE PECES CULTIVADOS EN URUGUAY Alejandro Perretta _________________________ _________________________ Dr. Pablo Zunino Dra. Karina Antúnez Director de Tesis Codirectora de Tesis 2016 iv INTEGRACIÓN DEL TRIBUNAL DE DEFENSA DE TESIS Claudia Piccini; MS, PhD Departamento de Microbiología Instituto de Investigaciones Biológicas "Clemente Estable"- Ministerio de Educación y Cultura - Uruguay Laura Bentancor; MS, PhD Departamento de Bacteriología y Virología Instituto de Higiene - Facultad de Medicina Universidad de la República - Uruguay Martín Fraga; MS, PhD Plataforma de Salud Animal Instituto de Investigaciones Agropecuarias - Uruguay 2016 v vi vii DEDICATORIA …para Federíco, Anaclara y Valeria viii AGRADECIMIENTOS - A Pablo Zunino y Karina Antúnez, gracias por compartir el conocimiento conmigo, abrirme las puertas del IIBCE para poder llevar a cabo este trabajando y por la paciencia y el apoyo en todo momento. - A Daniel Carnevia por el apoyo contínuo y la colaboración brindada en cada uno de mis emprendimientos. - A todo el personal docente y no docente del Instituto de Investigaciones Pesqueras de la Facultad de Veterinaria por tantos años de apoyo y colaboración. - A Belén Branchiccela y todo el personal del Departamento de Microbiología del IIBCE por el apoyo y la colaboración en todas las tareas llevadas a cabo allí. - A Rodrigo Puentes, Uruguaysito Benavides y todo el personal del Área Inmunología de la Facultad de Veterinaria por la colaboración con las taréas de biología molecular llevadas a cabo.